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Overview

Multi-label feature selection problem is
in need of scalable methods because of
the rapid growth of the size of datasets.

Here we develop a theoretical modeling
for this problem. We formulate it as a

“submodular plus diversity”
optimization problem and show that an
approximation algorithm can be used to
maximize this optimization problem in a

distributed setting.

Main Contributions:
•Formulating the multi-label feature selection
problem as a combinatorial optimization
problem. Namely, as the maximization of the
sum of a monotone submodular function and a
sum-sum diversity function.

•Presenting a greedy algorithm for such a
combinatorial optimization problem in the
distributed and streaming settings and
showing it achieves a constant factor
approximation.

•Performing an empirical study on the resulted
multi-label feature selection method and
comparing it to the state-of-the-art centralized
feature selection methods.

Distributed Multi-label Feature
Selection
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Properties of the dataset

•A small number of samples
•A huge number of features

Therefore we need a Filter method with
Vertical Distribution of data

A Theoretical Modeling

Goal: select non-redundant relevant
features

•Model the dis-similarity of features with a
metric distance function.

•Model the relevance of features with a
submodular function.

Set of features: U = {u1, . . . , un}
Set of labels: L = {`1, . . . , `t}

The following is a dis-similarity/distance measure
between pairs of features.
Metric distance (Normalized Variation of
Information):

d(ui, uj) = 1− I(ui, uj)
H(ui, uj)

The following is a submodular function that rep-
resents the relevance of a subset of features to the
set of labels.
Submodular function (S ⊂ P ):

g(S) = Σ
`∈L

topp
u∈S
{MI(u, `)}

H is the joint entropy, I is the mutual informa-
tion, MI is the normalized mutual information,
and topp is the sum of the p largest number in the
associated set.
The topp function causes the formulation to select
at least p relevant features for each label. In the
extreme cases of p = 1 and p = n, one or few fea-
tures can dominate the formulation and prevent
it to find a good set of features.

Optimization Problem: Maximize the
following subject to |S| ≤ k

Redundancy Relevance
Diversity function Submodular function

λ Σ
ui,uj∈S

d(ui, uj) + (1− λ)k(k−1)
2p|L| g(S)

λ ∈ [0, 1] is a hyper-parameter.

Theoretical Problem

“Submodular plus Diversity”

Maximize the sum of a diversity function
and a monotone submodular function
subject to a cardinality constraint.

Theoretical Contribution

Maximizing a “submodular plus
diversity” function in distributed
and streaming settings within a
constant-factor approximation.

Algorithms

Algorithm 1: Greedy
1 Input: Set of features U , set of labels L, number
of features we want to select k.

2Output: Set S ⊂ U with |S| = k.
3S ← {arg maxu∈U g({u})};
4 forall 2 ≤ i ≤ k do
5 u∗← arg max

u∈U\S
g(S ∪ {u})− g(S) + Σ

v∈S
d(v, u);

6 Add u∗ to S;
7Return S;

Algorithm 2: AltGreedy
1 Input: Set of features U , set of labels L, number
of features we want to select k.

2Output: Set S ⊂ U with |S| = k.
3S ← {arg maxu∈U g({u})};
4 forall 2 ≤ i ≤ k do
5 u∗← arg max

u∈U\S
1
2(g(S ∪{u})− g(S)) + Σ

v∈S
d(v, u);

6 Add u∗ to S;
7Return S;

Composable Core-sets

Distributed Setting

Streaming Setting
In the streaming setting, we have a machine that

receives the data from a random stream.
Therefore, it can pick chunks of data and do the
Greedy algorithm on them and store the selected
features in the memory. Then when the stream
is ended, it produces the final set of features by
running the AltGreedy algorithm on the stored

features.

A composable core-set returns
subsets which their union contains an

approximate solution.

Here we use Randomized Composable
Core-sets which means the data is randomly
partitioned.

Theoretical Result

We show that a randomized composable
core-set finds a 1

31-approximate
solution in expectation.

Proof idea: Proof relies on the notion of
β-niceness of an algorithm defined by Mirrokni
et al (STOC’15). An algorithm is β-nice if the
marginal gain of adding an element to its output
is less than β times the average contribution of
the elements of the output.
This property shows that the output of an algo-
rithm is “good enough” in the sense that adding
other elements to its output does not increase
the objective too much. This provides a theoret-
ical bound for the optimum solution.
We show that the greedy algorithm is 5-nice
for this class of functions and using this, we con-
clude our result.

Empirical Results

Speed-up

Dataset
Name

# Selected
Features # Machines

Distributed
Algorithm
Runtime

Centralized
Algorithm
Runtime

Speed-up

RCV1V2

10 69 2.8m 1h 33m 33.2
50 31 10.8m 2h 30.0m 15.1
100 22 20.3m 3h 39m 10.8
200 16 47.0m 6h 16.8m 8.0

TMC2007

10 71 4.6m 2h 32.5m 33.4
50 32 24.2m 6h 24.7m 15.9
100 23 59.5m 11h 6.2m 11.2
200 16 2h 41.3m 20h 49.8m 7.7

Feature Selection Performance
Compared to State-of-the-art

Centralized Methods

Corel5k Synthesized

•Label powerset (LP) and binary relevance
(BR) convert a multi-label dataset to one or
multiple single-label datasets.

•ReliefF (RF) and information gain (IG) are
two methods for single-label feature selection.

Effect of λ

The legend values indicate the number of selected
features.

Related Work

•Borodin et al (PODS’12) show a half
approximation for maximizing a “submodular
plus diversity” function in the centralized setting.

•Abbasi-zadeh et al (AAAI’17) show a quarter
approximation for maximizing a diversity function
in a distributed setting. They use this framework
for single-label feature selection.

•Mirrokni et al (STOC’15) show a
0.27-approximation for maximizing a submodular
function in a distributed setting.

•Dasgupta et al (ACL’13) consider the
maximization of the sum of a submodular function
and other diversity functions (sum-sum diversity,
minimum spanning tree, and minimum distance).


