Observation

Proximal methods often snap to the
solution manifold quickly.

Can we predict when this happens?

Motivation

Reason 1: Learning sparsity pattern often enough
* Feature selection
* |[dentifying correlations between variables
* |[dentifying support vectors

Reason 2: Solving over reduced support may be easy

* Smaller problem = can use more powerful solver
(e.g. Newton’s)

» Better conditioned Hessian = faster convergence

Contribution

We provide a simple and geometrically
intuitive framework to easily compute the
manifold ID rates for proximal methods.

Mathematical Setup

Problem class

min f(z) = g(z) + h(z)
L-smooth  nonsmooth

loss separable

function regularizer

e " is a unique minimizer
o h(x): ||x||;, elementwise constraints, hinge loss

Manifolds and active sets

Active set
Z = {i: Oh(x]) is not a singleton }
o h(z) = ally — Z = {i - 5t = 0}
o/ <rx<u—Z={i x;,=u;orx; =1}
Solution manifold
M=Ax .z, =2, Vi € Z}

A method z\%¥) — o* identifies the manifold at k if
¥le M.

Vk > k. !

Proximal methods

Consider methods with iteration updates z(*) — z* via

k+1 HW®) (K
k) — proxtug)h(z( >)

o 2\") depends on past 2V ... x¥)

e proxi (z) == argmin hz)+ 3z —2) H(z — 2)

e Examples: Prox. grad. descent, FISTA, DRS, ADMM

Are we there yet?
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One-step “snapping”
action of the prox.

grad method.

Sparse Log. Reg. for 4/9

Sparsity, train, and test error
converges in very few
iterations, but objective error

Wiggle room lemma

Define
0; = max {0 :

In 25 iterations, true support identified.
However, the iterate values are still converging.

train 10.0%
test 11.5%

/‘%.

train 10.5% train 10.0 / train 9.9%
test 10.4% test 11.5% test 11.5%

The optimality condition for a nonsmooth
problem has “built in” wiggle room.

train 12.8%

test 13.5% support identified

disambiguation

keeps decreasing.

—Vyg(a™)i+d € Ohi(z”), V|d| < 0}| Proximal methods ensure that, near optimality,

the error snaps within this wiggle room.

This gives a framework to
quickly compute many manifold ID rates.

How to derive rates

Then 21 ¢ M.

e Prox gradient descent

1 k
— 2*|l2+ |[Vg(z*) — Vg(z™)]|;

max ]w,,, | < = ||z®)
error in grad—0

method

rate if strongly convex error in var.—(

Prox grad
Acc prox grad
Prox DRS/ADMM

Prox Newton

Prox Quasi Newton
Prox SGD

Prox SAGA / SVRG*
Prox RDA*

(l/t + L)Ex S 5111111
(1/t+ L)ex < Omin
(2/t +2L)e; < Omin
2L€x < 5111111 O(log log(émm))

(L + Ly)er < Omin O(log(1/6mim)) e Prox stochastic gradient descent
None None !

E:C/t T €g < é‘min (1Og(1/5min)) (,d(k) _— 7(32‘(]{)
e, + B/(kt) < 6 O(1/81 ) t®)

O(log(l/ 5111111))
O(log(1/0min))
(1/5IHHI)

Rate if g(x) is strongly convex:

k= O (1og (1{;%}) [NSH '17]

—2*) +Vyg(z*) — Vg(a'")
error in grad-(

. ‘?
scaled error in var.—(0

Table: Rates for manifold identification.

v = ||z — %2, €g = HVQ(I) — Vg(z*)|l2, Omin = minjez 0; .

Does not identify manifold!

How much wiggle room

* Manifold ID rates depend on o

—> but need x*to compute o, |

* We can empirically connect it to
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Figure: Histogram of d,,;, = min;cz d; for randomly generated logistic regression problems.

problem parameters

—e.g. regularization weight,
ground truth sparsity

* Open question: Can we infer it
from knowledge of the data
distribution of our problem?
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