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Motivation: L1-Regularized Optimization with Proximal-Gradient Method

o Optimization with L1-regularization is widely-studied in various fields,
argmin f () + Allz|[1,
TzER™

where in this talk we'll assume that V f is Lipschitz and f is strongly-convex.

@ Key advantage over classic L2-regularization: solution z* is sparse.
o It tends to have many values z equal to exactly 0.

@ Proximal-gradient methods are among most widely-used solvers.
2P = prox (a:k — aka(a:k)> ,

where the proximal operator is given by
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Active-Set |dentification

@ With mild assumptions: proximal-gradient “identifies” active set in finite time:
o For all sufficiently large k, sparsity pattern of ¥ matches sparsity pattern of x*.
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@ Useful if we are only interested in finding the sparsity pattern.
e Convergence rate will be faster once this happens (optimizing over subspace).
e You could also apply Newton-like methods on the non-zero variables.




Related Work and More-General Results

@ Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].
e For projected-gradient applied to smooth functions with non-negative constraints.

@ Has been shown for a variety of convex/non-convex problems.
o Burke & Moré [1988], Wright [1993], Hare & Lewis [2004], Hare [2011].

@ Has been shown for a variety of other algorithms.

o Includes certain coordinate descent and stochastic gradient methods.
o Mifflin & Sagastizabal [2002], Wright [2012], Lee & Wright [2012]



Active-Set Complexity: How long does it take to find the sparsity pattern?

@ These prior works only show that identification happens asymptotically.
e For some finite but unknown k.

@ In this work we introduce the notion of “active-set complexity” of an algorithm:
e The number of iterations before it is guaranteed to have reached the active set.

@ We bound active-set complexity of proximal-gradient with separable regularizers.
e Under the standard non-degeneracy condition required for identification to happen.

@ We are only aware of one previous work giving such bounds, Liang et al. [2017].

o We make stronger assumptions on f (strong-convexity which gives a faster rate).
o But weaker assumptions on regularizer (no inclusion condition on subdifferential).



Special Case: Optimizing with Non-Negative Constraints

@ We will first consider optimization with non-negative constraints,

argmin f(z),
x>0

using the projected-gradient method with a step-size of 1/L,
1 +
ghtl = {xk — Vf(mk)} .
L
@ This also leads to sparsity, and we use Z as the indices i where z7 = 0.

e We'll assume:
@ Gradient Vf is L-Lipschitz continuous.
@ Function f is p-strongly convex.
© Non-degeneracy condition: for all i € Z we have V f(z]) > ¢ for some § > 0.
@ “You can't have V; f(z*) = 0 for variables i that are supposed to be zero.”
e This condition is standard: prevents reaching solution through interior.



Active-Set Identification for Non-Negative Constraints

Let's show that we set ¢ € Z to zero when we're “close” to the solution.

o

Consider an iteration k where we have [z — 2*| < -

In this region we have two useful properties for all ¢ € Z:
@ The value of the variable must be small: xf < %.
o Since z; = 0 and z¥ is within §/2L of ;.
@ The value of the gradient must be large: V,f(z*) > §/2.
e Since V;f(z") > 6 and V f is Lipschitz.

Plugging these into the projected-gradient update gives for i € Z that

1 + 5 5 +
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Active-Set Identification for Non-Negative Constraints
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Active-Set Complexity for Non-Negative Constraints
@ Under our assumptions it is known that the iterates converge linearly,
lz* —a*| < (1= &71)F||2° — 2|,

where the condition number x is L/p.

@ Thus, for all sufficiently large k we have ||2* — 2*|| < %.
o For these k the algorithm will have the correct active set.

o Using (1 — k~1)* < exp(—k/k) and solving for k gives
klog(2L]|2° — z*(|/9),

so we find the sparsity pattern after this many iterations (“active-set complexity”).



Active-Set Complexity for Non-Smooth Regularizers

@ Paper generalizes argument to lower/upper bounds and a separable regularizer,

n
argmin f(x) + Zgl(:rl)
1<zx<u i—1
o Key differences:
e The set Z will be variables occuring at bounds or non-smooth points.
@ For L1-regularization this is again the variables with z; = 0.
e The quantity § will be the "minimum distance to the sub-differential boundary”,

¢ = min{min{-V;f(z") — min{9g;(z7)}, max{dgi(z7)} + Vi f(z")}}.

o For Ll-regularization this is § = A — max;cz{|V fi(z")|}.
e The non-degeneracy condition is that § > 0.
o For Ll-regularization we require |V, f(z*)| # X for i € Z.
o Proof needs to bound ¥ from above and below based on dg;(x}).



Discussion

Bound only depends logarithmically on 4:
e If § is large we can expect to identify the active-set very quickly.

Our O(log(1/4)) bound will tend to be faster than previous O(1/ Y7, 7).
e Logarithmic dependence on smallest d;, but we assumed strong-convexity.

In the paper we also analyze a general step-size o, < 2/L.
o Can give faster rate, and argument is similar but result is a bit uglier.

In the paper we bound complexity for i ¢ Z to not get set to 0.

Argument easily extends to group-separable regularizers.

Can be extended to accelerated proximal-gradient and Newton-proximal.
e Open problem: can we design new algorithms with lower active-set complexity?



Coordinate Descent (is a bit weird for active-set complexity)

@ More recent work: active-set complexity of block coordinate descent.
e This work has made me think about why newer algorithms might be found.

@ Key differences when you analyse active-set complexity of coordinate descent:
e The radius where we identify the active set is larger than §/2L.
o Because you can use larger step-sizes in coordinate descent.
e You don't identify active set immediately when you enter the radius.

@ You still have to select all sub-optimal ¢ € Z (“coupon collecting”).

@ Coupon collecting for different coordinate selection strategies:

e Cyclic selection: n iterations.
o Random: O(nlogn) iterations for uniform, can be much higher for non-uniform.
o Greedy: very-bad theoretically but good in practice.

o | suspect a simple fix to this is possible.



Superlinear Convergence

@ In a typical setting, we might hope that |Z¢| << n.
e Here we have the potential for faster algorithms by doing Newton steps on Z.

@ Some possibilities:
e At some point, switch from proximal-gradient to Newton on the manifold.
o Unfortunately, hard to decide when to switch.

Each iteration checks progress of proximal-gradient and Newton [Wright, 2012].
o Two-metric projection [Gafni & Bertsekas, 1984].

@ May require expensive Newton steps before we're on the manifold.

Block coordinate descent with proximal-Newton or two-metric projection updates.

e May be able to keep cost low but eventually get superlinear convergence.

e There remains some theoretical and experimental work to do here.



Summary

Proximal-gradient methods identify the sparsity pattern in finite iterations.

We define “active-set complexity” as the number of iterations needed.

We bound active-set complexity bound for proximal-gradient.
e Smooth and strongly-convex f with a separable regularizer.

We discussed other issues like coordinate descent methods and Newton hybrids.

Thanks for the invite.



