
Practical Optimization for Structured
Machine Learning Problems

by

Mohamed Osama Ahmed

B.Sc., Cairo University, 2006
M.Sc., Cairo University, 2010

MASc., The University of British Columbia, 2013

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver, Canada)

December 2018

c©Mohamed Osama Ahmed 2018

The following individuals certify that they have read, and recommend to the Faculty of
Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Practical Optimization for Structured Machine Learning Problems

submitted by Mohamed Osama Ahmed in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer Science

Examining Committee:

Mark Schmidt, Supervisor

Giuseppe Carenini, Supervisory Committee Member

Mike Gelbart, Supervisory Committee Member

Leonid Sigal, University Examiner

Alexandra Fedorova, University Examiner

Abstract

Recent years have witnessed huge advances in machine learning (ML) and its applications,
especially in image, speech, and language applications. Optimization in ML is a key ingre-
dient in both the training and hyperparameter tuning steps, and it also influences the test
phase. In this thesis, we make improvements to optimization of all of these three problems.
The first part of the thesis considers the training problem. We present the first linearly-
convergent stochastic gradient method to train conditional random fields (CRFs) using the
stochastic average gradient (SAG) method. Our method addresses the memory issues re-
quired for SAG and proposes a better non-uniform sampling (NUS) technique. The second
part of the thesis deals with memory-free linearly-convergent stochastic gradient method for
training ML models. We consider the stochastic variance reduced gradient (SVRG) algo-
rithm, which normally requires occasional full-gradient evaluations. We show that we can
decrease the number of gradient evaluations using growing batches (which improves perfor-
mance in the early iterations) and support vectors (which improves performance in the later
iterations). The third part of this thesis switches to the problem of hyper-parameter tuning.
Although it is a lower dimensional problem, it can be more difficult as it is a non-convex
global optimization problem. First, we propose a harmless global optimization algorithm
to ensure that the performance is not worse than using random search. Moreover, we ex-
plore the use of gradient-based Bayesian optimization (BO) to improve the performance.
We propose the use of directional derivatives to address the memory issues of BO. Finally,
in the fourth part of this thesis, we propose a novel optimization method that combines the
advantages of BO and Lipschitz optimization (LO).

iii

Lay Summary

Machine learning is helping advance a lot of technologies. Building powerful machine
learning (ML) models requires solving challenging mathematical problems known as opti-
mization. Optimization for ML is a hard problem, especially with the recent trend of using
big datasets. This work focuses on improving the optimization algorithms that are used
to build ML models. With our proposed methods, one can train a model in less time and
achieve better results. The second part of our work focuses on tuning the “mysterious”
parameters of ML models known as “hyperparameters”. Our work will help researchers
build ML models without having to make hard choices about which hyperparameter con-
figuration to use. In this thesis, we improve over the conventional hyperparameter tuning
methods.

iv

Preface

The work presented in this thesis is a result of four separate research projects that are based
on collaborative work that has been accepted or under review.

• Chapter 2 resulted in the following paper: “M. Schmidt, R. Babanezhad, M. O.
Ahmed, A. Defazio, and A. Sarkar. Non-uniform stochastic average gradient method
for training conditional random fields. In AISTATS,2015.” My role was developing
the new SAG for CRF algorithm. I was responsible for all the implementation de-
tails and the simulation results. I explored the use of different non-uniform sampling
techniques and different step-size methods. The theory was developed by Reza Ba-
banezhad and Mark Schmidt. I was responsible for writing the experiment section.
The rest of the co-authors contributed to some of the experiments.

• Chapter 3 resulted in the following paper: “R. Harikandeh, M. O. Ahmed, A. Vi-
rani, M. Schmidt, J. Konecny, and S. Sallinen. Stop wasting my gradients: Practical
SVRG.” In Advances in Neural Information Processing Systems, 2015.” I proposed
the use of mixed SVRG and support vectors and I explored the use of various mini-
batching methods. I was responsible for developing the algorithm, all the implemen-
tation details, and the simulation results. Also, I did the writing of the experimental
results section. The theory was developed by Reza Harikandeh and Mark Schmidt.
The rest of the co-authors contributed to some of the experiments.

• Chapter 4 resulted in the following paper: “M. O. Ahmed, B. Shahriari, and M.
Schmidt. Do we need harmless Bayesian optimization and first-order Bayesian opti-
mization?” in NIPS Bayesian Optimization workshop, 2016.” I proposed the harm-
less BO method and the use of directional derivatives with BO. I developed the
method, conducted all the experiments, and I provided a state-of-the art BO imple-
mentation. The theory was developed by Mark Schmidt. Bobak Shahriari contributed
with the pybo package. As for the writing, it was a joint effort between all authors.

• Chapter 5 resulted in the following paper: “M. O. Ahmed, S. Vaswani, and M.
Schmidt. Combining Bayesian Optimization and Lipschitz Optimization.” Submit-
ted to AISTATS, 2019. I developed the method and conducted all the experiments. I
proposed the different methods to combine Lipschitz bounds with BO. I did all the
work except the theory (done by Mark Schmidt and Sharan Vaswani). As for the
writing, it was a joint effort between all authors.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

List of Abbreviations . xv

Acknowledgements . xvi

Dedication . xvii

1 Introduction . 1
1.1 Training a Machine Learning Model . 1

1.1.1 Gradient Descent . 2
1.1.2 Stochastic Gradient Descent . 2
1.1.3 Variance-reduced Stochastic Gradient Descent 3

1.2 Hyperparameter Tuning . 3
1.2.1 Grid Search . 4
1.2.2 Random Search . 4
1.2.3 Bayesian Optimization . 4

1.3 Thesis Outline . 5

2 Stochastic Average Gradient for Conditional Random Fields 7
2.1 Conditional Random Fields . 9
2.2 Related Work . 9
2.3 Stochastic Average Gradient . 10

2.3.1 Implementation for CRFs . 10
2.3.2 Reducing the Memory Requirements 12

2.4 Non-Uniform Sampling . 13

vi

Table of Contents

2.5 Stochastic Average Gradient Variants . 14
2.5.1 SAGA . 14
2.5.2 SAGA2 . 15

2.6 SAG Implementation Details . 15
2.6.1 Effect of Sampling Strategies . 16
2.6.2 Effect of Step Size . 17

2.7 Experiments . 18
2.7.1 Stochastic Average Gradient for Conditional Random Fields results 19
2.7.2 Sampling Schemes and Step-size Experiments 26

2.8 Discussion . 28

3 Practical Stochastic Variance Reduced Gradient 37
3.1 Notation and Stochastic Variance Reduced Gradient Algorithm 38
3.2 Stochastic Variance Reduced Gradient with Error 38

3.2.1 Stochastic Variance Reduced Gradient with Batching 39
3.2.2 Mixed SG and SVRG Method . 40

3.3 Using Support Vectors . 41
3.4 Experimental Results . 43
3.5 Discussion . 43

4 Harmless and First-Order Bayesian Optimization 50
4.1 Bayesian Optimization . 51
4.2 Harmless Bayesian Optimization . 52
4.3 First-Order Bayesian Optimization . 54
4.4 Experiments . 55

4.4.1 Harmless Bayesian Optimization Experiment 56
4.4.2 First-Order Bayesian Optimization Experiment 58

4.5 Discussion . 59

5 Lipschitz Bayesian Optimization . 62
5.1 Background . 63

5.1.1 Bayesian Optimization . 63
5.1.2 Lipschitz Optimization . 63
5.1.3 Harmless Lipschitz Optimization 64

5.2 Lipschitz Bayesian optimization . 65
5.3 Experiments . 67
5.4 Related work . 74
5.5 Discussion . 75

6 Conclusions and Future Work . 76
6.1 Stochastic Average Gradient . 76
6.2 Stochastic Variance Reduced Gradient . 76
6.3 Bayesian Optimization . 77

vii

Table of Contents

6.3.1 Final Comment on Implementing BO Algorithms 77
6.4 Future Work . 78

Bibliography . 79

Appendices

A Chapter 4 Supplementary Material . 89
A.1 Additional Experimental Results . 89

B Chapter 5 Supplementary Material . 100
B.1 Additional Experimental Results . 100

viii

List of Tables

2.1 The datasets used to conduct the experiments 19
2.2 Summary of the conducted experiments 26

3.1 Binary data sets used in the experiments. 44

4.1 Test functions used. 56

ix

List of Figures

1.1 Grid search vs. Random search [Bergstra and Bengio, 2012] 4

2.1 Objective minus optimal objective value against effective number of passes
for different deterministic, stochastic, and semi-stochastic optimization strate-
gies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002,
bottom-right: POS-WSJ. 21

2.2 Test error against effective number of passes for different deterministic,
stochastic, and semi-stochastic optimization strategies. Top-left: OCR,
Top-right: CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-
WSJ. The dotted lines show the performance of the classic stochastic gra-
dient methods when the optimal step-size is not used. Note that the perfor-
mance of all classic stochastic gradient methods is much worse when the
optimal step-size is not used, whereas the SAG methods have an adaptive
step-size so are not sensitive to this choice. 22

2.3 Test error against effective number of passes for different deterministic,
stochastic, and semi-stochastic optimization strategies. Top-left: OCR,
Top-right: CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-
WSJ. 23

2.4 Objective minus optimal objective value against time for different deter-
ministic, stochastic, and semi-stochastic optimization strategies. Top-left:
OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002, bottom-right:
POS-WSJ. 24

2.5 Test error against time for different deterministic, stochastic, and semi-
stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-2000,
bottom-left: CoNLL-2002, bottom-right: POS-WSJ. 25

2.6 SAG Objective minus optimal objective value for OCR data for different
choices of the step size and sampling scheme. The lower values are bet-
ter and the missing columns represents the methods that diverge. PL with
Lmean is the best. 29

2.7 SAGA Objective minus optimal objective value for OCR data for different
choices of the step size and sampling scheme. The lower values are better
and the missing columns represents the methods that diverge. Hedge with
wither Cyclic or RP are the best. 29

x

List of Figures

2.8 SAGA2 Objective minus optimal objective value for OCR data for differ-
ent choices of the step size and sampling scheme. The lower values are
better and the missing columns represents the methods that diverge. PL
with Lmean is the best. 30

2.9 Objective minus optimal objective value against effective number of passes
for different SAG optimization strategies. Top-left: OCR, Top-right: CoNLL-
2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ. 31

2.10 Test error against effective number of passes for the best SAG optimiza-
tion configurations. Top-left: OCR, Top-right: CoNLL-2000, bottom-left:
CoNLL-2002, bottom-right: POS-WSJ. 32

2.11 Objective minus optimal objective value against effective number of passes
for different SAGA optimization strategies. Top-left: OCR, Top-right: CoNLL-
2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ. 33

2.12 Test error against effective number of passes for the best SAGA optimiza-
tion configurations. Top-left: OCR, Top-right: CoNLL-2000, bottom-left:
CoNLL-2002, bottom-right: POS-WSJ. 34

2.13 Objective minus optimal objective value against effective number of passes
for the best SAG, SAGA, and SAGA2 optimization strategies. Top-left:
OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002, bottom-right:
POS-WSJ. 35

2.14 Test error against effective number of passes for the best SAG, SAGA, and
SAGA2 optimization strategies. Top-left: OCR, Top-right: CoNLL-2000,
bottom-left: CoNLL-2002, bottom-right: POS-WSJ. 36

3.1 Comparison of training objective (left) and test error (right) on the spam
dataset for the logistic regression (top) and the HSVM (bottom) losses un-
der different batch strategies for choosing µs (Full, Grow, and Mixed) and
whether we attempt to identify support vectors (SV). 45

3.2 Comparison of training objective of logistic regression for different datasets.
The top row gives results on the quantum (left), protein (center) and sido
(right) datasets. The middle row gives results on the rcv11 (left), covertype
(center) and news (right) datasets. The bottom row gives results on the spam
(left), rcv1Full (center), and alpha (right) datasets. 46

3.3 Comparison of test error of logistic regression for different datasets. The
top row gives results on the quantum (left), protein (center) and sido (right)
datasets. The middle row gives results on the rcv11 (left), covertype (center)
and news (right) datasets. The bottom row gives results on the spam (left),
rcv1Full (center), and alpha (right) datasets. 47

xi

List of Figures

3.4 Comparison of training objective of SVM for different datasets. The top
row gives results on the quantum (left), protein (center) and sido (right)
datasets. The middle row gives results on the rcv11 (left), covertype (center)
and news (right) datasets. The bottom row gives results on the spam (left),
rcv1Full (center), and alpha (right) datasets. 48

3.5 Comparison of test error of SVM for different datasets. The top row gives
results on the quantum (left), protein (center) and sido (right) datasets. The
middle row gives results on the rcv11 (left), covertype (center) and news
(right) datasets. The bottom row gives results on the spam (left), rcv1Full
(center), and alpha (right) datasets. 49

4.1 Comparing conventional BO and HBO and random exploration for TS on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions. 57

4.2 Comparing conventional BO and HBO and random exploration for EI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions. 57

4.3 Comparing conventional BO and HBO and random exploration for PI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions. 58

4.4 Comparing conventional BO and HBO and random exploration for UCB on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions. 58

4.5 Comparing conventional BO and FOBO and random exploration for EI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions. 60

4.6 Comparing conventional BO and FOBO and random exploration for PI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions. 60

4.7 Comparing conventional BO and FOBO and random exploration for UCB
on Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions. . . . 60

4.8 Comparing conventional BO and FOBO and random exploration for EI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions in terms
of number function evaluations. 61

4.9 Comparing conventional BO and FOBO and random exploration for PI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions in terms
of number function evaluations. 61

4.10 Comparing conventional BO and FOBO and random exploration for UCB
on Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions in
terms of number function evaluations. 61

5.1 Visualization of the effect of incorporating the Lipschitz bounds to BO. a)
Shows the posterior mean and confidence interval of the conventional BO.
b) The red color represents the regions of the space that are excluded by the
Lipschitz bounds. c) Shows the effect of LBO. The Grey color represents
the uncertainty. Using LBO helps decrease the uncertainty which prevents
over-exploration in unnecessary parts of the space. 66

xii

List of Figures

5.2 Examples of functions where LBO provides huge improvements over BO
for the different acquisition functions. The figure also shows the perfor-
mance of random search and LBO using the True Lipschitz constant. . . . 70

5.3 Examples of functions where LBO provides some improvements over BO
for the different acquisition functions. The figure also shows the perfor-
mance of random search and LBO using the True Lipschitz constant. 71

5.4 Examples of functions where LBO performs similar to BO for the different
acquisition functions. 72

5.5 Examples of functions where BO slightly performs better than LBO. 72
5.6 Examples of functions where LBO boosts the performance of BO with TS.

(All figures are better seen in color) . 73
5.7 Examples of functions where LBO outperforms BO with UCB when the β

parameter is too large (β = 1016). 74

A.1 Comparing conventional BO and HBO and random exploration for EI on
the test functions. 90

A.2 Comparing conventional BO and HBO and random exploration for PI on
the test functions. 91

A.3 Comparing conventional BO and HBO and random exploration for UCB on
the test functions. 92

A.4 Comparing conventional BO and HBO and random exploration for TS on
the test functions. 93

A.5 Comparing conventional BO and FOBO and random exploration for EI on
the test functions. 94

A.6 Comparing conventional BO and FOBO and random exploration for PI on
the test functions. 95

A.7 Comparing conventional BO and FOBO and random exploration for UCB
on the test functions. 96

A.8 Comparing conventional BO and FOBO and random exploration for EI on
the test functions in terms of number function evaluations. 97

A.9 Comparing conventional BO and FOBO and random exploration for PI on
the test functions in terms of number function evaluations. 98

A.10 Comparing conventional BO and FOBO and random exploration for UCB
on the test functions in terms of number function evaluations. 99

B.1 Comparing the performance of the conventional BO acquisition function,
corresponding LBO mixed acquisition function, Lipschitz optimization and
random exploration for the TS acquisition functions. 101

B.2 Comparing the performance of the conventional BO acquisition function,
corresponding LBO mixed acquisition function, Lipschitz optimization and
random exploration for the UCB acquisition functions. 102

xiii

List of Figures

B.3 Comparing the performance of the conventional BO acquisition function,
corresponding LBO mixed acquisition function, Lipschitz optimization and
random exploration for the EI acquisition functions. 103

B.4 Comparing the performance of the conventional BO acquisition function,
corresponding LBO mixed acquisition function, Lipschitz optimization and
random exploration for the PI acquisition functions. 104

B.5 Comparing the performance across the four BO and the corresponding LBO
acquisition functions against Lipschitz optimization and random exploration
on all the test functions (Better seen in color). 105

B.6 Comparing the performance of the conventional BO acquisition function,
corresponding LBO mixed acquisition function, Lipschitz optimization and
random exploration for the UCB acquisition functions when using very
large β = 1016 . 106

xiv

List of Abbreviations

BO Bayesian Optimization
CRF Conditional Random Field
FOBO First Order Bayesian Optimization
HBO Harmless Bayesian Optimization
LBO Lipschitz Bayesian Optimization
SAG Stochastic Average Gradient
SAGA Stochastic Average Gradient Amélioré
SGD Stochastic Gradient Descent
SVRG Stochastic Variance Reduced Gradient

xv

Acknowledgements

I would like to express my deepest gratitude to my thesis supervisor Mark Schmidt for
his guidance, patience and support throughout the thesis. I learned a lot while working
with you. Your constant encouragement helped me overcome several obstacles. To my
supervisory committee, Giuseppe Carenini, Sohrab Shah, and Mike Gelbart – thank you
for your time, efforts and helpful feedback. To my examiners, Leonid Sigal, Alexandra
Fedorova, and Ruben Martinez-Cantin – thank you for your valuable feedback. To my
Master thesis supervisor, Lutz Lampe – thank you for supporting my decision to switch
from studying communications to machine learning. To my colleagues at UBC – thank
you for the wonderful discussions. To my coauthors, Reza, Bobak, and Sharan – thank you
for the great team work. To all the support staff at UBC, especially Joyce Poon and Kath
Imhiran – thank you for your patience and all your help with logistics and paper work.

To my bigger family in Egypt, my aunt Somaya, and my uncles Mostafa and Magdy –
thank you for being my second parents. To my family in Ottawa, Zeinab, Mokbel, Sarah,
Nadia, and Nora Sayed – thank you for making me feel home. To my friend, Ayman –
thank you for all your help, long walks, and wonderful food. To my friends Azab and Anas
– thank you for listening when I had tough times. To my friends at UBC and Vancouver,
Ramy, Shady, Hazim, Belal, and Radwa – thank you for all your support, the wonderful
times and the weekend gatherings. You made my last years at UBC amazing.

Last but most importantly, special thanks to my father Osama, my mother Nagwa, my
sister Nora and my brother Ahmed for their continuous support and encouragement during
tough times. None of the work in this thesis, or anything else I have ever achieved, could
have been possible without you.

xvi

To the memory of my grandmothers, Monira Owida and Thuraya Zayed.

xvii

Chapter 1

Introduction

“Artificial intelligence (AI) is the new electricity” - Andrew Ng. AI is playing a big role in
the current technology revolution not only in speech recognition [Hinton et al., 2012] and
image recognition [Krizhevsky et al., 2012], but also in health care [Thodoroff et al., 2016],
physics [Baldi et al., 2014], and even in music generation [Boulanger-Lewandowski et al.,
2012]. AI is opening doors for new opportunities in various fields. Machine learning (ML)
is a subfield of AI that deals with how to teach machines to learn like humans using data.
ML has empowered a lot of aspects in our life such as natural language processing [Col-
lobert et al., 2011], time series forecasting [Längkvist et al., 2014], and the soon-to-arrive
self-driving cars [Teichmann et al., 2016]. We are living the age of data. A lot of data are
collected through phones, computers, and other electronic devices. Such large amounts of
data enable us to build more accurate and more powerful machine learning models. One
key ingredient in building ML models is optimization. With the growing sizes of datasets,
designing more practical optimization algorithms is crucial. This is clear in two main prob-
lems: training and hyperparameter tuning.

1.1 Training a Machine Learning Model

Given a dataset of n training example pairs (x1, y1), (x2, y2),, (xn, yn), the training
problem can be formulated as finding the model parameters w that minimizes f the loss
function that measures how well the model fits the data. So the training optimization prob-
lem can be written as:

min
w∈Rd

f(w) = min
w∈Rd

1

n

n∑
i=1

fi(w, xi, yi) (1.1)

where i represents the index for the training example.
A huge proportion of the model-fitting procedures in machine learning can be mapped

to this problem. This includes classic models like least squares and logistic regression
but also includes more advanced methods like conditional random fields and deep neural
network models. In the high-dimensional setting (large d), the common approaches for
solving (1.1) are:

1. Full gradient (FG) methods.

2. Stochastic gradient (SG) methods

1

1.1. Training a Machine Learning Model

3. Variance-reduced stochastic gradient methods

We now review the core ideas behind each of these methods.

1.1.1 Gradient Descent

This is the classic first order method that uses gradients to minimize f . As the gradient
points in the direction of maximizing increase in f , if we take a step in the negative direction
of f , we can find a point with a lower function value. The update can be written as:

wt+1 = wt − αt∇f(wt) = wt − αt
n

n∑
i=1

∇fi(w), (1.2)

where t is the iteration number, wt is the current point, wt+1 is the next point chosen,
∇f is the gradient of f , and αt is the current step-size. Choosing the step size is crucial
to the performance. It determines how fast the algorithm converges to the solution. If it
is too small, it will take too many iterations to reach the solution, while a too large step-
size can cause the algorithm to diverge. The choice of α can be either constant, adaptive
(determined with line-search) [Nocedal and Wright, 2006], or a hyperparameter that is de-
termined through hyperparameter optimization techniques. For (1.1), FG provides linear
convergence rates [Nesterov, 2004]. However, it requires evaluating the gradients fi for all
n examples on every iteration.

1.1.2 Stochastic Gradient Descent

SG methods provide a cheaper alternative to train ML models. In contrast to FG, SG eval-
uates the gradient for only one training example, chosen at random, at each iteration and
then takes a step as follows:

wt+1 = wt − αt∇fi(wt), (1.3)

where ∇fi represents the gradient of the cost function that corresponds to the ith training
example. If we have a data set with n training examples, the iterations of stochastic gradient
methods are n times faster than deterministic methods. However, the number of stochastic
gradient iterations required might be very high. This has been studied in the optimization
community, which considers the problem of finding the minimum number of iterations t so
that we can guarantee that we reach an accuracy of ε, meaning that

f(wt)− f(w∗) ≤ ε,

where w∗ is the parameter vector minimizing the training objective function. SG makes
rapid initial progress as it only uses a single gradient on each iteration but ultimately has
slower sublinear convergence rates than FG. SG can be improved by using mini-batching
which evaluates the gradient for m training examples at each iteration as follows:

wt+1 = wt − αt
m

m∑
i=1

∇fi(wt), (1.4)

2

1.2. Hyperparameter Tuning

where m < n. This decreases the variance of the gradient estimate, at the cost of additional
gradient calculations.

1.1.3 Variance-reduced Stochastic Gradient Descent

Le Roux et al. [2012] proposed the first general method, stochastic average gradient (SAG),
that only considers one training example on each iteration but still achieves a linear conver-
gence rate. The update of the parameters can be written as follows:

wt+1 = wt − αt
n

n∑
i=1

gti . (1.5)

For FG, gti = ∇fi(w). The SAG algorithm uses this same iteration, but instead of updating
gti for all n data points on every iteration, it simply sets gti = ∇fi(w) for one randomly cho-
sen data point and keeps the remaining gti at their value from the previous iteration (stored
in memory). Thus the SAG algorithm is a randomized version of the gradient algorithm
where we use the gradient of each example from the last iteration where it was selected.
The surprising aspect of the work of Le Roux et al. [2012] is that this simple delayed gra-
dient algorithm achieves a similar convergence rate to the classic FG algorithm despite the
iterations being n times faster. Other methods have subsequently been shown to have this
property [Defazio et al., 2014a, Mairal, 2013, Shalev-Schwartz and Zhang, 2013], but these
all require storing a previous evaluation of the gradient∇fi or the dual variables for each i.
For many objectives this only requires O(n) space, but for general problems this requires
O(nd) space making them impractical. Recently, several methods have been proposed with
similar convergence rates to SAG but without the memory requirements such as stochastic
variance-reduced gradient (SVRG).

The first part of this thesis, focuses on the training part of the ML pipeline. We consider
work that applies to the SAG and the SVRG method.

1.2 Hyperparameter Tuning

Hyperparameter tuning is another example where optimization plays a big role in building
ML models. Training an ML model assumes that we make certain choices about the model.
For example, before training a neural network, we have to choose the number of layers,
number of units per layer, type of nonlinearity, and learning rate (step size). These parame-
ters are known as hyperparameters. Finding good values of these parameters is not an easy
problem. It is generally nonconvex and with big models or large datasets, evaluating the
loss function is expensive. Thus a variety of methods have been proposed to address this
problem.

Typically, we divide the data available for an ML model into 3 parts: training, valida-
tion, and test. The training data are used to solve (1.1). The validation data are used to pick
the hyperparameters of the model. The test data are used to report the expected performance

3

1.2. Hyperparameter Tuning

of the model on unseen data. The most common approaches for hyperparameter tuning are
grid search, random search, and Bayesian optimization.

Figure 1.1: Grid search vs. Random search [Bergstra and Bengio, 2012]

1.2.1 Grid Search

This is a classic hyperparameter search method. The idea is to have a grid of hyperparameter
configurations to evaluate. The cost function, which in the case of hyperparameter search
is the validation loss, is calculated for each configuration. The hyperparameters are chosen
to provide the best performance on the validation set.

1.2.2 Random Search

Bergstra and Bengio [2012] proposed the use of random search instead of grid search.
Instead of specifying a fixed grid, we specify a probability distribution to sample from
for each hyperparameter. The motivation is that grid search can waste a lot of unnecessary
function evaluations. For example, if one of the hyperparameters is not important, then there
is no point in trying different values for this parameter. Having a random grid increases the
chances of sampling better configurations compared to grid search. Figure 1.1 shows an
example where grid search is wasting a lot of its budget on an unimportant hyperparameter.
Grid search only tries 3 values for the important parameter out of 9 possible configurations.
On the other hand, random search uses the same budget of 9 configurations, however, it
tries more values for the important parameter.

1.2.3 Bayesian Optimization

Although random search is better than grid search, it does not make use of the previous
points evaluated. For example, if we are training a neural network with 1 hidden layer with
100 units, there is no point to try the same architecture but with 101 units instead of 100. We

4

1.3. Thesis Outline

expect the performance to be somewhat similar. Instead of searching randomly, we want
a procedure that tries out a set of hyper-parameters that provides the most information at
each step. Bayesian optimization (BO) is a technique that uses a model based optimization
approach. Shahriari et al. [2016] provides a recent review on various BO techniques. BO
provides a framework that enables us to pick the configurations to evaluate sequentially.
BO performs this task by starting with a prior belief about the function to be optimized f .
This prior is usually a Gaussian process. This is a flexible prior that allows us to model a
large classes of functions. With each observation (xt, f(xt)), BO refines its belief about
f (the posterior). This posterior can be used to determine which configuration to evaluate
next using the acquisition function. There is a famous trade-off between exploration and
exploitation. On one hand, we want to sample points of hight posterior uncertainty to learn
more about f (exploration). On the other, our main goal is to find the configuration with the
best performance (exploitation). Depending on the choice of acquisition functions, BO can
favor exploration or exploitation. One of the main problems with BO is to tune this trade off.
In certain experimental settings, BO can be outperformed by using random search for twice
as many iterations [Li et al., 2017]. However, in other works and many of our experiments,
BO outperforms random by a substantial margin. This leads us to consider designing better
acquisition functions and better BO methods that perform no worse than random.

The second part of the thesis focuses on designing better BO methods in terms of the
acquisition function and also that perform no worse than random search. The BO methods
designed in the second part of the thesis can be used to improve the optimization methods
proposed in the first part of the thesis. For example, αt in (1.2) can be set by BO.

1.3 Thesis Outline

In this work, we consider both parts of the ML pipeline; the training and the hyperparameter
search.

• Chapter 2 studies the SAG problem. We consider the challenging problem of ap-
plying SAG for conditional random fields (CRFs). This is the first work that tackles
this problem with the challenging memory requirements. Moreover, we propose a
non-uniform sampling scheme that substantially improves the practical performance
of the method.

• Chapter 3 considers SVRG which does not have the same expensive memory require-
ments as SAG. This comes at the expense of having to do more gradient calculations.
The purpose of the work presented in this chapter is to decrease the number of gradi-
ent calculations required by SVRG while maintaining the performance.

• Chapter 4 switches to the more difficult problem of hyperparameter search. Our
focus is on building better BO algorithms. We propose two important directions for
the BO community to explore to improve the performance of these methods. The
first is to use harmless BO. This is an algorithm that does no worse than random in

5

1.3. Thesis Outline

the worst case, but that might still take advantage of certain structure of the function,
for example, a high degree of smoothness in case of BO. The second contribution
is to investigate the use of first-order BO methods. These are methods that take into
consideration the gradient information. We also propose using directional derivatives.
This is cheaper than using the full gradients and provides comparable performance.

• Chapter 5 proposes using an idea from the global optimization literature to design a
better BO algorithm. We propose using Lipschitz bounds to help speed up BO. The
intuition here is that BO has a trade off between exploration and exploitation. This
exploration part requires evaluating points in the parts of the space with high uncer-
tainty to learn more about the function. Lipschitz bounds eliminates the infeasible
parts of the space. We use the Lipschitz bounds to reduce the size of the space that
BO has to search and we introduce a new algorithm, Lipschitz Bayesian optimization
(LBO).

6

Chapter 2

Stochastic Average Gradient for
Conditional Random Fields

Conditional random fields (CRFs) [Lafferty et al., 2001] are a ubiquitous tool in natural
language processing. They are used for part-of-speech tagging [McCallum et al., 2003], se-
mantic role labeling [Cohn and Blunsom, 2005], topic modeling [Zhu and Xing, 2010], in-
formation extraction [Peng and McCallum, 2006], shallow parsing [Sha and Pereira, 2003],
named-entity recognition [Settles, 2004], as well as a host of other applications in natural
language processing and in other fields such as computer vision [Nowozin and Lampert,
2011]. Similar to generative Markov random field (MRF) models, CRFs allow us to model
probabilistic dependencies between output variables. The key advantage of discriminative
CRF models is the ability to use a very high-dimensional feature set, without explicitly
building a model for these features (as required by MRF models). Despite the widespread
use of CRFs, a major disadvantage of these models is that they can be very slow to train and
the time needed for numerical optimization in CRF models remains a bottleneck in many
applications.

Due to the high cost of evaluating the CRF objective function on even a single training
example, it is now common to train CRFs using stochastic gradient methods [Vishwanathan
et al., 2006]. These methods are advantageous over deterministic methods because on each
iteration they only require computing the gradient of a single example (and not all example
as in deterministic methods). Thus, if we have a data set with n training examples, the
iterations of stochastic gradient methods are n times faster than deterministic methods.
However, the number of stochastic gradient iterations required might be very high. This
has been studied in the optimization community, which considers the problem of finding
the minimum number of iterations t so that we can guarantee that we reach an accuracy of
ε, meaning that

f(wt)− f(w∗) ≤ ε, and ‖wt − w∗‖2 ≤ ε,

where f is our training objective function, wt is our parameter estimate on iteration t,
and w∗ is the parameter vector minimizing the training objective function. For strongly-
convex objectives like `2-regularized CRFs, stochastic gradient methods require O(1/ε)
iterations [Nemirovski et al., 2009]. This is in contrast to traditional deterministic methods
which only require O(log(1/ε)) iterations [Nesterov, 2004]. However, this much lower
number of iterations comes at the cost of requiring us to process the entire data set on each
iteration.

For problems with a finite number of training examples, Le Roux et al. [2012] recently

7

Chapter 2. Stochastic Average Gradient for Conditional Random Fields

proposed the stochastic average gradient (SAG) algorithm which combines the advantages
of deterministic and stochastic methods: it only requires evaluating a single randomly-
chosen training example on each iteration, and only requiresO(log(1/ε)) iterations to reach
an accuracy of ε. Beyond this faster convergence rate, the SAG method also allows us to
address two issues that have traditionally frustrated users of stochastic gradient methods:
setting the step-size and deciding when to stop. Implementations of the SAG method use
both an adaptive step-size procedure and a cheaply-computable criterion for deciding when
to stop. Le Roux et al. [2012] show impressive empirical performance of the SAG algorithm
for binary classification. Recently, Defazio et al. [2014a] proposed the SAGA algorithm.
SAGA is easier to analyze. One of the contributions of the work in this chapter is to propose
an extension of SAGA called SAGA2. It is a variant of SAGA that requires two training
samples at each iteration but can improve the convergence rate.

Another important contribution in this chapter focuses on non-uniform sampling (NUS).
Recently, several works show that we can improve the convergence rates of randomized op-
timization algorithms by using non-uniform sampling (NUS) schemes. This includes ran-
domized Kaczmarz [Strohmer and Vershynin, 2009], randomized coordinate descent [Nes-
terov, 2012], and stochastic gradient methods [Needell et al., 2014]. The key idea behind
all of these NUS strategies is to bias the sampling towards the Lipschitz constants of the
gradients, so that gradients that change quickly get sampled more often and gradients that
change slowly get sampled less often.

We summarize the contributions of the work presented in this chapter as follows:

1. By addressing its huge memory requirements, this is the first work to apply SAG
algorithm to train CRFs.

2. We also give an improved NUS strategy that adaptively estimates how frequently we
should sample each data point. This reduces the number of backtracking iterations
(which are expensive for CRFs unlike linear models)

3. We study the effect of the different uniform and non-uniform sampling strategies on
the performance of the three algorithms: SAG, SAGA, and SAGA2.

4. We study the effect of the different step size choices on the performance of the three
algorithms: SAG, SAGA, and SAGA2.

Our experiments compare the SAG algorithm with a variety of competing deterministic,
stochastic, and semi-stochastic methods on benchmark data sets for four common tasks:
part-of-speech tagging, named entity recognition, shallow parsing, and optical character
recognition. Our results indicate that the SAG algorithm with NUS outperforms previous
methods by an order of magnitude in terms of the training objective and, despite not re-
quiring us to tune the step-size, performs as well or better than optimally tuned stochastic
gradient methods in terms of the test error.

This Chapter is organized as follows. In Section 2.1, we introduce the concept of con-
ditional random fields. We then present the related work in Section 2.2. Stochastic average

8

2.1. Conditional Random Fields

gradient (SAG), SAGA and SAGA2 methods are presented in Sections 2.3 and 2.5, re-
spectively. Different sampling schemes and step size strategies are described Section 2.6.
Experimental results are presented in Section 2.7.2, and final remarks in Section 2.8 con-
clude this chapter.

2.1 Conditional Random Fields

CRFs model the conditional probability of a structured output y ∈ Y (such as a sequence
of labels) given an input x ∈ X (such as a sequence of words) based on features F (x, y)
and parameters w using

p(y|x,w) =
exp(wTF (x, y))∑
y′ exp(wTF (x, y′))

. (2.1)

Given n pairs {xi, yi} comprising our training set, the standard approach to training the
CRF is to minimize the `2-regularized negative log-likelihood,

min
w
f(w) =

1

n

n∑
i=1

− log p(yi|xi, w) +
λ

2
‖w‖2, (2.2)

where λ > 0 is the strength of the regularization parameter. Unfortunately, evaluating
log p(yi|xi, w) is expensive due to the summation over all possible configurations y′. For
example, in chain-structured models the forward-backward algorithm is used to compute
log p(yi|xi, w) and its gradient. A second problem with solving (2.2) is that the number of
training examples n in applications is constantly-growing, and thus we would like to use
methods that only require a few passes through the data set.

2.2 Related Work

Lafferty et al. [2001] proposed an iterative scaling algorithm to solve problem (2.2), but
this proved to be inferior to generic deterministic optimization strategies like the limited-
memory quasi-Newton algorithm L-BFGS [Sha and Pereira, 2003, Wallach, 2002]. The
bottleneck in these methods is that we must evaluate log p(yi|xi, w) and its gradient for
all n training examples on every iteration. This is very expensive for problems where n is
very large, so to deal with this problem stochastic gradient methods were examined [Finkel
et al., 2008, Vishwanathan et al., 2006]. However, traditional stochastic gradient methods
require O(1/ε) iterations rather than the much smaller O(log(1/ε)) required by determin-
istic methods.

There have been several attempts at improving the cost of deterministic methods or the
convergence rate of stochastic methods. For example, the exponentiated gradient method
of Collins et al. [2008] processes the data online and only requires O(log(1/ε)) iterations
to reach an accuracy of ε in terms of the dual objective. However, this does not guarantee

9

2.3. Stochastic Average Gradient

good performance in terms of the primal objective or the weight vector. Although this
method is highly-effective if λ is very large, our experiments and the experiments of others
show that the performance of online exponentiated gradient degrades substantially if a small
value of λ is used (which may be required to achieve the best test error), see Collins et al.
[2008, Figures 5-6 and Table 3] and Lacoste-Julien et al. [2013, Figure 1]. In contrast,
SAG degrades more gracefully as λ becomes small, even achieving a convergence rate
faster than classic SG methods when λ = 0 [Schmidt et al., 2017]. Lavergne et al. [2010]
consider using multiple processors and vectorized computation to reduce the high iteration
cost of quasi-Newton methods, but when n is enormous these methods still have a high
iteration cost. Friedlander and Schmidt [2012] explore a hybrid deterministic-stochastic
method that slowly grows the number of examples that are considered in order to achieve
anO(log(1/ε)) convergence rate with a decreased cost compared to deterministic methods.

2.3 Stochastic Average Gradient

Le Roux et al. [2012] introduce the SAG algorithm, a simple method with the low itera-
tion cost of stochastic gradient methods but that only requires O(log(1/ε)) iterations. To
motivate this new algorithm, we write the classic gradient descent iteration as

wt+1 = wt − α

n

n∑
i=1

sti, (2.3)

where α is the step-size and at each iteration we set the ‘slope’ variables sti to the gradient
with respect to training example i at wt, so that sti = −∇ log p(yi|xi, wt) + λwt. The SAG
algorithm uses this same iteration, but instead of updating sti for all n data points on every
iterations, it simply sets sti = −∇ log p(yi|xi, wt) + λwt for one randomly chosen data
point and keeps the remaining sti at their value from the previous iteration. Thus the SAG
algorithm is a randomized version of the gradient algorithm where we use the gradient of
each example from the last iteration where it was selected. The surprising aspect of the
work of Le Roux et al. [2012] is that this simple delayed gradient algorithm achieves a
similar convergence rate to the classic full gradient algorithm despite the iterations being
n times faster. The intuition can be that the gradients stored in memory provides a better
approximation than SG which just evaluates one gradient per iteration.

2.3.1 Implementation for CRFs

Unfortunately, a major problem with applying (2.3) to CRFs is the requirement to store
sti. While the CRF gradients ∇ log p(yi|xi, wt) have a nice structure (see Section 2.3.2),
sti includes λwt for some previous t, which is dense and unstructured. To get around this
issue, instead of using (2.3) we use the following SAG-like update [Le Roux et al., 2012,
Section 4]

wt+1 = wt − α(
1

m

n∑
i=1

gti + λwt)

10

2.3. Stochastic Average Gradient

= wt − α(
1

m
d+ λwt)

= (1− αλ)wt − α

m
d, (2.4)

where gti is the value of−∇ log p(yi|xi, wk) for the last iteration k where iwas selected and
d is the sum of the gti over all i. Thus, this update uses the exact gradient of the regularizer
and only uses an approximation for the (structured) CRF log-likelihood gradients. Since
we don’t yet have any information about these log-likelihoods at the start, we initialize the
algorithm by setting g0i = 0. But to compensate for this, we track the number of examples
seen m, and normalize d by m in the update (instead of n). In Algorithm 1, we summarize
this variant of the SAG algorithm for training CRFs.1

In many applications of CRFs the gti are very sparse, and we would like to take advan-
tage of this as in stochastic gradient methods. Fortunately, we can implement (2.4) without
using dense vector operations by using the representation wt = βtvt for a scalar βt and a
vector vt, and using ‘lazy updates’ that apply d repeatedly to an individual variable when it
is needed [Le Roux et al., 2012].

Also following Le Roux et al. [2012], we set the step-size to α = 1/L, where L is an
approximation to the maximum Lipschitz constant of the gradients. This is the smallest
number L such that

‖∇fi(w)−∇fi(v)‖ ≤ L‖w − v‖, (2.5)

for all i, w, and v. This quantity is a bound on how fast the gradient can change as we
change the weight vector. The Lipschitz constant with respect to the gradient of the regular-
izer is simply λ. This gives L = Lg + λ, where Lg is the Lipschitz constant of the gradient
of the log-likelihood. Unfortunately, Lg depends on the covariance of the CRF and is typi-
cally too expensive to compute. To avoid this computation, as in Le Roux et al. [2012] we
approximate Lg in an online fashion using the standard backtracking line-search given by
Algorithm 2 [Beck and Teboulle, 2009]. The test used in this algorithm is faster than test-
ing (2.5), since it uses function values (which only require the forward algorithm for CRFs)
rather than gradient values (which require the forward and backward steps). Algorithm 2
monotonically increases Lg, but we also slowly decrease it in Algorithm 1 in order to allow
the possibility that we can use a more aggressive step-size as we approach the solution.

A classic problem associated with SG methods is deciding when to terminate the iter-
ations. The step-size must go to zero and it is therefore difficult to decide if the algorithm
is close to the optimal value or if we simply require a small step-size to continue making
progress. This is a problem for SAG. Since the solution is the only stationary point, we
must have ∇f(wt) = 0 at the solution. Further, the value 1

nd + λwt converges to ∇f(wt)
so we can use the size of this value to decide when to stop the algorithm (although we also
require that m = n to avoid premature stopping before we have seen the full data set).

1If we solve the problem for a sequence of regularization parameters, we can obtain better performance by
warm-starting g0i , d, and m.

11

2.3. Stochastic Average Gradient

Algorithm 1 SAG algorithm for training CRFs
Require: {xi, yi}, λ, w, δ

1: m← 0, gi ← 0 for i = 1, 2, . . . , n
2: d← 0, Lg ← 1
3: while m < n and ‖ 1nd+ λw‖∞ ≥ δ do
4: Sample i from {1, 2, . . . , n}
5: f ← − log p(yi|xi, w)
6: g ← −∇ log p(yi|xi, w)
7: if this is the first time we sampled i then
8: m← m+ 1
9: end if

Subtract old gradient gi, add new gradient g:
10: d← d− gi + g

Replace old gradient of example i:
11: gi ← g
12: if ‖gi‖2 > 10−8 then
13: Lg ←lineSearch(xi, yi, f, gi, w, Lg)
14: end if
15: α← 1/(Lg + λ)
16: w ← (1− αλ)w − α

md

17: Lg ← Lg · 2−1/n
18: end while

2.3.2 Reducing the Memory Requirements

The modified update in the previous section drastically reduces the memory requirements of
applying SAG to CRFs. But even if the gradients gti are not sparse, we can often reduce the
memory requirements of Algorithm 1 because it is known that the CRF gradients only de-
pend on w through marginals of the features. Specifically, the gradient of the log-likelihood
under model (2.1) with respect to feature j is given by

∇j log p(y|x,w) = Fj(x, y)−
∑

y′ exp(F (x,y′))∑
y′ F (x,y′) Fj(x, y

′)

= Fj(x, y)−
∑
y′

p(y′|x,w)Fj(x, y
′)

= Fj(x, y)− Ey′|x,w[Fj(x, y
′)]

Typically, each feature j only depends on a small ‘part’ of y. For example, we typically
include features of the form Fj(x, y) = F (x)I[yk = s] for some function F , where k is
an element of y and s is a discrete state that yk can take. In this case, the gradient can be
written in terms of the marginal probability of element yk taking state s,

∇j log p(y|x,w) = F (x)I[yk = s]− Ey′|x,w[F (x)I[yk = s]]

12

2.4. Non-Uniform Sampling

Algorithm 2 Lipschitz line-search algorithm
Require: xi, yi, f, gi, w, Lg.

1: f ′ = − log p(yi|xi, w − 1
Lg
gi)

2: while f ′ ≥ f − 1
2Lg
‖gi‖2 do

3: Lg = 2Lg
4: f ′ = − log p(yi|xi, w − 1

Lg
gi)

5: end while
6: return Lg.

= F (x)(I[yk = s]− Ey′|x,w[I[yk = s])

= F (x)(I[yk = s]− p(yk = s|x,w)).

Notice that Algorithm 1 only depends on the old gradient through its difference with the
new gradient (line 10), which in this example gives

∇j log p(y|x,w)−∇j log p(y|x,wold) =

F (x)(p(yk = s|x,wold)− p(yk = s|x,w)),

where w is the current parameter vector and wold is the old parameter vector. Thus, to
perform this calculation the only thing we need to know about wold is the unary marginal
p(yk = s|x,wold), which will be shared across features that only depend on the event that
yk = s. Similarly, features that depend on pairs of values in y will need to store pairwise
marginals, p(yk = s, y′k = s′|x,wold). For general pairwise graphical model structures, the
memory requirements to store these marginals will thus be O(V K+EK2), where V is the
number of vertices and E is the number of edges. This can be an enormous reduction since
it does not depend on the number of features. Further, since computing these marginals is a
by-product of computing the gradient, this potentially-enormous reduction in the memory
requirements comes at no extra computational cost.

2.4 Non-Uniform Sampling

As pointed out in the introduction to this Chapter, non uniform sampling (NUS) can help
speed up the convergence of randomized algorithm. In this work, we propose a NUS scheme
that depends on the Lipschitz constant L. Specifically, we maintain a Lipschitz constant Li
for each training example i and, instead of the usual sampling strategy pi = 1/n, we bias
towards the distribution pi = Li/

∑
j Lj . Similar to (2.5), Li is the smallest number such

that
‖∇fi(w)−∇fi(v)‖ ≤ Li‖w − v‖, (2.6)

for all w and v, where ∇fi(w) is the gradient with respect to example i . In these various
contexts, NUS allows us to improve the dependence on the values Li in the convergence

13

2.5. Stochastic Average Gradient Variants

rate, since the NUS methods depend on L = (1/n)
∑

j Lj , which may be substantially
smaller than the usual dependence on L = maxj{Lj}. Schmidt et al. [2017] argue that
faster convergence rates might be achieved with NUS for SAG since it allows a larger
step size α that depends on L instead of L.2 In this work, we consider 2 possible NUS
techniques:

• The scheme for SAG proposed by Schmidt et al. [2017, Section 5.5] uses a fairly
complicated adaptive NUS scheme and step-size, but the key ingredient is estimating
each constant Li using Algorithm 2. Our experiments show this method already
improves on state of the art methods for training CRFs by a substantial margin, but
we found we could obtain improved performance for training CRFs using a simple
NUS scheme for SAG.

• As in Needell et al. [2014], with probability 0.5 choose i uniformly and with prob-
ability 0.5 sample i with probability Li/(

∑
j Lj) (restricted to the examples we

have previously seen).3 We also use a step-size of α = 1
2

(
1/L+ 1/L

)
, since the

faster convergence rate with NUS is due to the ability to use a larger step-size than
1/L. This simple step-size and sampling scheme contrasts with the more complicated
choices described by Schmidt et al. [2017, Section 5.5], that make the degree of non-
uniformity grow with the number of examples seen m. This prior work initializes
each Li to 1, and updates Li to 0.5Li each subsequent time an example is chosen.
In the context of CRFs, this leads to a large number of expensive backtracking iter-
ations. To avoid this, we initialize Li with 0.5L the first time an example is chosen,
and decrease Li to 0.9Li each time it is subsequently chosen.

2.5 Stochastic Average Gradient Variants

Several works have introduced variants of the SAG algorithm. In the second part of the
experiments we study the effect of the sampling scheme and the step-size choices on the
performance of 2 algorithms: SAGA and SAGA2. It is important to note that the memory-
savings introduced in Section 2.3.2 also works for these SAG variants.

2.5.1 SAGA

This algorithm was introduced by Defazio et al. [2014a]. SAGA provides a simpler the-
oretical analysis than SAG. The key to this improvement is that SAGA uses an unbiased
estimate of the gradient as compared to SAG which uses a biased estimate. SAGA is de-
scribed in Algorithm 3. It can be noticed that the only difference between SAG and SAGA
is how and when the weights are updated and the weighting of the terms. The intuition

2An interesting difference between the SAG update with NUS and NUS for stochastic gradient methods is
that the SAG update does not seem to need to decrease the step-size for frequently-sampled examples (since
the SAG update does not rely on using an unbiased gradient estimate).

3Needell et al. [2014] only analyze the basic stochastic gradient method and thus require O(1/ε) iterations.

14

2.6. SAG Implementation Details

Algorithm 3 SAGA algorithm for training CRFs
Require: {xi, yi}, λ, w, δ

1: m = 0, gi = 0 for i = 1, 2, . . . , n
2: d = 0, Lg = 1
3: while m < n and ‖ 1nd+ λw‖∞ ≥ δ do
4: Sample i from {1, 2, . . . , n} according to the sampling scheme.
5: f = − log p(yi|xi, w)
6: g = −∇ log p(yi|xi, w)
7: if this is the first time we sampled i then
8: m = m+ 1
9: end if

10: if Lg is needed then
11: if ‖gi‖2 > 10−8 then
12: Lg =lineSearch(xi, yi, f, gi, w, Lg)
13: end if
14: end if
15: Pick the step size α.
16: For NUS, Calculate bias correction factor:

β = mLi/
∑

j Lj
17: w = (1− αλ)w − α

β ((g − gi) + 1
md)

18: d = d+ g − gi
19: gi = g
20: Lg = Lg · 2−1/n
21: end while

behind this update is that it allows for an unbiased estimate of the gradient in contrast to the
biased estimate calculated by SAG.

2.5.2 SAGA2

In this chapter, we suggest a further modification to SAGA. We refer to this algorithm
as SAGA2. The algorithm is described in Algorithm 4. SAGA2 is similar to SAGA in
the weight updates. However, when the gradients are updated another training example is
sampled uniformly. This makes analyzing NUS easier for SAGA2 as it allows showing
a faster convergence rate that depends on the average Lipschitz constant rather than the
maximum. The full details of SAGA2 are described in Schmidt et al. [2015].

2.6 SAG Implementation Details

Many works have explored theoretical properties of methods like SAG, but there are fewer
works trying to find the best empirical choices for this method. In this section we discuss

15

2.6. SAG Implementation Details

Algorithm 4 SAGA2 algorithm for training CRFs
Require: {xi, yi}, λ, w, δ

1: m = 0, gi = 0 for i = 1, 2, . . . , n
2: d = 0, Lg = 1
3: while m < n and ‖ 1nd+ λw‖∞ ≥ δ do
4: Sample i from {1, 2, . . . , n} according to the sampling scheme.
5: f = − log p(yi|xi, w)
6: g = −∇ log p(yi|xi, w)
7: if this is the first time we sampled i then
8: m = m+ 1
9: end if

10: if Lg is needed then
11: if ‖gi‖2 > 10−8 then
12: Lg =lineSearch(xi, yi, f, gi, w, Lg)
13: end if
14: end if
15: Pick the step size α.
16: For NUS, Calculate bias correction factor:

β = mLi/
∑

j Lj
17: w = (1− αλ)w − α

β ((g − gi) + 1
md)

18: Sample i from {1, 2, . . . , n} Uniformly.
19: f = − log p(yi|xi, w)
20: g = −∇ log p(yi|xi, w)
21: d = d+ g − gi
22: gi = g
23: Lg = Lg · 2−1/n
24: end while

some of the variations that are possible and introduce new variations that work better. The
performance of SAG, SAGA, and SAGA2 depend on the choice of 2 main factors: the
sampling strategy and the step-size choice. This is the first work that presents a systematic
comparison of the different combinations of possible choices for these factors.

2.6.1 Effect of Sampling Strategies

The following presents the possible choices for the sampling strategies:

1. Uniform sampling (U): the training sample at each iteration is chosen randomly ac-
cording to a uniform distribution.

2. Random permutation (RP): This method pick an order for the training examples ran-
domly every epoch, and this order is fixed throughout the epoch. Several papers

16

2.6. SAG Implementation Details

suggested that RP is better than cyclic and uniform sampling [Defazio et al., 2014b,
Recht and Ré, 2012].

3. Cyclic: This method process the training examples one by one with a fixed order
(1 : n).

4. Cyclic with two orders (Cyclic2orders): this method uses 2 fixed orders of the train-
ing examples and the algorithm keeps alternating between them. The method is trying
to simulate the RP method. However, the advantage here is that the data can be stored
twice with the different orders and the algorithm can access the memory sequentially.
This allows for better memory management than RP. However, the price to pay is
storing the data twice.

5. Non-uniform Sampling (NUS):

Two Non-uniform sampling schemes were tried:

• Pure Lipschitz (PL) Sampling: Schmidt et al. [2017] proposed this heuristic
NUS scheme: with probability (n − m)/n, we sample a previously unseen
example uniformly, and with probability m/n we sample a previously seen
example with probability Li/

∑
j Lj to pick example i. In this algorithm the Li

are initialized to one, we use Algorithm 2 to update the Li when a data point is
sampled, and when we re-visit an example we double Li.

• Mixed Sampling (MS): This is the same as PL. The only difference is that with
probability 0.5 we sample a previously unseen example uniformly, and with
probability 0.5 we sample a previously seen example proportional toLi/

∑
j Lj .

To summarize, the sampling schemes that were tried are: ‘U’, ‘RP’, ‘Cyclic’, ‘Cyclic2orders’,
‘PL’, and ‘MS’.

2.6.2 Effect of Step Size

Another important tuning factor in the optimization algorithm is the step-size. If it is too
small, the algorithm may take too many iterations to converge to the right solution. On the
other hand, if the step size is too large, the algorithm may not converge at all. The goal
of these experiments is to try to find (empirically) the best step size for the SAG, SAGA,
and SAGA2 algorithms. This will provide more understanding of why certain choices work
while others do not. The methods for choosing the step sizes are:

1. Constant (const): The step size is constant for each iteration. In order to pick the
best step size, a grid search is performed. If the smallest step size or the largest step
size is chosen as the best value, the grid is extended to try more values. This is not a
practical strategy. However, it provides an estimate of the best possible performance.

17

2.7. Experiments

2. Lmean: the step size is chosen according to the mean of the Lipschitz constants as
α = 1/Lmean, where Lmean is the average of the Li. The intuition behind this choice
is if Lmean is small, then the rate of the change of the gradient is small, so a large step
size can be chosen. This is the step size used in the theory of SAGA2.

3. Lmax: the step size is chosen according to the maximum of the Lipschitz constants
as α = 1/Lmax. This is the step size used in the theory of SAG and SAGA.

4. Hedge: this method uses the average of the two previous step sizes, so α = 1
2Lmax

+
1

2Lmean
.

5. optimum (opt): the step size is chosen as α = 2
(Lmax+nµ)

, where µ is the strong
convexity parameter, and it is approximated by µ = λ for this problem. This step
size is inspired by the optimal step size for µ−strongly convex function with constant
step size [Nesterov, 2004]

6. averagehedgeopt1: the step size is chosen as α = 2
(0.5(Lmean+Lmax)+µ)

7. averagehedgeopt2: the step size is chosen as α = 0.5(2
(Lmax+µ)

+ 2
(Lmean+µ)

).

The last two choices of the step size are different variations of the opt and hedge
choices.

To summarize, the step sizes that were tried are: ‘const’, ‘Lmean’, ‘Lmax’, ‘hedge’, ‘opt’,
‘averagehedgeopt1’ and ‘averagehedgeopt2’.

2.7 Experiments

In order to evaluate the performance of the various methods, we performed the experiments
on different tasks with the following datasets:

1. OCR: This dataset was proposed by Taskar et al. [2003] for optical character recog-
nition (OCR). The optimal character recognition dataset labels the letters in images
of words. The goal is to recognize the letters given the images.

2. CoNLL: This is the CoNLL-2000 shallow parse chunking dataset.4 Chunking yields
a lightweight parse of a sentence; it segments a sentence into syntactic chunks by
tagging each sentence token with a chunk tag corresponding to its constituent type
(e.g., ‘NP’, ‘VP’, etc.) and location (e.g., beginning, inside, ending, or outside any
constituent).

3. NER: This is the CoNLL-2002 Dutch named-entity recognition (NER) dataset.5 For
the NER task, the goal is to identify named entities and correctly classify them as

4http://www.cnts.ua.ac.be/conll2000/chunking
5http://www.cnts.ua.ac.be/conll2002/ner

18

2.7. Experiments

persons, organizations, locations, times or quantities. We use standard n-gram and
part of speech (POS) tag features, as well as word shape features over the case of the
characters in the token.

4. POS: This is the part of speech tagging task using the Penn Treebank Wall Street
Journal data (POS-WSJ). We use standard n-gram and part of speech (POS) tag fea-
tures [Sha and Pereira, 2003].

Table 2.1 summarizes the information about the datasets used.

Table 2.1: The datasets used to conduct the experiments
Number of Number Number

Name training fopt of of Dim(w)
examples labels features

OCR 6251 1.5× 104 27 128 4,082
CoNLL-2000 8936 8.9× 103 24 19 1,643,026
CoNLL-2002 15806 5.1× 103 10 20 2,798,955

POS-WSJ 38219 7.2× 104 46 13 8,572,770

2.7.1 Stochastic Average Gradient for Conditional Random Fields results

To quantify the memory savings given by the choices in Section 2.3, below we report the
size of the memory required for these datasets under different memory-saving strategies
divided by the Absolute memory required by the naive SAG algorithm. Sparse refers to
only storing non-zero gradient values, Marginals refers to storing all unary and pairwise
marginals, and Mixed refers to storing node marginals and the gradient with respect to
pairwise features.

Dataset Sparse Marginals Mixed Absolute (GB)
OCR 7.8× 10−1 1.1× 100 2.1× 10−1 0.2
CoNLL-2000 4.8× 10−3 7.0× 10−3 6.1× 10−4 110
CoNLL-2002 6.4× 10−4 3.8× 10−4 7.0× 10−5 330
POS-WJ 1.3× 10−3 5.5× 10−3 3.6× 10−4 2440

On these datasets we compared the performance of a set of competitive methods, in-
cluding five variants on classic stochastic gradient methods:

1. Pegasos which is a standard stochastic gradient method with a step-size of α = η/λt
on iteration t [Shalev-Shwartz et al., 2011],6

2. a basic stochastic gradient (SG) method where we use a constant α = η,
6We also tested Pegasos with averaging but it always performed worse than the non-averaged version.

19

2.7. Experiments

3. an averaged stochastic gradient (ASG) method where we use a constant step-size
α = η and average the iterations,7

4. AdaGrad where we use the per-variable αj = η/(δ +
√∑t

i=1∇j log p(yi|xi, wi)2)
and the proximal-step with respect to the `2-regularizer [Duchi et al., 2011]

5. stochastic meta-descent (SMD) where we initialize with αj = η and dynamically
update the step-size [Vishwanathan et al., 2006].8

Since setting the step-size is a notoriously hard problem when applying stochastic gra-
dient methods, we let these classic stochastic gradient methods cheat by choosing the η
which gives the best performance among powers of 10 on the training data (for SMD we
additionally tested the four choices among the paper and associated code of Vishwanathan
et al. [2006], and we found δ = 1 worked well for AdaGrad).

Our comparisons also included a deterministic L-BFGS algorithm and the Hybrid L-
BFGS/stochastic algorithm of Friedlander and Schmidt [2012]. We also included the on-
line exponentiated gradient OEG method of [Collins et al., 2008], using the heuristics in
their code. Finally, we included the SAG algorithm as described in Section 2.3, the SAG-
NUS (SAG-PL) variant of Schmidt et al. [2017], and our proposed SAG-NUS* (SAG-MS)
strategy from Section 2.6.1.9

Figure 2.1 shows the result of our experiments on the training objective and Figure 2.2
shows the result of tracking the test error. Here we measure the number of ‘effective passes’,
meaning (1/n) times the number of times we performed the bottleneck operation of com-
puting log p(yi|xi, w) and its gradient. This is an implementation-independent way to com-
pare the convergence of the different algorithms (whose runtimes differ only by a small
constant), but we have included the performance in terms of runtime in Figures 2.4 and 2.5.
For the different SAG methods that use a line-search we count the extra ‘forward’ oper-
ations used by the line-search as full evaluations of log p(yi|xi, w) and its gradient, even
though these operations are cheaper because they do not require the backward pass nor
computing the gradient. In these experiments we used λ = 1/n, which yields a value
close to the optimal test error across all data sets. To approximate the unique minimum
value we ran L-BFGS for up to 1000 iterations, which always gave a value of w satisfying
‖∇f(w)‖∞ ≤ 1.4× 10−7, indicating that this is a very accurate approximation of the true
solution. In the test error plots, we have excluded the SAG and SAG-NUS methods to keep
the plots interpretable.

In the test error plots, we have also plotted as dotted lines the performance of the classic
stochastic gradient methods when the second-best step-size is used.

7We also tested SG and ASG with decreasing step-sizes of either αt = η/
√
t or αt = η/(δ + t), but these

gave worse performance than using a constant step size.
8Because of the extra implementation effort required to implement it efficiently, we did not test SMD the

POS dataset.
9We also tested SG with the proposed NUS scheme, but the performance was similar to the regular SG

method. This is consistent with the analysis of Needell et al. [2014, Corollary 3.1] showing that NUS for
regular SG only improves the non-dominant term.

20

2.7. Experiments

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l L−BFGS

Pegasos

SGAdaGradASG

Hybrid

SAG

SAG−NUS
SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG−NUSSAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS Pegasos

SG
AdaGrad

ASG

Hybrid

SAG
SAG−NUS
SAG−NUS*

OEG

Figure 2.1: Objective minus optimal objective value against effective number of passes
for different deterministic, stochastic, and semi-stochastic optimization strategies. Top-left:
OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

We make several observations based on these experiments:

• SG outperformed Pegasos. Pegasos is known to move exponentially away from the
solution in the early iterations [Bach and Moulines, 2011], meaning that ‖wt−w∗‖ ≥
ρt‖w0 − w∗‖ for some ρ > 1, while SG moves exponentially towards the solution
(ρ < 1) in the early iterations [Nedic and Bertsekas, 2000].

• ASG outperformed AdaGrad and SMD (in addition to SG). ASG methods are known
to achieve the same asymptotic efficiency as an optimal stochastic Newton method
[Polyak and Juditsky, 1992], while AdaGrad and SMD can be viewed as approxima-
tions to a stochastic Newton method. Vishwanathan et al. [2006] did not compare to
ASG, because applying ASG to large/sparse data requires the recursion of Xu [2010].

• Hybrid outperformed L-BFGS. The hybrid algorithm processes fewer data points in
the early iterations, leading to cheaper iterations.

• OEG performed extremely well on two of the data sets (in terms of the training ob-

21

2.7. Experiments

0 20 40 60 80 100

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

L−BFGS

SG

AdaGrad

ASG

Hybrid

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

L−BFGS

SG

AdaGrad

ASG

Hybrid

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

L−BFGS

SG

AdaGrad

ASG

Hybrid

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

L−BFGS

SG

AdaGrad

ASG

Hybrid

SAG−NUS*

OEG

Figure 2.2: Test error against effective number of passes for different deterministic, stochas-
tic, and semi-stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-2000,
bottom-left: CoNLL-2002, bottom-right: POS-WSJ. The dotted lines show the perfor-
mance of the classic stochastic gradient methods when the optimal step-size is not used.
Note that the performance of all classic stochastic gradient methods is much worse when
the optimal step-size is not used, whereas the SAG methods have an adaptive step-size so
are not sensitive to this choice.

jective), but much worse on the other two.

• None of the three competitive algorithms ASG/Hybrid/SAG dominated the others: the
relative ranks of these methods changed based on the data set and whether we could
choose the optimal step-size.

• Both SAG-NUS methods outperform all other methods by a substantial margin based
on the training objective, and are always among the best methods in terms of the
test error. Further, our proposed SAG-NUS* always performed as well or better than
SAG-NUS.

On three of the four data sets, the best classic stochastic gradient methods (AdaGrad and
ASG) seem to reach the optimal test error with a similar speed to the SAG-NUS* method,

22

2.7. Experiments

although they require many passes to reach the optimal test error on the OCR data. Further,
we see that the good test error performance of the AdaGrad and ASG methods is very
sensitive to choosing the optimal step-size, as the methods perform much worse if we don’t
use the optimal step-size (dashed lines in Figure 2.2). In contrast, SAG uses an adaptive
step-size and has virtually identical performance even if the initial value of Lg is too small
by several orders of magnitude (the line-search quickly increases Lg to a reasonable value
on the first training example, so the dashed black line in Figure 2.2 would be on top of the
solid line).

Test Error Plots for All Methods

In Figure 2.3, we plot the test error of all methods. Note that Pegasos does not appear on the
plot (despite being in the legend) because its values exceed the maximum plotted values.
In these plots we see that the SAG-NUS methods perform similarly to the best among the
optimally-tuned stochastic gradient methods in terms of test error, despite the lack of tuning
required to apply these methods.

0 20 40 60 80 100

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

Figure 2.3: Test error against effective number of passes for different deterministic, stochas-
tic, and semi-stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-2000,
bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

23

2.7. Experiments

Runtime Plots

In the previous figures, we plot the performance against the effective number of passes as an
implementation-independent way of comparing the different algorithms. In all cases except
OEG and SMD, we implemented a C version of the method and also compared the running
times of our different implementations. This ties the results to the hardware used to perform
the experiments, and thus says little about the runtime in different hardware settings, but
does show the practical performance of the methods in this particular setting. We plot the
training objective against runtime in Figure 2.4 and the testing objective in Figure 2.5. In
general, the runtime plots show the exact same trends as the plots against the effective
number of passes. However, we note several small differences:

0 10 20 30 40 50 60 70

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

O
b

je
c

ti
v

e
 m

in
u

s
o

p
ti
m

a
l L−BFGS

Pegasos

SG
AdaGrad

ASGHybridSAG
SAG−NUS

SAG−NUS*

0 50 100 150 200 250 300

10
0

10
1

10
2

10
3

10
4

10
5

10
6

O
b

je
c

ti
v

e
 m

in
u

s
o

p
ti
m

a
l

L−B
FG

S

Pegasos

SG AdaGrad

ASG

H
ybrid

SAG

SAG−NUS
SAG−NUS*

0 10 20 30 40 50 60 70

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
o

p
ti
m

a
l

L−BFGS

Pegasos

SG
AdaGrad

ASG

Hybrid
SAG

SAG−NUS SAG−NUS*

0 500 1000 1500 2000 2500 3000

10
−2

10
0

10
2

10
4

10
6

10
8

O
b

je
c

ti
v

e
 m

in
u

s
o

p
ti
m

a
l

L−BFGS

Pegasos

SG
AdaGrad

ASG

Hybrid

SAG

SAG−NUSSAG−NUS*

Figure 2.4: Objective minus optimal objective value against time for different deterministic,
stochastic, and semi-stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-
2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

• AdaGrad performs slightly worse in terms of runtime, and was always worse than
the basic SG method. This seems to be due to the extra square root operators needed
to implement the method.

24

2.7. Experiments

• Hybrid performs slightly worse in terms of runtime, although it was still faster than
the L-BFGS method. This seems to be due to the higher cost of applying the L-BFGS
update when the batch size is small.

• SAG performs slightly worse in terms of runtime, though it remains among the other
top performing methods Hybrid and ASG. This seems to be due to the higher cost of
the memory update associated with the algorithm.

• Although both SAG-NUS methods still dominate all other methods by a substan-
tial margin, the performance of the new SAG-NUS* and the existing SAG-NUS is
much closer in terms of runtime. This seems to be because, although the SAG-NUS
method does much more backtracking than SAG-NUS*, these backtracking steps are
much cheaper because they only require the forward pass of the forward-backward
algorithm. If we compared these two algorithms under more complicated inference
schemes, we would expect the advantage of SAG-NUS* to appear in the runtime, too.

0 10 20 30 40 50 60 70

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

0 50 100 150 200 250 300

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

0 10 20 30 40 50 60 70

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

0 500 1000 1500 2000 2500 3000

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

Figure 2.5: Test error against time for different deterministic, stochastic, and semi-
stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left:
CoNLL-2002, bottom-right: POS-WSJ.

25

2.7. Experiments

Table 2.2: Summary of the conducted experiments
Sampling Step

Algorithm Schemes Size
SAG U const
SAGA PL Lmean
SAGA2 MS Lmax
- RP hedge
- Cyclic opt
- Cyclic2orders averagehedgeopt1
- - averagehedgeopt2

2.7.2 Sampling Schemes and Step-size Experiments

The second part of the experiments studies the performance of the SAG, SAGA, and SAGA2
algorithms for different choices of the sampling schemes and the step sizes.

Effect of the step size and the sampling scheme

Table 2.2 summarizes the experiments that were performed. The performance of the three
algorithms on the OCR dataset is presented in Figures 2.6, 2.7, and 2.8. The x-axis shows
the different step size methods and the bar colors represent the sampling scheme. The
height of the bar represents the value of the objective after the final iteration as compared to
the optimal objective

∣∣fopt − ffinal
∣∣. Missing values correspond to the methods that diverge.

The algorithm is considered to diverge if (
∣∣fopt − ffinal

∣∣ ≥ |finitial − ffinal|). The following
summarizes the conclusions from the conducted experiments:

• From Figure 2.6, it is clear that SAG only works for PL, MS, and U sampling. How-
ever, U sampling requires certain choices of the step size to perform well.

• None of the cyclic, RP and cyclic2orders sampling work for SAG no matter which
step size is chosen.

• SAGA seems to work with more choices of the sampling schemes and the step sizes
as can be noticed in Figure 2.7. Cyclic ordering does not work for any choice of the
step size (it is important to note that this may be due to the specific order used).

• RP and cyclic2orders work for several choices of the step size. In fact, these two sam-
pling schemes provides the best performance for SAGA when used with the hedge
step size. As discussed in section 2.6.2, cyclic2orders may be preferred over RP due
to better memory management.

• From Figure 2.8, we can conclude that SAGA2 works for most of the sampling
schemes and the step sizes similar to SAGA. It is important to note that SAGA2

26

2.7. Experiments

picks a random training sample uniformly to update the gradient. So even for cyclic,
there is a random part introduced in the algorithm. This allows cyclic sampling to
work for SAGA2. Although SAGA2 requires two training samples at each iteration,
it can compensate for this by taking larger steps (α = 1/Lmean). This allows SAGA2
to compete with SAG and SAGA2.

Based on the initial results from the smallest dataset (OCR), we decided to perform
the experiments on the larger datasets only for the best methods. Figure 2.9 presents the
results for the best five configurations of SAG for all the datasets. The legend on the figure
represents the algorithm used, the sampling scheme, and the step size. For example, ”SAG-
U-opt” is the method that uses the SAG algorithm with uniform sampling and the opt step
size.

From Figures 2.9, it is clear that MS sampling with the hedge step size is the best choice
for SAG, especially for the NER task which outperforms all the other configurations. Fig-
ure 2.10 represents the test errors for the best SAG configurations. These confirm that MS
sampling with the hedge step size is the best choice for SAG. One of the main advantages
of SAG is that the best method is the same for all the datasets which is SAG with MS and
hedge.

As for SAGA, Figures 2.11 and 2.12 present the results of the best methods on all
four datasets. Although SAGA works for more choices of the step size and the sampling
schemes, there is no clear winner on all the data sets. The closest configuration to achieving
the best performance on all the datasets is SAGA with PL sampling and the hedge step size.
This can be a problem as the algorithm may require changes to work better on different
datasets. It is interesting to see that the hedge step size is providing great performance on
NER as it did with SAG. Furthermore, RP and cyclic2orders sampling did well on the OCR
and the POS tasks. However, they did not work on the NER task in terms of the training
objective.

Finally for SAGA2, the results are presented in Figures 2.13 and 2.14. We compare
SAGA2 with PL sampling and the Lmean step size to the best methods of SAG and SAGA.
This choice was made for SAGA2 because we provided the theory behind it in Schmidt et al.
[2015]. SAGA2 is doing as well as the best SAG and SAGA methods on the OCR and POS
tasks. However, for the text chunking and the NER tasks, SAG and SAGA performed much
better than SAGA2. Even the hedge step size could not fix the performance of SAGA2 on
the NER task as it did for SAGA. This can be due to the large step size, but it requires
further investigation.

It is important to note that we conducted a lot of experiments in order to find the best
methods. Some of the experiments that did not improve the performance are not reported
here such as: non-uniform sampling for stochastic gradient method.

27

2.8. Discussion

2.8 Discussion

Applying SAG to CRFs is a very challenging task due to the large memory requirements of
SAG. We have presented the first implementation of SAG for CRFs. Our experiments show
that performance gain from using SAG is huge, especially with non-uniform sampling.

As for the implementation details, our experiments show that SAG with MS sampling
and the hedge step size is the best method. However, the proof of convergence for SAG
with NUS is still missing. On the other hand, there are theoretical guarantees that SAGA
will converge with NUS [Schmidt et al., 2015]. However, the configurations of SAGA
(sampling scheme and step size) may need to be changed depending on the task. As for
SAGA2, the theoretical guarantees for convergence were provided in Schmidt et al. [2015].
However, we notice that SAGA2 with PL sampling and Lmean step size diverge on the
NER task. This requires further investigation. As for the step sizes, we observe that hedge
provides the best performance for SAG and SAGA on all the data sets. Lmax seems to
produce a small step size, while averagehedgeopt1 and averagehedgeopt2 turned out to be
bad choices.

We have shown that SAGA and SAGA2 works with more configurations when com-
pared to SAG. However, when using the MS non-uniform sampling strategy with the hedge
step size, SAG provides the best performance on all the tasks considered, especially for
NER. Since the analysis of SAG is hard, SAGA with PL sampling and hedge step size may
provide a promising alternative. To facilitate reproducible research, the code is available at
http://www.cs.ubc.ca/˜schmidtm/Software/SAG4CRF.html.

28

http://www.cs.ubc.ca/~schmidtm/Software/SAG4CRF.html

2.8. Discussion

10
-1

10
0

10
1

10
2

10
3

10
4

|f
o
p
t
!

f f
i
n
a
l
|

SAG

Lm
ea

n

he
dg

e
op

t

co
ns

t

Lm
ax

av
er

ag
eh

ed
ge

op
t1

av
er

ag
eh

ed
ge

op
t2

Pure Lipschitz
Uniform
Mixed Sampling
cyclic2orders
Random permutation
cyclic

Figure 2.6: SAG Objective minus optimal objective value for OCR data for different choices
of the step size and sampling scheme. The lower values are better and the missing columns
represents the methods that diverge. PL with Lmean is the best.

10
-1

10
0

10
1

10
2

10
3

10
4

|f
o
p
t
!

f f
i
n
a
l
|

SAGA

Lm
ea

n

he
dg

e
op

t

co
ns

t

Lm
ax

av
er

ag
eh

ed
ge

op
t1

av
er

ag
eh

ed
ge

op
t2

Pure Lipschitz

Uniform

Mixed Sampling

cyclic2orders

Random permutation

cyclic

Figure 2.7: SAGA Objective minus optimal objective value for OCR data for different
choices of the step size and sampling scheme. The lower values are better and the missing
columns represents the methods that diverge. Hedge with wither Cyclic or RP are the best.29

2.8. Discussion

10
-1

10
0

10
1

10
2

10
3

10
4

|f
o
p
t
!

f f
i
n
a
l
|

SAGA2

Lm
ea

n

he
dg

e
op

t

co
ns

t

Lm
ax

av
er

ag
eh

ed
ge

op
t1

av
er

ag
eh

ed
ge

op
t2

Pure Lipschitz

Uniform

Mixed Sampling

cyclic2orders

Random permutation

cyclic

Figure 2.8: SAGA2 Objective minus optimal objective value for OCR data for different
choices of the step size and sampling scheme. The lower values are better and the missing
columns represents the methods that diverge. PL with Lmean is the best.

30

2.8. Discussion

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

10
8

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

Figure 2.9: Objective minus optimal objective value against effective number of passes for
different SAG optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-
left: CoNLL-2002, bottom-right: POS-WSJ.

31

2.8. Discussion

0 20 40 60 80 100

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

0 20 40 60 80 100

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

0 20 40 60 80 100

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

0 20 40 60 80 100

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

SAG−PL−Lmean

SAG−MS−hedge

SAG−MS−opt

SAG−U−hedge

SAG−U−opt

Figure 2.10: Test error against effective number of passes for the best SAG optimiza-
tion configurations. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002,
bottom-right: POS-WSJ.

32

2.8. Discussion

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

10
8

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

Figure 2.11: Objective minus optimal objective value against effective number of passes for
different SAGA optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-
left: CoNLL-2002, bottom-right: POS-WSJ.

33

2.8. Discussion

0 20 40 60 80 100

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

0 20 40 60 80 100

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

0 20 40 60 80 100

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

0 20 40 60 80 100

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

SAGA−PL−hedge

SAGA−U−opt

SAGA−MS−hedge

SAGA−cyclic2orders−hedge

SAGA−RP−hedge

Figure 2.12: Test error against effective number of passes for the best SAGA optimiza-
tion configurations. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002,
bottom-right: POS-WSJ.

34

2.8. Discussion

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

10
8

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

Figure 2.13: Objective minus optimal objective value against effective number of passes
for the best SAG, SAGA, and SAGA2 optimization strategies. Top-left: OCR, Top-right:
CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

35

2.8. Discussion

0 20 40 60 80 100

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

0 20 40 60 80 100

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

0 20 40 60 80 100

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

0 20 40 60 80 100

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

SAG−MS−hedge

SAGA−PL−hedge

SAGA−RP−hedge

SAGA2−PL−Lmean

SAGA2−MS−hedge

Figure 2.14: Test error against effective number of passes for the best SAG, SAGA, and
SAGA2 optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left:
CoNLL-2002, bottom-right: POS-WSJ.

36

Chapter 3

Practical Stochastic Variance
Reduced Gradient

This chapter still considers the same problem as Chapter 2. The problem is optimizing the
average of a finite but large sum of smooth functions,

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x). (3.1)

A huge proportion of the model-fitting procedures in machine learning can be mapped to
this problem. This includes classic models like least squares and logistic regression but also
includes more advanced methods like conditional random fields and deep neural network
models.

In Chapter 2 we focused on SAG, which only considers one training example on each
iteration but still achieves a linear convergence rate. Other methods have subsequently
been shown to have this property [Defazio et al., 2014a, Mairal, 2013, Shalev-Schwartz and
Zhang, 2013], but these all require storing a previous evaluation of the gradient f ′i or the
dual variables for each i. For many objectives this only requiresO(n) space, but for general
problems this requires O(nd) space making them impractical.

Recently, several methods have been proposed with similar convergence rates to SAG,
but without the memory requirements such as stochastic variance-reduced gradient (SVRG)
[Johnson and Zhang, 2013], semi-stochastic gradient [Konečnỳ and Richtárik, 2017], and
mixed gradient [Mahdavi and Jin, 2013]. All of these algorithms represent small variations
of the same idea. In this Chapter, we will consider SVRG. We give a canonical SVRG
algorithm in the next section, but the salient features of these methods are that they evaluate
two gradients on each iteration and occasionally must compute the gradient on all examples.
SVRG methods often dramatically outperform classic full gradient (FG) and stochastic gra-
dient (SG) methods, but these extra evaluations mean that SVRG is slower than SG methods
in the important early iterations. They also mean that SVRG methods are typically slower
than memory-based methods like SAG.

In this work we show that SVRG is robust to inexact calculation of the full gradients
it requires, provided the accuracy increases over time. We use this to explore growing-
batch strategies that require fewer gradient evaluations when far from the solution, and we
propose a mixed SG/SVRG method that may improve performance in the early iterations.
We next explore using support vectors to reduce the number of gradients required when
close to the solution, and finally Section 3.4 presents the experimental results.

37

3.1. Notation and Stochastic Variance Reduced Gradient Algorithm

Algorithm 5 SVRG
Input: initial vector x0, update frequency m, learning rate η.
for s = 0, 1, 2, . . . do
µs = 1

n

∑n
i=1 f

′
i (x)

x0=xs

for t = 1, 2, . . . ,m do
Randomly pick it ∈ 1, . . . , n
xt = xt−1 − η(f

′
it

(xt−1)− f
′
it

(xs) + µs) (∗)
end for
option I: set xs+1 = xm
option II: set xs+1 = xt for random t ∈ {1, . . . ,m}

end for

3.1 Notation and Stochastic Variance Reduced Gradient
Algorithm

SVRG assumes f is µ-strongly convex, each fi is convex, and each gradient f ′i is Lipschitz-
continuous with constant L. The method begins with an initial estimate x0, sets x0 = x0

and then generates a sequence of iterates xt using

xt = xt−1 − η(f ′it(xt−1)− f
′
it(x

s) + µs), (3.2)

where η is the positive step size, we set µs = f ′(xs), and it is chosen uniformly from
{1, 2, . . . , n}. After every m steps, we set xs+1 = xt for a random t ∈ {1, . . . ,m}, and we
reset t = 0 with x0 = xs+1. SVRG is described in Algorithm 5.

Unfortunately, the SVRG algorithm requires 2m + n gradient evaluations for every
m iterations of (3.2), since updating xt requires two gradient evaluations and computing
µs require n gradient evaluations. We can reduce this to m + n if we store the gradients
f ′i(x

s), but this is not practical in most applications. Thus, SVRG requires many more
gradient evaluations than the classic SG iterations of memory-based methods like SAG.

3.2 Stochastic Variance Reduced Gradient with Error

We first give a result for the SVRG method where we assume that µs is equal to f ′(xs) up
to some error es. This is in the spirit of the analysis of Schmidt et al. [2011], who analyze
FG methods under similar assumptions. We assume that ‖xt − x∗‖ ≤ Z for all t, which
has been used in related work [Hu et al., 2009] and is reasonable because of the coercity
implied by strong-convexity.
Proposition 1. If µs = f ′(xs) + es and we set η and m so that ρ < 1, then the SVRG
algorithm (3.2) with xs+1 chosen randomly from {x1, x2, . . . , xm} satisfies

E[f(xs+1)− f(x∗)] ≤ ρE[f(xs)− f(x∗)] +
ZE‖es‖+ ηE‖es‖2

1− 2ηL
.

38

3.2. Stochastic Variance Reduced Gradient with Error

The proof is provided in Harikandeh et al. [2015]. This result implies that SVRG does
not need a very accurate approximation of f ′(xs) in the crucial early iterations since the
first term in the bound will dominate. Further, this result implies that we can maintain the
exact convergence rate of SVRG as long as the errors es decrease at an appropriate rate. For
example, we obtain the same convergence rate provided that max{E‖es‖,E‖es‖2} ≤ γρ̃s

for any γ ≥ 0 and some ρ̃ < ρ. Further, we still obtain a linear convergence rate as long as
‖es‖ converges to zero with a linear convergence rate.

3.2.1 Stochastic Variance Reduced Gradient with Batching

There are many ways we could allow an error in the calculation of µs to speed up the
algorithm. For example:

• if evaluating each f ′i involves solving an optimization problem, then we could solve
this optimization problem inexactly.

• if we are fitting a graphical model with an iterative approximate inference method,
we can terminate the iterations early to save time.

When fi is simple but n is large, a natural way to approximate µs is with a subset (or
‘batch’) of training examples Bs (chosen without replacement),

µs =
1

|Bs|
∑
i∈Bs

f ′i(x
s).

The batch size |Bs| controls the error in the approximation, and we can drive the error to
zero by increasing it to n. Existing SVRG methods correspond to the special case where
|Bs| = n for all s. Algorithm 6 gives pseudo-code for an SVRG implementation that
uses this sub-sampling strategy. If we assume that the sample variance of the norms of the
gradients is bounded by S2 for all xs,

1

n− 1

n∑
i=1

[
‖f ′i(xs)‖2 − ‖f ′(xs)‖2

]
≤ S2,

then we have that [Lohr, 2009, Chapter 2]

E‖es‖2 ≤ n− |Bs|
n|Bs|

S2.

So if we want E‖es‖2 ≤ γρ̃2s, where γ ≥ 0 is a constant for some ρ̃ < 1, we need

|Bs| ≥ nS2

S2 + nγρ̃2s
. (3.3)

If the batch size satisfies the above condition then

39

3.2. Stochastic Variance Reduced Gradient with Error

Algorithm 6 Batching SVRG
Input: initial vector x0, update frequency m, learning rate η.
for s = 0, 1, 2, . . . do

Choose batch size |Bs|
Bs = |Bs| elements sampled without replacement from {1, 2, . . . , n}.
µs = 1

|Bs|
∑

i∈Bs f
′
i (x

s)
x0=xs

for t = 1, 2, . . . ,m do
Randomly pick it ∈ 1, . . . , n
xt = xt−1 − η(f

′
it

(xt−1)− f
′
it

(xs) + µs) (∗)
end for
option I: set xs+1 = xm
option II: set xs+1 = xt for random t ∈ {1, . . . ,m}

end for

ZE‖es−1‖+ ηE‖es−1‖2 ≤ Z√γρ̃s + ηγρ̃2s

≤ 2 max{Z√γ, ηγρ̃}ρ̃s,

and the convergence rate of SVRG is unchanged compared to using the full batch on all it-
erations. The condition (3.3) guarantees a linear convergence rate under any exponentially-
increasing sequence of batch sizes, the strategy suggested by Friedlander and Schmidt
[2012] for classic SG methods. However, (3.3) has an inflection point at the following
point s = log(S2/γn)/2 log(1/ρ̃), corresponding to |Bs| = n

2 . This was previously ob-
served empirically [Aravkin et al., 2012, Figure 3], and occurs because we are sampling
without replacement. This transition means we don’t need to increase the batch size expo-
nentially.

3.2.2 Mixed SG and SVRG Method

An approximate µs can drastically reduce the computational cost of the SVRG algorithm,
but does not affect the factor 2 in the 2m + n gradients required for m SVRG iterations.
This factor of 2 is significant in the early iterations, since this is when stochastic methods
make the most progress and when we typically see the largest reduction in the test error.

To reduce this factor, we can consider a mixed strategy: if it is in the batch Bs then per-
form an SVRG iteration, but if it is not in the current batch then use a classic SG iteration.
We illustrate this modification in Algorithm 7. This modification allows the algorithm to
take advantage of the rapid initial progress of SG, since it predominantly uses SG iterations
when far from the solution. Below we give a convergence rate for this mixed strategy.
Proposition 2. Let µs = f ′(xs) + es and we set η and m so that 0 < ρ(L,αL) < 1 with
α = |Bs|/n. If we assume E‖f ′i(x)‖2 ≤ σ2 then Algorithm 7 has

E[f(xs+1)− f(x∗)] ≤ ρ(L,αL)E[f(xs)− f(x∗)] +
ZE‖es‖+ ηE‖es‖2 + ησ2

2 (1− α)

1− 2ηL

40

3.3. Using Support Vectors

Algorithm 7 Mixed SVRG and SG Method
Replace (*) in Algorithm 1 with the following lines:
if fit ∈ Bs then
xt = xt−1 − η(f

′
it

(xt−1)− f
′
it

(xs) + µs)
else
xt = xt−1 − ηf

′
it

(xt−1)
end if

We give the proof in Harikandeh et al. [2015]. The extra term depending on the variance
σ2 is typically the bottleneck for SG methods. Classic SG methods require the step-size η
to converge to zero because of this term. However, the mixed SG/SVRG method can keep
the fast progress from using a constant η since the term depending on σ2 converges to zero
as α converges to one. Since α < 1 implies that ρ(L,αL) < ρ, this result implies that when
[f(xs) − f(x∗)] is large compared to es and σ2 that the mixed SG/SVRG method actually
converges faster.

Sharing a single step size η between the SG and SVRG iterations in Proposition 2 is
sub-optimal. For example, if x is close to x∗ and |Bs| ≈ n, then the SG iteration might
actually take us far away from the minimizer. Thus, we may want to use a decreasing
sequence of step sizes for the SG iterations. In Harikandeh et al. [2015], we show that
using η = O∗(

√
(n− |B|)/n|B|) for the SG iterations can improve the dependence on the

error es and variance σ2.

3.3 Using Support Vectors

Using a batch Bs decreases the number of gradient evaluations required when SVRG is far
from the solution, but its benefit diminishes over time. However, for certain objectives we
can further reduce the number of gradient evaluations by identifying support vectors. For
example, consider minimizing the Huberized hinge loss (HSVM) with threshold ε [Rosset
and Zhu, 2007],

min
x∈Rd

1

n

n∑
i=1

f(bia
T
i x), f(τ) =

0 if τ > 1 + ε,
1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε,

In terms of (3.1), we have fi(x) = f(bia
T
i x). The performance of this loss function is

similar to logistic regression and the hinge loss, but it has the appealing properties of both:
it is differentiable like logistic regression meaning we can apply methods like SVRG, but it
has support vectors like the hinge loss meaning that many examples will have fi(x∗) = 0
and f ′i(x

∗) = 0. We can also construct Huberized variants of many non-smooth losses for
regression and multi-class classification.

If we knew the support vectors where fi(x∗) > 0, we could solve the problem faster
by ignoring the non-support vectors. For example, if there are 100000 training examples

41

3.3. Using Support Vectors

Algorithm 8 Heuristic for skipping evaluations of fi at x
if ski = 0 then

compute f ′i(x).
if f ′i(x) = 0 then
psi = psi + 1. {Update the number of consecutive times f ′i(x) was zero.}
ski = 2max{0,psi−2}. {Skip exponential number of future evaluations if it remains
zero.}

else
psi = 0. {This could be a support vector, do not skip it next time.}

end if
return f ′i(x).

else
ski = ski − 1. {In this case, we skip the evaluation.}
return 0.

end if

but only 100 support vectors in the optimal solution, we could solve the problem 1000
times faster. While we typically don’t know the support vectors, in this section we outline a
heuristic that gives large practical improvements by trying to identify them as the algorithm
runs.

Our heuristic has two components. The first component is maintaining the list of non-
support vectors at xs. Specifically, we maintain a list of examples i where f ′i(x

s) = 0.
When SVRG picks an example it that is part of this list, we know that f ′it(x

s) = 0 and thus
the iteration only needs one gradient evaluation. This modification is not a heuristic, in that
it still applies the exact SVRG algorithm. However, at best it can only cut the runtime in
half.

The heuristic part of our strategy is to skip f ′i(x
s) or f ′i(xt) if our evaluation of f ′i

has been zero more than two consecutive times (and skipping it an exponentially larger
number of times each time it remains zero). Specifically, for each example i we maintain
two variables, ski (for ‘skip’) and psi (for ‘pass’). Whenever we need to evaluate f ′i for
some xs or xt, we run Algorithm 8 which may skip the evaluation. This strategy can lead to
huge computational savings in later iterations if there are few support vectors, since many
iterations will require no gradient evaluations.

Identifying support vectors to speed up computation has long been an important part of
SVM solvers, and is related to the classic shrinking heuristic [Joachims, 1999]. While it has
previously been explored in the context of dual coordinate ascent methods [Usunier et al.,
2010], this is the first work exploring it for linearly-convergent stochastic gradient methods.

42

3.4. Experimental Results

3.4 Experimental Results

In this section, we present experimental results that evaluate our proposed variations on the
SVRG method. We focus on logistic regression classification: given a set of training data
(a1, b1) . . . (an, bn) where ai ∈ Rd and bi ∈ {−1,+1}, the goal is to find the x ∈ Rd
solving

arg minx ∈ Rd
λ

2
‖x‖2 +

1

n

n∑
i=1

log(1 + exp(−biaTi x)),

We consider the datasets used by Le Roux et al. [2012], whose properties are listed in
Table 3.1. As in their work we add a bias variable, normalize dense features, and set the
regularization parameter λ to 1/n. We used a step-size of α = 1/L and we used m = |Bs|
which gave good performance across methods and datasets. In our first experiment, we
compared three variants of SVRG: the original strategy that uses all n examples to form
µs (Full), a growing batch strategy that sets |Bs| = 2s (Grow), and the mixed SG/SVRG
described by Algorithm 7 under this same choice (Mixed). While a variety of practical
batching methods have been proposed in the literature [Byrd et al., 2012, Friedlander and
Schmidt, 2012, van den Doel and Ascher, 2012], we did not find that any of these strategies
consistently outperformed the doubling used by the simple Grow strategy. Our second
experiment focused on the `2-regularized HSVM on the same datasets, and we compared
the original SVRG algorithm with variants that try to identify the support vectors (SV).

We plot the experimental results for one run of the algorithms on one dataset in Fig-
ure 3.1. In our results, the growing batch strategy (Grow) always had better test error
performance than using the full batch, while for large datasets it also performed substan-
tially better in terms of the training objective. In contrast, the Mixed strategy sometimes
helped performance and sometimes hurt performance. Utilizing support vectors often im-
proved the training objective, often by large margins, but its effect on the test objective was
smaller.

In Figures [3.2-3.5], we plot the performance on the various datasets in terms of both
the training objective and test error, showing the maximum/mean/minimum performance
across 10 random trials. In these plots, we see a clear advantage for the Grow strategy on
the largest datasets (bottom row), but less of an advantage or no advantage on the smaller
datasets. The advantage of using support vectors seemed less dependent on the data size, as
it helped in some small datasets as well as some large datasets, while in some small/large
datasets it did not make a big difference.

3.5 Discussion

As SVRG is the only memory-free method among the new stochastic linearly-convergent
methods, it represents the natural method to use for a huge variety of machine learning
problems. In this work, we show that the performance of the SVRG algorithm can be pre-
served even under an inexact approximation to the full gradient. We also showed that using

43

3.5. Discussion

Data set Data Points Variables Reference
quantum 50 000 78 [Caruana et al., 2004]
protein 145 751 74 [Caruana et al., 2004]
sido 12 678 4 932 [Guyon, 2008]
rcv1 20 242 47 236 [Lewis et al., 2004]
covertype 581 012 54 [Frank and Asuncion, 2010]
news 19 996 1 355 191 [Keerthi and DeCoste, 2005]
spam 92 189 823 470 [Carbonetto, 2009, Cormack and Lynam, 2005]
rcv1Full 697 641 47 236 [Lewis et al., 2004]
alpha 500 000 500 Synthetic

Table 3.1: Binary data sets used in the experiments.

mini-batches to approximate µs gives a natural way to do this, explored the use of sup-
port vectors to further reduce the number of gradient evaluations, and considered several
mini-batch strategies. Our experimental results indicate that many of these simple modi-
fications should be considered in any practical implementation of SVRG. To facilitate re-
producible research, the code is available at http://www.cs.ubc.ca/˜schmidtm/
Software/practicalSVRG.zip.

44

http://www.cs.ubc.ca/~schmidtm/Software/practicalSVRG.zip
http://www.cs.ubc.ca/~schmidtm/Software/practicalSVRG.zip

3.5. Discussion

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05
Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-10

10-5

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05 Full

Grow

SV(Full)

SV(Grow)

Figure 3.1: Comparison of training objective (left) and test error (right) on the spam dataset
for the logistic regression (top) and the HSVM (bottom) losses under different batch strate-
gies for choosing µs (Full, Grow, and Mixed) and whether we attempt to identify support
vectors (SV).

45

3.5. Discussion

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-2

10-1

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-2

10-1

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-6

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-4

10-2

100

Full

Grow

Mixed

Figure 3.2: Comparison of training objective of logistic regression for different datasets.
The top row gives results on the quantum (left), protein (center) and sido (right) datasets.
The middle row gives results on the rcv11 (left), covertype (center) and news (right)
datasets. The bottom row gives results on the spam (left), rcv1Full (center), and alpha
(right) datasets.

46

3.5. Discussion

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.29

0.3

0.31

0.32

0.33

0.34
Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05 Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.02

0.03

0.04

0.05

0.06

0.07
Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.03

0.04

0.05

0.06

0.07

0.08

Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.25

0.26

0.27

0.28

0.29

0.3
Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.08

0.09

0.1

0.11

0.12

0.13
Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05
Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.02

0.03

0.04

0.05

0.06

0.07 Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.21

0.22

0.23

0.24

0.25

0.26

Full

Grow

Mixed

Figure 3.3: Comparison of test error of logistic regression for different datasets. The top row
gives results on the quantum (left), protein (center) and sido (right) datasets. The middle
row gives results on the rcv11 (left), covertype (center) and news (right) datasets. The
bottom row gives results on the spam (left), rcv1Full (center), and alpha (right) datasets.

47

3.5. Discussion

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-4

10-3

10-2

10-1

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-3

10-2

10-1

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-3

10-2

10-1

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-6

10-4

10-2

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-6

10-4

10-2

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-4

10-3

10-2

10-1

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-10

10-5

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-4

10-2

100

Full

Grow

SV(Full)

SV(Grow)

Figure 3.4: Comparison of training objective of SVM for different datasets. The top row
gives results on the quantum (left), protein (center) and sido (right) datasets. The middle
row gives results on the rcv11 (left), covertype (center) and news (right) datasets. The
bottom row gives results on the spam (left), rcv1Full (center), and alpha (right) datasets.

48

3.5. Discussion

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.29

0.3

0.31

0.32

0.33

0.34
Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05 Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.02

0.03

0.04

0.05

0.06

0.07
Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.03

0.04

0.05

0.06

0.07

0.08
Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.29

0.3

0.31

0.32

0.33

0.34
Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.04

0.05

0.06

0.07

0.08

0.09

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05 Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.02

0.03

0.04

0.05

0.06

0.07
Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0.21

0.22

0.23

0.24

0.25

0.26
Full

Grow

SV(Full)

SV(Grow)

Figure 3.5: Comparison of test error of SVM for different datasets. The top row gives
results on the quantum (left), protein (center) and sido (right) datasets. The middle row
gives results on the rcv11 (left), covertype (center) and news (right) datasets. The bottom
row gives results on the spam (left), rcv1Full (center), and alpha (right) datasets.

49

Chapter 4

Harmless and First-Order Bayesian
Optimization

Chapters 2 and 3 focused on training machine learning models which is usually a high-
dimensional convex problem. In Chapters 4 and 5, we consider hyper-parameter tuning
which usually leads to a low-dimensional non-convex problem. There are several ap-
proaches to solve this problem such as grid-search and random search. However, these
methods works only in very low dimensions. One of the most popular methods in hyperpa-
rameter tuning is Bayesian optimization (BO).

BO has a long history and has been used in variety of fields (see Shahriari et al. [2016]
for a recent review), with recent interest from the machine learning community in the con-
text of automatic hyperparameter tuning [Snoek et al., 2012]. However, the empirical results
of a recent work have called into question the usefulness of Bayesian optimization. Li et al.
[2016] show on a large number of problems that Bayesian optimization often only gave a
small gain over random search and in fact was typically outperformed by running random
search for twice as many iterations. On the other hand, for some specific problems BO does
in fact handily beat random (see our experiments) and we know that under certain smooth-
ness assumptions BO can be exponentially faster than random [Bull, 2011, Theorem 5].

In the context of these conflicting results, in this chapter we propose two strategies for
improving the performance of Bayesian optimization methods. First, in the next section we
introduce the concept of a “harmless” Bayesian optimization algorithm. This is not specific
to Bayesian optimization. In fact we introduce a more general concept known as “harmless
global optimization”. This is an algorithm that does no worse than random in the worst
case, but that might still take advantage of certain structure of the function, for example, a
high degree of smoothness in case of BO. Second, since smooth functions are one class of
function where BO has a large advantage over random, we propose to re-explore the idea of
“first-order” Bayesian optimization (FOBO) methods that use gradient information to im-
prove performance. We show how gradient information can lead to improved performance,
and also propose FOBO strategies that use directional derivatives. The advantage of us-
ing directional derivatives is that they reduce the cost and memory requirements of FOBO
methods.

Directional derivatives can be obtained by:

1. automatic differentiation for any analytic function. In this case, directional derivative
reduces the memory cost as we only need to do the forward mode so we do not need
the memory requirements of reverse mode automatic differentiation.

50

4.1. Bayesian Optimization

2. numerical differentiation for “black box” situations where we do not have gradient
code available. In this case directional derivative is cheaper than evaluating the full
gradient as it requires only 2 function evaluations.

4.1 Bayesian Optimization

BO methods are typically based on Gaussian processes (GPs), since they have appealing
universal consistency properties and admit a closed-form posterior distribution [Rasmussen
and Williams, 2006]. In particular, BO methods assume a smooth GP prior on the unknown
function, and use the observed function evaluations to compute a posterior distribution over
the possible function values at any point x. At iteration t, given the previously selected
points {x1, x2, . . . xt−1} and their corresponding observations yt = [y1, y2, . . . , yt−1], the
algorithm uses an acquisition function (based on the GP posterior) to select the next point
to evaluate. The value of the acquisition function at a point characterizes the importance
of evaluating that point in order to maximize f . To determine xt, we maximize this ac-
quisition function over all x using an auxiliary optimization procedure (typically we can
only approximately solve this maximization). Algorithm 9 outlines the generic Bayesian
optimization framework.

We formalize the high-level procedure. We assume that f ∼ GP (0, k(x, x′)). Here
k(x, x′) is a kernel function which quantifies the similarity between points x and x′. We
denote the maximum value of the function until iteration t as y∗t and the set {1, 2, . . . , t} as
[t]. Let kt(x) = [k(x, x1), k(x, x2), . . . , k(x, xt)] and let us denote the t×t kernel matrix as
K (so Ki,j = k(xi, xj) for all i, j ∈ [t]). Given the function evaluations (observations), the
posterior distribution at point x after t iterations is given as P[ft(x)] ∼ N(µt(x), σt(x)).
Here, the mean and standard deviation of the function at x are given as:

µt(x) = kt(x)T
(
K + σ2It

)−1
yt,

σt(x) = k(x, x)− kt(x)T
(
K + σ2It

)−1
kt(x). (4.1)

As alluded to earlier, an acquisition function uses the above posterior distribution in or-
der to select the next point to evaluate the function at. A number of acquisition functions
have been proposed in the literature, with the most popular ones being based on upper-
confidence bounds (UCB) [Srinivas et al., 2010] or posterior sampling [Thompson, 1933],
ones based on importance function values [Kushner, 1964, Močkus, 1975] or those based
on entropy search [Hennig and Schuler, 2012, Hernández-Lobato et al., 2014, Villemon-
teix et al., 2009]. In this work, we focus on four simple widely-used acquisition functions:
upper confidence bound (UCB) [Srinivas et al., 2010], Thompson sampling (TS) [Thomp-
son, 1933], expected improvement (EI) [Močkus, 1975] and probability of improvement
(PI) [Kushner, 1964]. However, we expect that our conclusions would apply to other ac-
quisition functions. For brevity, when defining the acquisition functions we drop the t − 1
subscripts from µt−1(x), σt−1(x), and y∗t−1 .

51

4.2. Harmless Bayesian Optimization

UCB: The acquisition function UCB(x) is defined as:

UCB(x) = µ(x) + β
1/2
t σ(x) (4.2)

Here, βt is positive parameter that trades off exploration and exploitation.
TS: For TS, in each iteration we first sample a function f̃t(x) from the GP posterior,
f̃t ∼ GP (µt(x), σt(x)). TS then selects the point xt which maximizes this determinis-
tic function f̃t.
Probability of Improvement: We define the possible improvement (over the current max-
imum) at x as I(x) = max{f(x)− y∗, 0} and the indicator of improvement u(x) as

u(x)) =

{
0, if f(x) < y∗

1, if f(x) ≥ y∗
.

PI selects the point x which maximizes the probability of improving over y∗. If φ(·) and
Φ(·) are the probability density function and the cumulative distribution function for the
standard normal distribution, then the PI acquisition function is given as [Kushner, 1964]:

PI(x) =

∫ ∞
−∞

u(x)φ(f(x))df =

∫ ∞
y∗

φ(f(x))df = Φ (z(x, y∗)) (4.3)

where we’ve defined the transformation z(u, v) = µ(u)−v
σ(u) .

Expected Improvement: EI selects an x that maximizes E[I(x)], where the expectation
is over the distribution P(ft(x)). If φ(·) is the pdf of the standard normal distribution, the
expected improvement acquisition function can be written as [Močkus, 1975]:

EI(x) =

∫ ∞
−∞

I(x)φ(f(x))df

=

∫ ∞
y∗

(f(x)− y∗)φ(f(x))df

= σ(x) · [z(x, y∗) · Φ(z(x, y∗)) + φ(z(x, y∗))]

(4.4)

4.2 Harmless Bayesian Optimization

We consider the problem of maximizing a real-valued function f over a domain X consist-
ing of finite lower and upper bounds on every variable,

argmax
x∈X

f(x). (4.5)

We first consider a zero-order oracle where on iteration t the algorithm can learn about the
function by choosing a parameter value xt and receiving the corresponding function value
f(xt). In this model, we consider the goal of trying to minimize the number of iterations t
before we can guarantee that we find a parameter value x̂ such that f(x̂) − f∗ ≤ ε (where

52

4.2. Harmless Bayesian Optimization

Algorithm 9 Bayesian optimization
Input: m data points D0 = (x0, y0), (x1, y1), ..., (xm, ym).
for iteration t = 0, 1, 2, . . . , T do

select new xt+1 by optimizing acquisition function a

xt+1 = argmax
x∈X

a(x;Dt) (4.6)

query objective function to obtain yn+1.
update model by Dn+1 = (xn+1, yn+1)

end for
return location of the maximum

f∗ is the maximum of f and ε is some positive constant). In this chapter we will primarily
be interested in BO methods based on Gaussian processes and will consider deterministic
functions, but we expect that these observations also hold in other settings.

Firstly, we note that finding such an x̂ is impossible in any finite number of oracle calls
unless we make assumptions about f . Because the real numbers are uncountable, for any
deterministic algorithm we can construct a function that achieves an arbitrarily low function
value at a parameter setting that the algorithm will never try (and similar arguments hold for
stochastic algorithms). Thus, to say anything in this setting we need some sort of continuity
assumptions about the function f .

One of the most natural assumption about f that we might make is that f is Lipschitz-
continuous, meaning that the amount that f can change as we change x is bounded by
a constant times the change in x. Under this assumption, it is known that any algorithm
requires Ω(1/εd) iterations to reach an accuracy of ε [Nesterov, 2004, Theorem 1.1.2].
Further, anO(1/εd) worst-case rate can be achieved by using a grid-based search [Nesterov,
2004, Corollary 1.1.1] or in expectation simply by trying random values for the xt (because
the probability that a random x is an ε-optimal solution under this asumption is Ω(εd)).
Thus, in some sense random search is an optimal algorithm. Further, this O(1/εd) rate is
faster than the best known rates for BO in many settings, in the sense that the exponent of ε
for BO can be larger than d [Bull, 2011, Theorems 1-4].10

However, for functions with a sufficient amount of smoothness BO can beat random
search. In particular, under additional assumptions and using ν as a measure of smooth-
ness of f , Bull shows in a fascinating result that a variant of BO only requires Õ(1/εd/ν)
iterations [Bull, 2011, Theorem 5]. Thus, for “nice” functions where ν is greater than 1
BO can be exponentially faster than random search. This gives support for the empirical
observation that in some settings BO soundly beats random search.

Unfortunately, in the black-box setting we typically do not know ν and so we don’t
10We state results in terms in terms of the number of needed iterations, but we could equivalently state results

in terms of the error after a fixed number of iterations. For example, if we require O(1/εd) iterations to reach
an accuracy of ε then we can guarantee a sub-optimality of O(1/t1/d) after t iterations.

53

4.3. First-Order Bayesian Optimization

know if it is greater or less than 1. This motivates us to consider “harmless” global opti-
mization:

• A “harmless” global optimization algorithm is a method that requires at mostO(1/εd)
iterations to achieve an accuracy of ε on a Lipschitz-continuous function, and thus up
to a constant factor performs as well as random search in the worst case.

A harmless BO method would be a variant of BO that satisfies the harmless property above.
It is quite simple to achieve a “harmless” BO method by combining an existing BO method
with an existing “harmless” method like random search. We simply alternate between per-
forming the iterations of the two algorithms. For example, if on odd iterations we evaluate a
random xt and on even iterations we apply a BO method, this would constitute a “harmless”
BO method. This is actually quite similar to the “ε-greedy” approach that Bull requires just
for convergence of BO (and which is a common way to address exploration-exploitation
issues). Further, if our BO method is the method analyzed by Bull then this simple harm-
less BO method achieves the best known rate of Õ(1/εmin{d,d/ν}). This assumes that the
BO method ignores the random search iterations, but in practice we would likely do better
by giving the BO method access to these iterates. Another variation is, instead of random
points, to choose the furthest point from all the previous xt values. This is harmless and
guarantees that we satisfy a measure of progress in terms of exploring the space (this is a
known problem for BO).

Although the idea of a ”harmless” GO method is quite simple (both to state and to
achieve), it can be a useful guiding principle in designing GO methods. For example, in
Chapter 5 we use it to design an adaptive approach to estimate the Lipschitz constant L
within Lipschitz optimization that is provably “harmless”. Previous methods use heuristics
for estimating L, and these heuristics are not harmless if they underestimate it.

4.3 First-Order Bayesian Optimization

Making a BO method harmless protects it from obtaining poor performance on functions
with a low degree of smoothness, but often we are faced with maximizing a function with
a high degree of smoothness. In this differentiable case we should expect to improve per-
formance by incorporating knowledge of the derivatives at the guesses xt. We call methods
based on this extra information first-order Bayesian optimization (FOBO) methods.

Incorporating derivative observations in Gaussian processes is not a new idea [Morris
et al., 1993, Osborne, 2010, Rasmussen and Williams, 2006, Solak et al., 2003], and there
has been some work on using derivative information specifically for the purpose of Bayesian
optimization on low-dimensional problems [Lizotte, 2008, Section 5.2.4]. In this section
we revisit this idea in higher dimensions and explore how directional derivatives can reduce
the time/memory as well as the need to write gradient code when all that we have available
is a zero-order black box.

The usual BO assumption is that the values of f are jointly Gaussian, being generated
by a Gaussian process. We can incorporate derivative information by also assuming that

54

4.4. Experiments

derivatives are being generated by a Gaussian process. In particular, we will assume that
the function values and all first derivatives of f are jointly Gaussian and that the covariance
kernel is twice differentiable. In this setting, the additional elements of the covariance
kernel involving partial derivatives are given by [Adler, 2010, Papoulis and Pillai, 2002]

cov(f(xi), ∂pf(xj)) = ∂pk(xi, xj), and (4.7)

cov(∂pf(xi), ∂qf(xj)) = ∂p∂qk(xi, xj), (4.8)

where ∂pf denotes the partial derivative of f with respect to direction p. Therefore, as
long as the kernel is twice differentiable and the gradient can be evaluated, the GP can be
extended to include gradient observations.

While the cost of computing gradients for analytic functions cannot be more than a
constant factor more expensive than the cost of computing the function value, the memory
and time requirement of the GP model increase if we use the full gradient of each xt.
In particular, the memory is increased from O(t2) to O(t2d2) when we have d variables.
Similarly, the cost of the GP is increased from O(t3) to O(t3d3) (assuming we use an
exact solver, for illustration purposes). If this extra memory requirement is too large, then
we propose to instead of modelling the gradient as a GP to instead model a directional
derivative ∂pf(xt) for a particular direction p. The most logical direction p to consider is the
gradient direction, ∇f(xt) (So the directional derivative is the magnitude of the gradient).
However, this direction is expensive to evaluate as it requires the full gradient information.
Another alternative is use a random direction. This directional derivative still provides
information about how the function changes, but since it is a scalar it only increases the
time/memory by a constant factor.

In many scenarios where BO is applied it is possible to compute gradients. For example,
Bengio as well as Maclaurin et al. have shown how to compute gradients with respect to
hyper-parameters of machine learning models [Bengio, 2000, Maclaurin et al., 2015]. It
is likely that these existing methods could be improved through the use of FOBO. On the
other hand, sometimes we really have a “black box” and cannot get access to the gradient.
In these settings, we can obtain directional derivatives ∂pf(xt) for a given direction p for
a cost of 2 function evaluations using numerical differentiation. A particularly nice way of
doing this is the case of analytic functions with the complex-step trick [Martins et al., 2003]
when using automatic differentiation. Our experiments indicate that simply setting p to a
random direction can be more effective than standard BO methods for smooth functions.

4.4 Experiments

We performed a set of numerical experiments on a number of test functions to illustrate the
two ideas explored in this chapter.
Datasets: We perform an extensive experimental evaluation and present results on twelve
synthetic datasets. For the synthetic experiments, we use the standard global-optimization
benchmarks. Table 4.1 summarizes the names and the properties of the used test functions.

55

4.4. Experiments

Function name Dimensions x∗ Bounds
Branin 2D [9.42478, 2.475] [[-5, 10], [0, 15]]
Camel 2D [0.0898, -0.7126] [[-3, 3], [-2, 2]]
Goldstein-Price 2D [0.0, -1.0] [[-2.0, 2.0]]
Michalewicz 2D [2.2, 1.57] [[0, π]]
Michalewicz 5D [[0, π]]
Michalewicz 10D [[0, π]]
Rosenbrock 2D [1, 1] [[-2.048, 2.048]]
Rosenbrock 3D [1, 1, 1] [[-2.048, 2.048]]
Rosenbrock 4D [1, 1, 1, 1] [[-2.048, 2.048]]
Rosenbrock 5D [1, 1, 1, 1, 1] [[-2.048, 2.048]]
Hartmann 3D [0.1146, 0.5556, 0.8525] [[0.0, 1.0]]

[0.2017, 0.15, 0.4769,
Hartmann 6D 0.2753, 0.3117, 0.6573] [[0.0, 1.0]]

Table 4.1: Test functions used.

The closed form formula and domain for each of these functions is given in Jamil and Yang
[2013].
Experimental Setup: For Bayesian optimization, we use a Gaussian Process prior with the
squared exponential kernel. We modified the publically available BO package pybo [Hoff-
man and Shahriari, 2014] to implement HBO and FOBO. All the prior hyper-parameters
were set and updated across iterations according to the open-source Spearmint package11.
In order to make the optimization invariant to the scale of the function values, similar to
Spearmint, we standardize the function values; after each iteration, we center the observed
function values by subtracting their mean and dividing by their standard deviation. We then
fit a GP to these rescaled function values. We found that standardization significantly im-
proves the performance over the original pybo code. We use DIRECT [Jones et al., 1993]
in order to optimize the acquisition function in each iteration. We spent a long time op-
timizing the performance of our baseline BO methods and we verified that our version of
BO performs better than or equal to Spearmint across benchmark problems. All our results
are averaged over 10 independent runs, and each of our figures plots the mean and stan-
dard deviation of the absolute error (compared to the global optimum) versus the number of
function evaluations. For functions evaluated on log scale, we show the mean and the 10th

and 90th quantiles.

4.4.1 Harmless Bayesian Optimization Experiment

For this experiment, we compare the performance of the BO and HBO methods for the
EI, PI, UCB and TS acquisition functions. For UCB, we set the trade-off parameter β
according to Kandasamy et al. [2017]. In addition to these, we use random exploration as

11Available at https://github.com/JasperSnoek/spearmint

56

4.4. Experiments

a baseline. HBO was implemented by switching from BO to evaluating a random xt every
fourth iteration. To make it easier to read, a sample of the results for the HBO experiments
are presented in Figure 4.1, 4.1, 4.2, 4.3, and 4.4. In these figures ‘H-*’ stands for the
harmless BO version with a certain acquisition function, for example, ‘H-TS’ represents
Harmless BO with Thompson sampling acquisition function. In these figures, we present
the results for Branin, Michalwicz 2D, and Hartmann 6D. All the experiments are presented
in Appendix A.1.

The results of the first experiment can be summarized as follows:

• TS: HBO does exactly what it is designed for, especially for Branin, Michalwicz 2D,
and Michalwicz 5D. For these functions, Random search significantly outperforms
BO. However, HBO improves the performance of BO to match Random search as
shown in Figure 4.1. For the other functions, HBO performs no worse than random
and close to the performance of BO.

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.1: Comparing conventional BO and HBO and random exploration for TS on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions.

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.2: Comparing conventional BO and HBO and random exploration for EI on Branin
(a), Michalwicz 2D (b), and Hartmann 6D (c) test functions.

57

4.4. Experiments

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.3: Comparing conventional BO and HBO and random exploration for PI on Branin
(a), Michalwicz 2D (b), and Hartmann 6D (c) test functions.

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.4: Comparing conventional BO and HBO and random exploration for UCB on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions.

• EI: HBO is as good as BO as shown in Figure 4.2.

• PI: although BO is always better than random, HBO improves the performance for
Branin as shown in Figure 4.3. However, for Goldstein-Price HBO is slightly worse
than BO.

• UCB: HBO is as good as BO as shown in Figure 4.4.

4.4.2 First-Order Bayesian Optimization Experiment

For the FOBO experiment, we compare BO and FOBO methods for the EI, PI, and UCB
acquisition functions. The directional derivative was implemented by choosing a random di-
rection at each iteration. This choice provided a good performance and there was no need to
optimize the direction. We present some of the results in Figures 4.5, 4.6, and 4.7. In these
figures ‘G-*’ and ‘D-*’ stands for BO with gradient and BO with directional derivatives,

58

4.5. Discussion

respectively, with a certain acquisition function. These figures show that using gradient
information provides a huge gain in the performance as expected. However, using direc-
tional derivatives provide a good trade-off between the computation and the performance.
Furthermore, for some functions, using directional derivatives is almost as good as using
the gradient information. It is important to note that using directional derivatives is only
doubling the size of the covariance matrix instead of multiplying it by the dimensionality of
the problem as in the case of using the full gradient information. Figures 4.8, 4.9, and 4.10
show the comparison in terms of the number of function evaluations. If finite difference is
used, at each iteration BO, G-BO, and D-GBO requires 1, d+1, and 2 function evaluations,
respectively. It can be noticed in these figures that the gain from using directional deriva-
tives can compensate for its cost, especially in higher dimensions. This is not always the
case when using gradients. In these figures, we present the results for Branin, Michalwicz
2D, and Hartmann 6D. All the experiments are presented in Appendix A.1.

4.5 Discussion

In this Chapter, we have proposed 2 ideas to improve the performance of Bayesian optimiza-
tion. Our experiments show that using HBO makes BO “harmless”, especially in the case
of using the TS acquisition function. Moreover, we conjecture that better harmless methods
are possible which locally try to exploit smoothness in certain regions by adapting to the
properties of the black-box function. Similarly, it might be possible to improve the method
by biasing the random samples away from the points sampled by the GP. As for FOBO,
our experiments show that using gradient information provides huge performance gains.
However, directional derivatives are cheaper to use so may be a more practical alternative
in many settings. We conjecture that including gradient observations can further reduce the
exponent in the iteration complexity of BO methods. After the publication of our work on
this topic, several works have built on top of the proposed ideas in this Chapter, for exam-
ple Frazier [2018], Wu et al. [2017a], Wu [2017], Wu and Frazier [2017], Wu et al. [2017b]
for the gradient work and Dodge et al. [2017], Falkner et al. [2017] for the harmless BO
work.

This chapter considered test problems without noise. We expect HBO to be more help-
full in the noisy case. As for FOBO, noisy gradients can be more harmful than noisy
observations. For this reason, the noise parameter should be different between the function
observations and the gradient observations.

59

4.5. Discussion

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.5: Comparing conventional BO and FOBO and random exploration for EI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions.

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.6: Comparing conventional BO and FOBO and random exploration for PI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions.

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.7: Comparing conventional BO and FOBO and random exploration for UCB on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions.

60

4.5. Discussion

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.8: Comparing conventional BO and FOBO and random exploration for EI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions in terms of number
function evaluations.

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.9: Comparing conventional BO and FOBO and random exploration for PI on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions in terms of number
function evaluations.

(a) Branin 2D (b) Michalwicz 2D (c) Hartmann 6D

Figure 4.10: Comparing conventional BO and FOBO and random exploration for UCB on
Branin (a), Michalwicz 2D (b), and Hartmann 6D (c) test functions in terms of number
function evaluations.

61

Chapter 5

Lipschitz Bayesian Optimization

In this chapter, we continue the work on BO. As discussed in Chapter 4, BO is an example
of a global black-box optimization algorithm [Eligius and Boglárka, 2010, Jones et al.,
1998, Pintér, 1991, Rios and Sahinidis, 2013] which optimizes an unknown function that
may not have nice properties such as convexity. In the typical setting, we assume that we
only have access to a black box that evaluates the function and that it is expensive to do
these evaluations. The objective is to find a global optima of the unknown function with the
minimum number of function evaluations.

The global optimization of a real-valued function is impossible unless we make as-
sumptions about the structure of the unknown function. Lipschitz continuity (that the func-
tion can’t change arbitrarily fast as we change the inputs) is one of the weakest assump-
tions under which optimizing an unknown function is still possible. Lipschitz optimiza-
tion [Piyavskii, 1972, Shubert, 1972] (LO) exploits knowledge of the Lipschitz constant of
the function (a bound on the amount that it can change) to prune the search space in order
to locate the optimum. In contrast, Bayesian optimization makes a stronger assumption
that the unknown function belongs to a known model class (typically a class of smooth
functions), the most common being a Gaussian process (GP) generated using a Gaussian or
Matérn kernel [Stein, 2012]. We review LO and BO in Section 5.1.

Under their own specific sets of additional assumptions, both BO [Bull, 2011, The-
orem 5] and LO [Malherbe and Vayatis, 2017] can be shown to be exponentially faster
than random search strategies. If the underlying function is close to satisfying the stronger
BO assumptions, then typically BO is able to optimize functions faster than LO. However,
when these assumptions are not reasonable, BO may converge slower than simply trying
random values [Ahmed et al., 2016, Li et al., 2016]. On the other hand, LO makes minimal
assumptions (not even requiring differentiability12) and simply prunes away values of the
parameters that are not compatible with the Lipschitz condition and thus cannot be solu-
tions. This is useful in speeding up simple algorithms like random search. Given a new
function to optimizie, it is typically not clear which of these strategies will perform better.

In this chapter, we propose to combine BO and LO to expoit the advantages of both
methods. We call this Lipschitz Bayesian Optimization (LBO). Specifically, in Section 5.2
we design mixed acquisition functions that use Lipschitz continuity in conjunction with
existing BO algorithms. We also address the issue of providing a “harmless” estimate of
the Lipschitz constant (see Section 5.1.3), which is an important practical issue for any

12The absolute value function f(x) = |x| is an example of a simple non-differentiable but Lipschitz-
continuous function.

62

5.1. Background

LO method. Our experiments (Section 5.3) indicate that in some settings the addition of
estimated Lipschitz information leads to a huge improvement over standard BO methods.
This is particularly true for Thompson sampling, which often outperforms other standard
acquisition functions when augmented with Lipschitz information. This seems to be be-
cause the estimated Lipschitz continuity seems to correct for the well-known problem of
over-exploration [Shahriari et al., 2014]. Further, our experiments indicate that it does not
hurt to use the Lipschitz information since even in the worst case it does not change the
runtime or the performance of the method.

5.1 Background

We consider the problem of maximizing a real-valued function f(x) over a bounded com-
pact set X . We assume that on iteration t (t = 1:T), an algorithm chooses a point xt ∈ X
and then receives the corresponding function value f(xt). Typically, our goal is to find
the largest possible f(xt) across iterations. We describe two approaches for solving this
problem, namely BO and LO, in detail below.

5.1.1 Bayesian Optimization

Following Section 4.1, we assume that f ∼ GP (0, k(x, x′)). Here k(x, x′) is a kernel
function which quantifies the similarity between points x and x′. Throughout this chapter,
we use the Matern kernel for which k(x, x′) = σ2 exp

(
−
√

5r2
) (

1 +
√

5r + 5r2

3

)
where

r = ||x−x′||
` =

∑d
j=1

(xj−x′j)2

` . Here the hyper-parameter σ quantifies the amount of noise
we expect in the function values. While the hyper-parameter ` is referred to as the length-
scale and dictates the extent of smoothness we assume about the function f . We can have

one length-scale per-dimension, so r =
∑d

j=1

(xj−x′j)2

`j
.

As described in Section 4.1, the acquisition function uses the posterior distribution
in order to select the next point to evaluate the function at. In the work presented in this
chapter, we continue using four of the widely-used acquisition functions: upper confidence
bound (UCB) [Srinivas et al., 2010], Thompson sampling (TS) [Thompson, 1933], expected
improvement (EI) [Močkus, 1975] and probability of improvement (PI) [Kushner, 1964]

5.1.2 Lipschitz Optimization

As opposed to assuming that the function comes from a specific family of functions, in LO
we simply assume that the function cannot change too quickly as we change x. In particular,
we say that a function f is Lipschitz-continuous if for all x and y we have

|f(x)− f(y)| ≤ L||x− y||2, (5.1)

for a constant L which is referred to as the Lipschitz constant. Note that unlike typical
priors used in BO (like the Gaussian or Matérn kernel), a function can be non-smooth and
still be Lipschitz continuous.

63

5.1. Background

Lipschitz optimization uses this Lipschitz inequality in order to test possible locations
for the maximum of the function. In particular, at iteration t the Lipschitz inequality implies
that the function’s value at any x can be upper and lower bounded for any i ∈ [t− 1] by

f(xi)− L||x− xi||2 ≤ f(x) ≤ f(xi) + L||x− xi||2.

Since the above inequality holds simultaneously for all i ∈ [t − 1], for any x the function
value f(x) can be bounded as:

f lt−1(x) ≤ f(x) ≤ fut−1(x),

where,

f lt−1(x) = max
i∈[t−1]

{f(xi)− L||x− xi||2}

fut−1(x) = min
i∈[t−1]

{f(xi) + L||x− xi||2} (5.2)

Notice that if fut−1(x) ≤ y∗t−1, then x cannot achieve a higher function value than our
current maximum y∗t−1.

Malherbe and Vayatis [2017] exploits these bounds by sampling points xp uniformly at
random from X until it finds an xp that satisfies fut−1(xp) ≥ y∗t−1. If we know the Lipschitz
constant L (or use a valid upper bound on the minimum L value), this strategy may prune
away large areas of the space while guaranteeing that we do not prune away any optimal
solutions. This can substantially decrease the number of function values needed to come
close to the global optimum compared to using random points without pruning.

A major drawback of Lipschitz optimization is that in most applications we do not
know a valid L. We discuss this scenario in the next section, but first we note that there
exist applications where we do have access to a valid L. For example, Bunin and François
[2016] discuss cases where L can be dictated by the physical laws of the underlying process
(e.g., in heat transfer, solid oxide fuel-cell system, and polymerization). Alternately, if we
have a lower and an upper bound on the possible values that the function can take, then we
can combine this with the size of X to obtain an over-estimate of the minimum L value.

5.1.3 Harmless Lipschitz Optimization

When our black-box functions arises from a real world process, a suitable value of L is
typically dictated by physical limitations of the process. However, in practice we often do
not know L and thus need to estimate it. A simple way to obtain an under-estimate Llbt of
L at iteration t is to use the maximum value that satisfies the Lipschitz inequality across all
pairs of points,

Llbt = max
i,j∈[t];xi 6=xj

{
|f(xi)− f(xj)|
||xi − xj ||2

}
. (5.3)

64

5.2. Lipschitz Bayesian optimization

Note that this estimate monotonically increases as we see more examples, but that it may
be far smaller than the true L value. A common variation is to sample several points on
a grid (or randomly) to use in the estimate above. Unfortunately, without knowing the
Lipschitz constant we do not know how fine this grid should be so in general this may still
significantly under-estimate the true quantity.

A reasonable property of any estimate of L that we use is that it is “harmless” in the
sense of Chapter 4. Specifically, the choice of L should not make the algorithm converge to
the global optimum at a slower speed than random guessing (in the worst case). If we have
an over-estimate for the minimum possible value of L, then the LO algorithm is harmless
as it can only prune values that cannot improve the objective function (although if we over-
estimate it by too much then it may not prune much of the space). However, the common
under-estimates of L discussed in the previous paragraph are not harmless since they may
prune the global optima.

We propose a simple solution to the problem that LO is not harmless if we don’t have
prior knowledge about L: we use a growing estimate of L. The danger in using a growing
strategy is that if we grow L too slowly then the algorithm may not be harmless. However,
in this work, we show that LO is “harmless” for most reasonable strategies for growing L.
This result is not prescriptive in the sense that it does not suggest a practical strategy for
growing L (since it depends on the true L), but this result shows that even for enormous
values of L that an estimate would have to be growing exceedingly slowly in order for it to
not be harmless (exponentially-slow in the minimum value of L, the dimensionality, and the
desired accuracy). In our experiments we simply use Lubt = κt · Llbt , the under-estimator
multiplied by the (growing) iteration number and a constant κ (a tunable hyper-parameter).
In Section 5.3, we observe that this choice of Lubt with κ = 10 consistently works well
across 14 datasets with 4 different acquisition functions.

5.2 Lipschitz Bayesian optimization

In this section, we show how simple changes to the standard acquisition functions used in
BO allow us to incorporate the Lipschitz inequality bounds. We call this Lipschitz Bayesian
Optimization (LBO). LBO prevents BO from considering values of xt that cannot be global
maxima (assuming we have over-estimated L) and also restricts the range of f(xt) values
considered in the acquisition function to those that are consistent with the Lipschitz inequal-
ities. Figure 5.1 illustrates the key features of BO, LO, and LBO. It is important to note that
the Lipschitz constant L has a different interpretation than the length-scale ` of the GP. The
constant L specifies an absolute maximum rate of change for the function, while ` specifies
how quickly a parameterized distance between pairs of points changes the GP. We also
note that the computational complexity of using the Lipschitz inequalities is O(n2) which
is cheaper than the O(n3) cost of (exact) inference in the GP.

We can use the Lipschitz bounds to restrict the limits of the unknown function value for
computing the improvement in Equations (4.3) and (4.4). The upper bound U will always
be fu(x), while the lower bound L will depend on the relative value of y∗. In particular, we

65

5.2. Lipschitz Bayesian optimization

Figure 5.1: Visualization of the effect of incorporating the Lipschitz bounds to BO. a)
Shows the posterior mean and confidence interval of the conventional BO. b) The red color
represents the regions of the space that are excluded by the Lipschitz bounds. c) Shows the
effect of LBO. The Grey color represents the uncertainty. Using LBO helps decrease the
uncertainty which prevents over-exploration in unnecessary parts of the space.

have the following two cases:

L =

{
y∗, if y∗ ∈

(
f l(x), fu(x)

)
fu(x), if y∗ ∈ (fu(x),∞)

.

The second case represents points that cannot improve over the current best value (that are
“rejected” by the Lipschitz inequalities).
Truncated-PI: We can define a similar variant for the PI acquisition function as:

TPI(x) = Φ (z(x, L))− Φ (z(x, U)) (5.4)

Truncated-EI: Using the above bounds, the truncated expected improvement for point x is
given by:

TEI(x) = −σ(x) · z(x, y∗) [Φ(z(x, L))− Φ(z(x, U)]

+ σ(x) · [φ(z(x, L)− φ(z(x, U)]] (5.5)

Note that removing the Lipschitz bounds corresponds to using f l(x) = −∞ and fu(x) =
∞, and in this case we recover the usual PI and EI methods in Equations (4.3) and (4.4)
respectively.
Truncated-UCB: The same strategy can be applied to UCB as follows:

TUCB(x) = min
{
µ(x) + β

1/2
t σ(x), fu(x)

}
(5.6)

66

5.3. Experiments

Accept-Reject: An alternative strategy to incorporate the Lipschitz bounds is to use an
accept-reject based mixed acquisition function. This approach uses the Lipschitz bounds
as a sanity-check to accept or reject the value provided by the original acquisition function,
similar to LO methods. Formally, if g(x) is the value of the original acquisition function
(e.g. g(x) = UCB(x) or g(x) = f̃(x) for TS), then the mixed acquisition function g(x) is
given as follows:

g(x) =

{
g(x), if g(x) ∈ [f l(x), fu(x)] (Accept)
−∞, othewise (Reject)

.

We refer to the accept-reject based mixed acquisition functions as AR-UCB and AR-TS
(respectively). Note that the accept-reject method is quite generic and can be used with any
acquisition function that has values on the same scale as that of the function. When using
an estimate of L it’s possible that a good point could be rejected because the estimate of L
is too small, but using a growing estimate ensures that such points can again be selected on
later iterations.

5.3 Experiments

Datasets: We perform an extensive experimental evaluation and present results on twelve
synthetic datasets and three real-world tasks. For the synthetic experiments, we use the
standard global-optimization benchmarks namely the Branin, Camel, Goldstein Price, Hart-
mann (2 variants), Michalwicz (3 variants) and Rosenbrock (4 variants). The closed form
and domain for each of these functions is given in Jamil and Yang [2013]. As examples of
real-world tasks, we consider tuning the parameters for a robot-pushing simulation (2 vari-
ants) [Wang and Jegelka, 2017] and tuning the hyper-parameters for logistic regression [Wu
et al., 2017b]. For the robot pushing example, our aim is to find a good pre-image [Kael-
bling and Lozano-Pérez, 2017] in order for the robot to push the object to a pre-specified
goal location. We follow the experimental protocol from Wang and Jegelka [2017] and
use the negative of the distance to the goal location as the black-box function to maximize.
We consider tuning the robot position rx, ry, and duration of the push tr for the 3D case.
We also tune the angle of the push θr to make it a 4 dimensional problem. For the hyper-
parameter tuning task, we consider tuning the strength of the `2 regularization (in the range
[10−7, 0.9]) , the learning rate for stochastic gradient descent (in the range [10−7, 0.05])
and the number of passes over the data (in the range [2, 15]). The black-box function is the
negative loss on the test set (using a train/test split of 80%/20%) for the MNIST dataset.
Experimental Setup: For Bayesian optimization, we use a Gaussian Process prior with the
Matérn kernel (with a different length scale for each dimension). We modified the publi-
cally available BO package pybo of Hoffman and Shahriari [2014] to construct the mixed
acquisition functions. Our modifications to pybo include but are not limited to:

• In order to make the optimization invariant to the scale of the function values, we
standardize the function values; after each iteration, we center the observed function

67

5.3. Experiments

values by subtracting their mean and dividing by their standard deviation. We then fit
a GP to these rescaled function values and correct for our Lipschitz constant estimate
by dividing it by the standard deviation.

• Detecting failures: if the point chosen by BO is within 10−12 from any previously
chosen point then BO is stuck with the same pints so do random search. This made
big improvement in the performance of pybo.

• Detecting and handling any numerical instabilities that resulted in non-positive pos-
terior variance.

• Trying DIRECT with different computational time budgets and random search to
optimize the acquisition function.

• Trying leave-one-out cross-validation to optimize the hyperparameters of the GP.

• Added the options to shift the bounds of the test problem to test the robustness of the
algorithm.

• The option to explore various methods of combining LO and BO.

All the prior hyper-parameters were set and updated across iterations according to the open-
source Spearmint package13.A constant mean GP was used with a priorN (0,1). The length
scale ` had a uniform prior between 10−11 and 10. The output variance σ2 was set with a
lognormal(0,1) prior. We use DIRECT [Jones et al., 1993] in order to optimize the acqui-
sition function in each iteration. This is one of the standard choices in current works on
BO [Eric et al., 2008, Mahendran et al., 2012, Martinez-Cantin et al., 2007], but we expect
that Lipschitz information could improve the performance under other choices of the acqui-
sition function optimization approach such as discretization [Snoek et al., 2012], adaptive
grids [Bardenet and Kégl, 2010], and other gradient-based methods [Hutter et al., 2011,
Lizotte et al., 2012]. In order to ensure that Bayesian optimization does not get stuck in
sub-optimal maxima (either because of the auxiliary optimization or a “bad” set of hyper-
parameters), on every fourth iteration of BO (or LBO) we choose a random point to evalu-
ate rather than optimizing the acquisition function. This makes the optimization procedure
“harmless” in the sense that BO (or LBO) will not perform worse than random search as
described in Chapter 4. This has become common in recent implementations of BO meth-
ods such as Bull [2011], Hutter et al. [2011]; and Falkner et al. [2017], and to make the
comparison fair we add this “exploration” step to all methods. Note that in the case of LBO
we may need to reject random points until we find one satisfying the Lipschitz inequalities
(this does not require evaluating the function). In practice, we found that both the stan-
dardization and iterations of random exploration are essential for good performance.14 All
our results are averaged over 10 independent runs, and each of our figures plots the mean

13https://github.com/hips/spearmint
14Note that we verified that our baseline version of BO performs better than or equal to Spearmint across

benchmark problems.

68

5.3. Experiments

and standard deviation of the absolute error (compared to the global optimum) versus the
number of function evaluations. For functions evaluated on log scale, we show the mean
and the 10th and 90th quantiles.
Algorithms compared: We compare the performance of the BO and LBO methods for the
EI, PI, UCB and TS acquisition functions. For UCB, we set the trade-off parameter β ac-
cording to Kandasamy et al. [2017]. For EI and PI, we use Lipschitz bounds to truncate the
range of function values for calculating the improvement and use the LBO variants TEI and
TPI respectively. For UCB and TS, we use the accept-reject strategy and evaluate the LBO
variants AR-UCB and AR-TS respectively. In addition to these, we use random exploration
as baseline. We chose the hyper-parameter κ (that controls the extent of over-estimating the
Lipschitz constant) on the Rosenbrock-4D function and use the best value of κ for all the
other datasets and acquisition functions for both BO and LBO. In particular, we set κ = 10.
Results: To make the results easier to read, we divide the results into the following groups:

1. Functions where LBO provides huge improvements over BO shown in Figure 5.2.
Overall, these represent 21% of all the test cases.

2. Functions where LBO provides improvements over BO shown in Figure 5.3. Overall,
these represent 9% of all the test cases.

3. Functions where LBO performs similar to BO shown in Figure 5.4. Overall, this
represents 60% of all the test cases.

4. Functions where LBO performs slightly worse than BO shown in Figure 5.5. Overall,
these represent 10% of all the test cases.

A comparison between the performance across different acquisition functions, (for both
BO and LBO) on some of the benchmark functions, is presented Figure 5.6. Finally, we
show the performance for UCB when β is misspecified in Figure 5.7. In Appendix B.1, we
show the results for all the experiments on all the datasets for each of the four acquisition
functions. From these experiments, we can observe the following:

• LBO can potentially lead to large gains in performance across acquisition functions
and datasets, especially, for TS.

• Across datasets, we observe that the gains for EI are relatively small, they are oc-
casionally large for PI and UCB and tend to be consistently large for TS. This can
be explained as follows: using EI results in under-exploration of the search space, a
fact that has been consistently observed and even theoretically proven in Qin et al.
[2017]. As a result of this, there are less “bad” regions to prune using the Lipschitz
inequality, resulting in small gains from LBO.

• TS suffers from exactly the opposite problem: it results in high variance leading to
over-exploration of the search space and poor performance. This can be observed in

69

5.3. Experiments

(a) Michalwicz 5D with TS (b) Rosenbrock 3D with TS

(c) Robot pushing 3D with TS (d) Goldstein 2D with EI

(e) Hartmann 3D with EI (f) Rosenbrock 5D with UCB

Figure 5.2: Examples of functions where LBO provides huge improvements over BO for
the different acquisition functions. The figure also shows the performance of random search
and LBO using the True Lipschitz constant.

70

5.3. Experiments

(a) Logistic Regression (b) Camel 2D

(c) Rosenbrock 2D (d) Hartmann 6D

Figure 5.3: Examples of functions where LBO provides some improvements over BO for
the different acquisition functions. The figure also shows the performance of random search
and LBO using the True Lipschitz constant.

Figures 5.2(a), 5.2(b) and 5.2(c) where the performance of TS is near random. This
has also been observed and noted in Shahriari et al. [2016]. For the discrete multi-
armed bandit case, Chapelle and Li [2011] multiply the obtained variance estimate by
a small number to discourage over-exploration and show that it leads to better results.
LBO offers a more principled way of obtaining this same effect and consequently
results in making TS more competitive with the other acquisition functions.

• The only functions where it slightly hurts are Rosenbrock-4D and Goldstein-2D with
UCB and PI.

• For Michalwicz-5D (Figure 5.6(a)), we see that there is no gain for EI, PI, or UCB.
However, the gain is huge for TS functions. In fact, even though TS is the worst
performing acquisition function on this dataset, it’s LBO variant, AR-TS gives the
best performance across all methods. This demonstrates the possible gain that can be

71

5.3. Experiments

(a) Goldstein 2D with TS (b) Robot pushing 4D with EI

(c) Robot pushing 4D with PI (d) Robot pushing 4D with UCB

Figure 5.4: Examples of functions where LBO performs similar to BO for the different
acquisition functions.

(a) Rosenbrock 4D with EI (b) Rosenbrock 4D with PI

Figure 5.5: Examples of functions where BO slightly performs better than LBO.

72

5.3. Experiments

(a) Michalwicz 5D (b) Rosenbrock 2D

(c) Rosenbrock 3D

Figure 5.6: Examples of functions where LBO boosts the performance of BO with TS. (All
figures are better seen in color)

obtained from using our mixed acquisition functions.

• We observe a similar trend in Figures 5.6(b) and 5.6(c) where LBO improves TS from
near-random performance to being competitive with the best performing methods and
does not adversely affect the methods performing well.

• For the cases where BO performs slightly better than LBO, we notice that the True
estimate of L provides compararble performance to BO, so the problem can be nar-
rowed down to finding a good estimate of L.

• Figure 5.7 shows examples where LBO saves BO with UCB when the parameter β
is chosen too large. In this case BO performs near random, but using LBO leads to
better performance than random search.

In any case, our experiments indicate that LBO methods rarely hurt the performance
of the original acquisition function. Since they have minimal computational or memory

73

5.4. Related work

(a) Camel 2D with UCB (b) Michalwicz 5D with UCB

(c) Rosenbrock 5D with UCB

Figure 5.7: Examples of functions where LBO outperforms BO with UCB when the β
parameter is too large (β = 1016).

requirements and are simple to implement, these experiments support using the Lipschitz
bounds.

5.4 Related work

The Lipschitz condition has been used with BO under different contexts in two previous
works [González et al., 2016, Sui et al., 2015]. The aim of Sui et al. [2015] is to design a
“safe” BO algorithm. They assume knowledge of the true Lipschitz constant and exploit
Lipschitz continuity to construct a safety threshold in order to construct a “safe” region
of the parameter space. This is different than our goal of improving the performance of
existing BO methods, and also different in that we estimate the Lipschitz constant as we
run the algorithm. On the other hand, González et al. [2016] used Lipschitz continuity to
model interactions between a batch of points chosen simultaneously in every iteration of
BO (referred to as “Batch” Bayesian optimization). This contrasts with our work where we

74

5.5. Discussion

are aiming to improve the performance of existing sequential algorithms (it’s possible that
our ideas could be used in their framework).

5.5 Discussion

In this chapter, we have proposed simple ways to combine Lipschitz inequalities with some
of the most common BO methods. Our experiments show that this often gives a perfor-
mance gain, and in the worst case it performs similar to a standard BO method. Although
we have focused on four of the simplest acquisition functions, it seems that these inequal-
ities could be used within other acquisition functions. From the experimental results, we
should always use LBO, especially, with TS. Moreover, with better methods to estimate L,
we expect more performance gain for all the acquisition functions.

75

Chapter 6

Conclusions and Future Work

This thesis presents our work on practical optimization methods for structured machine
learning problems. Our work covered problems for both training and hyperparameter search
of ML models.

6.1 Stochastic Average Gradient

We presented the first work that applies SAG to CRFs. Due to its memory requirements,
it may be difficult to apply the SAG algorithm for natural language applications involving
complex features that depend on a large number of labels. However, grouping training ex-
amples into mini-batches can also reduce the memory requirement (since only the gradients
with respect to the mini-batches would be needed).

We believe linearly-convergent stochastic gradient algorithms with non-uniform sam-
pling could give a substantial performance improvement in a large variety of CRF training
problems, and we emphasize that the method likely has extensions beyond what we have
examined. For example, we have focused on the case of `2-regularization but for large-scale
problems there is substantial interest in using `1-regularized CRFs [Lavergne et al., 2010,
Tsuruoka et al., 2009, Zhou et al., 2011]. Fortunately, such non-smooth regularizers can be
handled with a proximal-gradient variant of the method, see Defazio et al. [2014a]. While
we have considered chain-structured data the algorithm applies to general graph structures,
and any method for computing/approximating the marginals could be adopted. Moreover,
the SAG algorithm could be modified to use multi-threaded computation as in the algorithm
of Lavergne et al. [2010], and indeed might be well-suited to massively distributed parallel
implementations.

6.2 Stochastic Variance Reduced Gradient

As for SVRG, it is the only memory-free method among the new stochastic methods with
linear convergence rates. It represents the natural method to use for a huge variety of ma-
chine learning problems. Future research directions include using SVRG for nonconvex
problems. This can be useful in several problems such as training deep learning mod-
els [Allen-Zhu and Hazan, 2016, Reddi et al., 2016] or in reinforcement learning [Xu et al.,
2017].

76

6.3. Bayesian Optimization

6.3 Bayesian Optimization

We have proposed three ideas to improve BO. Our experiments show that our proposed
methods provides performance gain over conventional BO methods. Future research ideas
include designing more powerful harmless BO methods. One possible research direction is
to use a cost function that measures the exploration part of the algorithm. The idea here is
to make sure that the chosen points cover different regions of the space. At the same time,
the chosen points should not be too close. How far and how close the points should be,
these are questions that require further investigation.

As for LBO, better methods for estimating L can improve the performance of this al-
gorithm. Although we have focused on four of the simplest acquisition functions, it seems
that the Lipschitz inequalities could be used within other acquisition functions. Moreover,
we expect that these inequalities could also be used in other settings like BO with con-
straints [Gardner et al., 2014, Gelbart et al., 2014, Hernández-Lobato et al., 2016], BO
methods based on other model classes like neural networks [Snoek et al., 2015] or random
forests [Hutter et al., 2011], methods that evaluate more than one xt at a time [Ginsbourger
et al., 2010, Wang et al., 2016]. Finally, if the gradient is Lipschitz continuous then it is
possible to use the descent lemma Bertsekas [2016] to obtain Lipschitz bounds that depend
on both function values and gradients.

6.3.1 Final Comment on Implementing BO Algorithms

For the BO work, we have spent a long time optimizing the baseline. Reading a lot of re-
search papers, we find that some papers do not tune the baseline. Thus, it is easy to develop
methods that seems to work. We recommend that researchers compare their implementa-
tions to the packages available online. For example, using the Rosenbrock-2D function, if
the baseline can not be within 0.001 from f∗ after 200 iterations, then the baseline needs
improvement. Furthermore, we found that a lot of the computational tricks can make a huge
difference in performance. These tricks are not reported in papers. For example, standard-
izing the function values. All of these points can facilitate reproducible research and will
provide a better test environment for new research ideas.

To guarantee that our implementation is reproducible, in the following, we summarize
our BO implementation choices:

• The GP mean function was chosen as a constant with a prior N (0, 1).

• Matern kernel with ν = 5/2.

• length scale ` with a uniform prior between 10−11 and 10.

• output variance σ2 with a lognormal(0,1) prior.

• GP hyperparameters are represented with 10 MCMC samples that are updated at
every iteration.

77

6.4. Future Work

We have chosen these parameters after doing a lot of experiments. These are the most
robust choices for the GP implementation that are not affected by the test function which is
unknown to BO. From our BO experiments, we found that:

• Matern kernel works better than SE.

• Standardizing the function values is crucial to the performance.

• Using MCMC is better than using Type II Maximum Likelihood for GP hyperparam-
eter optimization.

• Constant mean is better than zero mean or using a mean function.

• Using the furthest point instead of random points for HBO is still harmless. However,
there was no gain than using random points.

6.4 Future Work

This thesis presented our work on designing better optimization algorithms for machine
learning problems. This involves both the training phase and the hyperparameter tuning
phase. For the training problem, future work includes investigating the use of the proposed
algorithms for deep learning. Several works have attempted to apply SVRG and its variants
to train deep learning models. However, SGD and its variants are still the dominant ap-
proaches. The contributions in this thesis can still be used to speed up training the last layer
and may eventually lead to better deep learning methods. On the other hand, because of the
large memory requirements of SAG, it may not be suitable for deep learning. However, we
have demonstrated its efficiency in training CRFs.

As for BO, due to the simplicity of the proposed methods, many existing implementa-
tions could easily incorporate them. Future directions include better incorporation of the
Lipschitz optimization with BO such as using a different Lipschitz constant for each direc-
tion, and designing better harmless BO methods such as using furthest points and automatic
detection of BO failures (for example, if BO picks points that are very close to each other).

78

Bibliography

R. J. Adler. The geometry of random fields, volume 62. Siam, 2010.

M. O. Ahmed, B. Shahriari, and M. Schmidt. Do we need “harmless” bayesian optimization
and “first-order” bayesian optimization? NIPS Workshop on Bayesian Optimization,
2016.

Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In
International Conference on Machine Learning (ICML), pages 699–707, 2016.

A. Aravkin, M. P. Friedlander, F. J. Herrmann, and T. Van Leeuwen. Robust inversion,
dimensionality reduction, and randomized sampling. Mathematical Programming, 134
(1):101–125, 2012.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. Advances in Neural Information Processing Systems (NIPS), pages
451–459, 2011.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5:4308, 2014.

R. Bardenet and B. Kégl. Surrogating the surrogate: accelerating gaussian-process-based
global optimization with a mixture cross-entropy algorithm. In International Conference
on Machine Learning (ICML), pages 55–62. Omnipress, 2010.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear in-
verse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):
1889–1900, 2000.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305, 2012.

D. P. Bertsekas. Nonlinear Programming. MIT, 3rd edition, 2016.

N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies
in high-dimensional sequences: Application to polyphonic music generation and tran-
scription. arXiv preprint arXiv:1206.6392, 2012.

79

Bibliography

A. D. Bull. Convergence rates of efficient global optimization algorithms. Journal of
Machine Learning Research, 12(Oct):2879–2904, 2011.

G. A. Bunin and G. François. Lipschitz constants in experimental optimization. arXiv
preprint arXiv:1603.07847, 2016.

R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sample size selection in optimization
methods for machine learning. Mathematical programming, 134(1):127–155, 2012.

P. Carbonetto. New probabilistic inference algorithms that harness the strengths of vari-
ational and Monte Carlo methods. PhD thesis, University of British Columbia, May
2009.

R. Caruana, T. Joachims, and L. Backstrom. KDD-cup 2004: results and analysis. ACM
SIGKDD Newsletter, 6(2):95–108, 2004.

O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In Advances in
Neural Information Processing Systems (NIPS), pages 2249–2257, 2011.

T. Cohn and P. Blunsom. Semantic role labelling with tree conditional random fields. In
Proceedings of the Ninth Conference on Computational Natural Language Learning,
pages 169–172. Association for Computational Linguistics, 2005.

M. Collins, A. Globerson, T. Koo, X. Carreras, and P. Bartlett. Exponentiated gradient
algorithms for conditional random fields and max-margin Markov networks. The Journal
of Machine Learning Research, 9:1775–1822, 2008.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural
language processing (almost) from scratch. Journal of Machine Learning Research, 12
(Aug):2493–2537, 2011.

G. V. Cormack and T. R. Lynam. Spam corpus creation for TREC. In Proc. 2nd Confer-
ence on Email and Anti-Spam, 2005. http://plg.uwaterloo.ca/˜gvcormac/
treccorpus/.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in Neural Information
Processing Systems (NIPS), 2014a.

A. J. Defazio, A. AU, T. S. Caetano, N. C. AU, and J. Domke. Finito: A faster, permutable
incremental gradient method for big data problems. International Conference on Ma-
chine Learning (ICML), 2014b.

J. Dodge, K. Jamieson, and N. A. Smith. Open loop hyperparameter optimization and
determinantal point processes. arXiv preprint arXiv:1706.01566, 2017.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

80

http://plg.uwaterloo.ca/~gvcormac/treccorpus/
http://plg.uwaterloo.ca/~gvcormac/treccorpus/

Bibliography

M. Eligius and G.-T. Boglárka. Introduction to nonlinear and global optimization. Springer,
2010.

B. Eric, N. D. Freitas, and A. Ghosh. Active preference learning with discrete choice data.
In Advances in Neural Information Processing Systems (NIPS), pages 409–416, 2008.

S. Falkner, A. Klein, and F. Hutter. Combining hyperband and bayesian optimization. In
NIPS Workshop on Bayesian Optimization, 2017.

J. R. Finkel, A. Kleeman, and C. D. Manning. Efficient, feature-based, conditional random
field parsing. Annual Meeting of the Association for Comptuational Linguistics: Human
Language Technologies, 2008.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http:
//archive.ics.uci.edu/ml.

P. I. Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal of Scientific Computing, 34(3):A1351–A1379, 2012.

J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger, and J. P. Cunningham. Bayesian
optimization with inequality constraints. In International Conference on Machine Learn-
ing (ICML), pages 937–945, 2014.

M. A. Gelbart, J. Snoek, and R. P. Adams. Bayesian optimization with unknown con-
straints. In Uncertainty in Artificial Intelligence (UAI), pages 250–259, Arlington, Vir-
ginia, United States, 2014.

D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-suited to parallelize optimiza-
tion. In Computational intelligence in expensive optimization problems, pages 131–162.
Springer, 2010.

J. González, Z. Dai, P. Hennig, and N. Lawrence. Batch bayesian optimization via local
penalization. In International Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 648–657, 2016.

I. Guyon. Sido: A phamacology dataset, 2008. URL http://www.causality.inf.
ethz.ch/data/SIDO.html.

R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Konečnỳ, and S. Sallinen. Stop-
wasting my gradients: Practical svrg. In Advances in Neural Information Processing
Systems (NIPS), pages 2251–2259, 2015.

P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13(Jun):1809–1837, 2012.

81

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.causality.inf.ethz.ch/data/SIDO.html
http://www.causality.inf.ethz.ch/data/SIDO.html

Bibliography

J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for
efficient global optimization of black-box functions. In Advances in Neural Information
Processing Systems (NIPS), pages 918–926, 2014.

J. M. Hernández-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman, and Z. Ghahra-
mani. A general framework for constrained bayesian optimization using information-
based search. Journal of Machine Learning Research, 2016.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal processing maga-
zine, 29(6):82–97, 2012.

M. W. Hoffman and B. Shahriari. Modular mechanisms for bayesian optimization. NIPS
Workshop on Bayesian Optimization, 2014.

C. Hu, J. Kwok, and W. Pan. Accelerated gradient methosd for stochastic optimization and
online learning. Advances in Neural Information Processing Systems (NIPS), 2009.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pages 507–523. Springer, 2011.

M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global opti-
misation problems. International Journal of Mathematical Modelling and Numerical
Optimisation, 4(2):150–194, 2013.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 11,
pages 169–184. MIT Press, Cambridge, MA, 1999.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in Neural Information Processing Systems (NIPS), 2013.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the
lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181,
1993.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

L. P. Kaelbling and T. Lozano-Pérez. Pre-image backchaining in belief space for mobile
manipulation. In Robotics Research, pages 383–400. Springer, 2017.

K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Poczos. Asynchronous parallel
bayesian optimisation via thompson sampling. arXiv preprint arXiv:1705.09236, 2017.

82

Bibliography

S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale
linear svms. Journal of Machine Learning Research, 6:341–361, 2005.

J. Konečnỳ and P. Richtárik. Semi-stochastic gradient descent methods. Frontiers in Applied
Mathematics and Statistics, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012.

H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. Journal of Basic Engineering, 86(1):97–106, 1964.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-wolfe op-
timization for structural svms. International Conference on Machine Learning (ICML),
2013.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. International Conference on Machine
Learning (ICML), 2001.

M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature learning and
deep learning for time-series modeling. Pattern Recognition Letters, 42:11–24, 2014.

T. Lavergne, O. Cappé, and F. Yvon. Practical very large scale CRFs. In Proceedings
the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pages
504–513, 2010.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for strongly-convex optimization with finite training sets. Advances in
Neural Information Processing Systems (NIPS), 2012.

D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text catego-
rization research. Journal of Machine Learning Research, 5:361–397, 2004.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Efficient hyperparam-
eter optimization and infinitely many armed bandits. arXiv preprint arXiv:1603.06560,
2016.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learn-
ing Research, 18(1):6765–6816, 2017.

D. Lizotte. Practical Bayesian optimization. PhD thesis, University of Alberta, 2008.

D. J. Lizotte, R. Greiner, and D. Schuurmans. An experimental methodology for response
surface optimization methods. Journal of Global Optimization, 53(4):699–736, 2012.

83

Bibliography

S. Lohr. Sampling: design and analysis. Cengage Learning, 2009.

D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization
through reversible learning. International Conference on Machine Learning (ICML),
2015.

M. Mahdavi and R. Jin. Mixedgrad: An o(1/t) convergence rate algorithm for stochastic
smooth optimization. Advances in Neural Information Processing Systems (NIPS), 2013.

N. Mahendran, Z. Wang, F. Hamze, and N. De Freitas. Adaptive mcmc with bayesian opti-
mization. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 751–760, 2012.

J. Mairal. Optimization with first-order surrogate functions. International Conference on
Machine Learning (ICML), 2013.

C. Malherbe and N. Vayatis. Global optimization of lipschitz functions. In International
Conference on Machine Learning (ICML), pages 2314–2323, 2017. URL http://
proceedings.mlr.press/v70/malherbe17a.html.

R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A. Castellanos. Active policy learning
for robot planning and exploration under uncertainty. In Robotics: Science and Systems,
volume 3, pages 321–328, 2007.

J. R. Martins, P. Sturdza, and J. J. Alonso. The complex-step derivative approximation.
ACM Transactions on Mathematical Software (TOMS), 29(3):245–262, 2003.

A. McCallum, K. Rohanimanesh, and C. Sutton. Dynamic conditional random fields for
jointly labeling multiple sequences. In NIPS Workshop on Syntax, Semantics, Statistics,
2003.

J. Močkus. On bayesian methods for seeking the extremum. In Optimization Techniques
IFIP Technical Conference, pages 400–404. Springer, 1975.

M. D. Morris, T. J. Mitchell, and D. Ylvisaker. Bayesian design and analysis of computer
experiments: use of derivatives in surface prediction. Technometrics, 35(3):243–255,
1993.

A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. In
Stochastic Optimization: Algorithms and Applications, pages 263–304. Kluwer Aca-
demic, 2000.

D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent, weighted sampling, and
the randomized Kaczmarz algorithm. Advances in Neural Information Processing Sys-
tems (NIPS), 2014.

84

http://proceedings.mlr.press/v70/malherbe17a.html
http://proceedings.mlr.press/v70/malherbe17a.html

Bibliography

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609,
2009.

Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM J. Optim., 22(2):341–362, 2012.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second edition,
2006.

S. Nowozin and C. H. Lampert. Structured learning and prediction in computer vision.
Foundation and Trends in Computer Vision, 6, 2011.

M. Osborne. Bayesian Gaussian Processes for Sequential Prediction, Optimisation and
Quadrature. PhD thesis, University of Oxford, 2010.

A. Papoulis and S. U. Pillai. Probability, random variables, and stochastic processes. Tata
McGraw-Hill Education, 2002.

F. Peng and A. McCallum. Information extraction from research papers using conditional
random fields. Information Processing & Management, 42(4):963–979, 2006.

J. D. Pintér. Global optimization in action. Scientific American, 264:54–63, 1991.

S. Piyavskii. An algorithm for finding the absolute extremum of a function. USSR Compu-
tational Mathematics and Mathematical Physics, 12(4):57–67, 1972.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

C. Qin, D. Klabjan, and D. Russo. Improving the expected improvement algorithm. In
Advances in Neural Information Processing Systems (NIPS), pages 5387–5397, 2017.

C. E. Rasmussen and C. Williams. Gaussian processes for machine learning. MIT Press,
2006.

B. Recht and C. Ré. Beneath the valley of the noncommutative arithmetic-geometric
mean inequality: conjectures, case-studies, and consequences. arXiv preprint
arXiv:1202.4184, 2012.

S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction
for nonconvex optimization. In International Conference on Machine Learning (ICML),
pages 314–323, 2016.

L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization, 56(3):1247–
1293, 2013.

85

Bibliography

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. The Annals of Statistics,
35(3):1012–1030, 2007.

M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. Advances in Neural Information Processing Systems
(NIPS), 2011.

M. Schmidt, R. Babanezhad, M. O. Ahmed, A. Defazio, and A. Sarkar. Non-uniform
stochastic average gradient method for training conditional random fields. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2015.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1-2):83–112, 2017.

B. Settles. Biomedical named entity recognition using conditional random fields and rich
feature sets. In Proceedings of the International Joint Workshop on Natural Language
Processing in Biomedicine and its Applications, 2004.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technology, 2003.

B. Shahriari, Z. Wang, M. W. Hoffman, A. Bouchard-Côté, and N. de Freitas. An entropy
search portfolio. In NIPS Workshop on Bayesian Optimization, 2014.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human
out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

S. Shalev-Schwartz and T. Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss minimization. Journal of Machine Learning Research, 14:567–599, 2013.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-
gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

B. O. Shubert. A sequential method seeking the global maximum of a function. SIAM
Journal on Numerical Analysis, 9(3):379–388, 1972.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. Advances in Neural Information Processing Systems (NIPS), 2012.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prab-
hat, and R. Adams. Scalable bayesian optimization using deep neural networks. In
International Conference on Machine Learning (ICML), pages 2171–2180, 2015.

E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen. Deriva-
tive observations in gaussian process models of dynamic systems. Advances in Neural
Information Processing Systems (NIPS), 2003.

86

Bibliography

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. In International Conference on
Machine Learning (ICML), pages 1015–1022, 2010.

M. L. Stein. Interpolation of spatial data: some theory for kriging. Springer Science &
Business Media, 2012.

T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential con-
vergence. Journal of Fourier Analysis and Applications, 15(2):262–278, 2009.

Y. Sui, A. Gotovos, J. Burdick, and A. Krause. Safe exploration for optimization with
gaussian processes. In International Conference on Machine Learning (ICML), pages
997–1005, 2015.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. Advances in Neural
Information Processing Systems (NIPS), 2003.

M. Teichmann, M. Weber, J. M. Zöllner, R. Cipolla, and R. Urtasun. Multinet: Real-time
joint semantic reasoning for autonomous driving. CoRR, abs/1612.07695, 2016.

P. Thodoroff, J. Pineau, and A. Lim. Learning robust features using deep learning for
automatic seizure detection. In Machine learning for healthcare conference, pages 178–
190, 2016.

W. R. Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Y. Tsuruoka, J. Tsujii, and S. Ananiadou. Stochastic gradient descent training for L1-
regularized log-linear models with cumulative penalty. Annual Meeting of the Associa-
tion for Computational Linguisitics, pages 477–485, 2009.

N. Usunier, A. Bordes, and L. Bottou. Guarantees for approximate incremental svms. In
International Conference on Artificial Intelligence and Statistics (AISTATS), pages 884–
891, 2010.

K. van den Doel and U. Ascher. Adaptive and stochastic algorithms for EIT and DC re-
sistivity problems with piecewise constant solutions and many measurements. SIAM J.
Scient. Comput, 34, 2012.

J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global opti-
mization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509,
2009.

S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Accelerated
training of conditional random fields with stochastic gradient methods. International
Conference on Machine Learning (ICML), 2006.

87

H. Wallach. Efficient training of conditional random fields. Master’s thesis, University of
Edinburgh, 2002.

J. Wang, S. C. Clark, E. Liu, and P. I. Frazier. Parallel bayesian global optimization of
expensive functions. arXiv preprint arXiv:1602.05149, 2016.

Z. Wang and S. Jegelka. Max-value entropy search for efficient bayesian optimization. In
International Conference on Machine Learning (ICML), 2017.

A. Wu, M. C. Aoi, and J. W. Pillow. Exploiting gradients and hessians in bayesian opti-
mization and bayesian quadrature. arXiv preprint arXiv:1704.00060, 2017a.

J. Wu. Knowledge Gradient Methods for Bayesian Optimization. PhD thesis, Cornell
University, 2017.

J. Wu and P. I. Frazier. Discretization-free knowledge gradient methods for bayesian opti-
mization. arXiv preprint arXiv:1707.06541, 2017.

J. Wu, M. Poloczek, A. G. Wilson, and P. I. Frazier. Bayesian optimization with gradients.
In Advances in Neural Information Processing Systems (NIPS), 2017b.

T. Xu, Q. Liu, and J. Peng. Stochastic variance reduction for policy gradient estimation.
arXiv preprint arXiv:1710.06034, 2017.

W. Xu. Towards optimal one pass large scale learning with averaged stochastic gradient
descent. arXiv preprint, 2010.

J. Zhou, X. Qiu, and X. Huang. A fast accurate two-stage training algorithm for L1-
regularized CRFs with heuristic line search strategy. International Joint Conference on
Natural Language Processing, 2011.

J. Zhu and E. Xing. Conditional Topic Random Fields. In International Conference on
Machine Learning (ICML), 2010.

Appendix A

Chapter 4 Supplementary Material

A.1 Additional Experimental Results

Below we show the results for all the datasets as follows:

• Figure A.1 shows the performance of Random search, BO, and HBO for the EI ac-
quisition function.

• Figure A.2 shows the performance of Random search, BO, HBO for the PI acquisition
function.

• Figure A.3 shows the performance of Random search, BO, and HBO for the UCB
acquisition function.

• Figure A.4 shows the performance of Random search, BO, and HBO for the TS
acquisition function.

In these figures ‘H-*’ stands for the harmless BO version with a certain acquisition func-
tion, for example, ‘H-TS’ represents Harmless BO with Thompson sampling acquisition
function.
All the results of the FOBO experiments are shown as follows:

• Figure A.5 shows the performance of Random search, BO, and FOBO for the EI
acquisition function.

• Figure A.6 shows the performance of Random search, BO, and FOBO for the PI
acquisition function.

• Figure A.7 shows the performance of Random search, BO, and FOBO for the UCB
acquisition function.

• Figure A.8 shows the performance of Random search, BO, and FOBO for the EI
acquisition function in terms of the number of function evaluations.

• Figure A.9 shows the performance of Random search, BO, and FOBO for the PI
acquisition functionin terms of the number of function evaluations.

• Figure A.10 shows the performance of Random search, BO, and FOBO for the UCB
acquisition functionin terms of the number of function evaluations.

In these figures ‘G-*’ and ‘D-*’ stands for BO with gradient and BO with directional deriva-
tives, respectively, with a certain acquisition function.

89

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.1: Comparing conventional BO and HBO and random exploration for EI on the
test functions.

90

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.2: Comparing conventional BO and HBO and random exploration for PI on the
test functions.

91

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.3: Comparing conventional BO and HBO and random exploration for UCB on the
test functions.

92

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.4: Comparing conventional BO and HBO and random exploration for TS on the
test functions.

93

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.5: Comparing conventional BO and FOBO and random exploration for EI on the
test functions.

94

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.6: Comparing conventional BO and FOBO and random exploration for PI on the
test functions.

95

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.7: Comparing conventional BO and FOBO and random exploration for UCB on
the test functions.

96

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.8: Comparing conventional BO and FOBO and random exploration for EI on the
test functions in terms of number function evaluations.

97

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.9: Comparing conventional BO and FOBO and random exploration for PI on the
test functions in terms of number function evaluations.

98

A.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein-Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Hartmann 3D (h) Hartmann 6D (i) Rosenbrock 5D

(j) Rosenbrock 2D (k) Rosenbrock 3D (l) Rosenbrock 4D

Figure A.10: Comparing conventional BO and FOBO and random exploration for UCB on
the test functions in terms of number function evaluations.

99

Appendix B

Chapter 5 Supplementary Material

B.1 Additional Experimental Results

Below we show the results for all the datasets as follows:

• Figure B.1 shows the performance of Random search, BO, and LBO (using both the
estimated and True L) for the TS acquisition function.

• Figure B.2 shows the performance of Random search, BO, and LBO (using both the
estimated and True L) for the UCB acquisition function.

• Figure B.3 shows the performance of Random search, BO, and LBO (using both the
estimated and True L) for the EI acquisition function.

• Figure B.4 shows the performance of Random search, BO, and LBO (using both the
estimated and True L) for the PI acquisition function.

• Figure B.5 shows the performance of BO and LBO using the estimated L for the all
acquisition function.

• Figure B.6 shows the performance of Random search, BO, and LBO (using both the
estimated and True L) for the UCB acquisition function with misspecified β = 1016.

100

B.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Figure B.1: Comparing the performance of the conventional BO acquisition function, corre-
sponding LBO mixed acquisition function, Lipschitz optimization and random exploration
for the TS acquisition functions.

101

B.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Figure B.2: Comparing the performance of the conventional BO acquisition function, corre-
sponding LBO mixed acquisition function, Lipschitz optimization and random exploration
for the UCB acquisition functions.

102

B.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Figure B.3: Comparing the performance of the conventional BO acquisition function, corre-
sponding LBO mixed acquisition function, Lipschitz optimization and random exploration
for the EI acquisition functions.

103

B.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Figure B.4: Comparing the performance of the conventional BO acquisition function, corre-
sponding LBO mixed acquisition function, Lipschitz optimization and random exploration
for the PI acquisition functions.

104

B.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Figure B.5: Comparing the performance across the four BO and the corresponding LBO
acquisition functions against Lipschitz optimization and random exploration on all the test
functions (Better seen in color).

105

B.1. Additional Experimental Results

(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Figure B.6: Comparing the performance of the conventional BO acquisition function, corre-
sponding LBO mixed acquisition function, Lipschitz optimization and random exploration
for the UCB acquisition functions when using very large β = 1016

106

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	Dedication
	Introduction
	Training a Machine Learning Model
	Gradient Descent
	Stochastic Gradient Descent
	Variance-reduced Stochastic Gradient Descent

	Hyperparameter Tuning
	Grid Search
	Random Search
	Bayesian Optimization

	Thesis Outline

	Stochastic Average Gradient for Conditional Random Fields
	Conditional Random Fields
	Related Work
	Stochastic Average Gradient
	Implementation for CRFs
	Reducing the Memory Requirements

	Non-Uniform Sampling
	Stochastic Average Gradient Variants
	SAGA
	SAGA2

	SAG Implementation Details
	Effect of Sampling Strategies
	Effect of Step Size

	Experiments
	Stochastic Average Gradient for Conditional Random Fields results
	Sampling Schemes and Step-size Experiments

	Discussion

	Practical Stochastic Variance Reduced Gradient
	Notation and Stochastic Variance Reduced Gradient Algorithm
	 Stochastic Variance Reduced Gradient with Error
	 Stochastic Variance Reduced Gradient with Batching
	Mixed SG and SVRG Method

	Using Support Vectors
	Experimental Results
	Discussion

	Harmless and First-Order Bayesian Optimization
	Bayesian Optimization
	Harmless Bayesian Optimization
	First-Order Bayesian Optimization
	Experiments
	Harmless Bayesian Optimization Experiment
	First-Order Bayesian Optimization Experiment

	Discussion

	Lipschitz Bayesian Optimization
	Background
	Bayesian Optimization
	Lipschitz Optimization
	Harmless Lipschitz Optimization

	Lipschitz Bayesian optimization
	Experiments
	Related work
	Discussion

	Conclusions and Future Work
	Stochastic Average Gradient
	Stochastic Variance Reduced Gradient
	Bayesian Optimization
	Final Comment on Implementing BO Algorithms

	Future Work

	Bibliography
	Chapter 4 Supplementary Material
	Additional Experimental Results

	Chapter 5 Supplementary Material
	Additional Experimental Results

