
“Active-set complexity” of proximal-gradient
How long does it take to find the sparsity pattern?

Julie Nutini, Mark Schmidt, Warren Hare

University of British Columbia

Motivation: L1-Regularized Optimization with Proximal-Gradient Method

Optimization with L1-regularization is widely-studied in various fields,

argmin
x∈Rn

f(x) + λ‖x‖1,

where in this talk we’ll assume that ∇f is Lipschitz and f is strongly-convex.

Key advantage over classic L2-regularization: solution x∗ is sparse.
It tends to have many values x∗i equal to exactly 0.

Proximal-gradient methods are among most widely-used solvers.

xk+1 = prox
(
xk − αk∇f(xk)

)
,

where the proximal operator is given by

prox(x) = argmin
y

1

2
‖y − x‖2 + αkλ‖x‖1.

Active-Set Identification

With mild assumptions: proximal-gradient “identifies” active set in finite time:

For all sufficiently large k, sparsity pattern of xk matches sparsity pattern of x∗.

x0 =



x01

x02

x03

x04

x05


−−−−−−−−−−−−−−→

after finite k iterations xk =



xk1

0

0

xk4

0


, where x∗ =



x∗1

0

0

x∗4

0


Useful if we are only interested in finding the sparsity pattern.

Convergence rate will be faster once this happens (optimizing over subspace).

You could also apply Newton-like methods on the non-zero variables.

Related Work and More-General Results

Idea of finitely identifying non-zeroes dates back (at least) to Bertskeas [1976].

For projected-gradient applied to smooth functions with non-negative constraints.

Has been shown for a variety of convex/non-convex problems.

Burke & Moré [1988], Wright [1993], Hare & Lewis [2004], Hare [2011].

Has been shown for a variety of other algorithms.

Includes certain coordinate descent and stochastic gradient methods.
Mifflin & Sagastizábal [2002], Wright [2012], Lee & Wright [2012]

Active-Set Complexity: How long does it take to find the sparsity pattern?

These prior works only show that identification happens asymptotically.

For some finite but unknown k.

In this work we introduce the notion of “active-set complexity” of an algorithm:

The number of iterations before it is guaranteed to have reached the active set.

We bound active-set complexity of proximal-gradient with separable regularizers.

Under the standard non-degeneracy condition required for identification to happen.

We are only aware of one previous work giving such bounds, Liang et al. [2017].

We make stronger assumptions on f (strong-convexity which gives a faster rate).
But weaker assumptions on regularizer (no inclusion condition on subdifferential).

Special Case: Optimizing with Non-Negative Constraints

We will first consider optimization with non-negative constraints,

argmin
x≥0

f(x),

using the projected-gradient method with a step-size of 1/L,

xk+1 =

[
xk − 1

L
∇f(xk)

]+
.

This also leads to sparsity, and we use Z as the indices i where x∗i = 0.

We’ll assume:
1 Gradient ∇f is L-Lipschitz continuous.
2 Function f is µ-strongly convex.
3 Non-degeneracy condition: for all i ∈ Z we have ∇f(x∗i) ≥ δ for some δ > 0.

“You can’t have ∇if(x
∗) = 0 for variables i that are supposed to be zero.”

This condition is standard: prevents reaching solution through interior.

Active-Set Identification for Non-Negative Constraints

Let’s show that we set i ∈ Z to zero when we’re “close” to the solution.

Consider an iteration k where we have ‖xk − x∗‖ ≤ δ
2L .

In this region we have two useful properties for all i ∈ Z:
1 The value of the variable must be small: xki ≤ δ

2L .

Since x∗i = 0 and xki is within δ/2L of xi.

2 The value of the gradient must be large: ∇if(xk) ≥ δ/2.

Since ∇if(x
∗) ≥ δ and ∇f is Lipschitz.

Plugging these into the projected-gradient update gives for i ∈ Z that

xk+1
i =

[
xki −

1

L
∇if(xk)

]+
≤
[
δ

2L
− δ

2L

]+
= 0.

Active-Set Identification for Non-Negative Constraints

Active-Set Complexity for Non-Negative Constraints

Under our assumptions it is known that the iterates converge linearly,

‖xk − x∗‖ ≤ (1− κ−1)k‖x0 − x∗‖,

where the condition number κ is L/µ.

Thus, for all sufficiently large k we have ‖xk − x∗‖ ≤ δ
2L .

For these k the algorithm will have the correct active set.

Using (1− κ−1)k ≤ exp(−k/κ) and solving for k gives

κ log(2L‖x0 − x∗‖/δ),

so we find the sparsity pattern after this many iterations (“active-set complexity”).

Active-Set Complexity for Non-Smooth Regularizers

Paper generalizes argument to lower/upper bounds and a separable regularizer,

argmin
l≤x≤u

f(x) +

n∑
i=1

gi(xi).

Key differences:
The set Z will be variables occuring at bounds or non-smooth points.

For L1-regularization this is again the variables with x∗i = 0.

The quantity δ will be the “minimum distance to the sub-differential boundary”,

δ = min
i∈Z
{min{−∇if(x∗)−min{∂gi(x∗i)},max{∂gi(x∗i)}+∇if(x∗)}}.

For L1-regularization this is δ = λ−maxi∈Z{|∇fi(x∗)|}.
The non-degeneracy condition is that δ > 0.

For L1-regularization we require |∇if(x
∗)| 6= λ for i ∈ Z.

Proof needs to bound xki from above and below based on ∂gi(x
∗
i).

Discussion
Bound only depends logarithmically on δ:

If δ is large we can expect to identify the active-set very quickly.

Our O(log(1/δ)) bound will tend to be faster than previous O(1/
∑n

i=1 δ
2
i).

Logarithmic dependence on smallest δi, but we assumed strong-convexity.

In the paper we also analyze a general step-size αk < 2/L.
Can give faster rate, and argument is similar but result is a bit uglier.

In the paper we bound complexity for i 6∈ Z to not get set to 0.

Argument easily extends to group-separable regularizers.

Can be extended to accelerated proximal-gradient and Newton-proximal.
Open problem: can we design new algorithms with lower active-set complexity?

Coordinate Descent (is a bit weird for active-set complexity)

More recent work: active-set complexity of block coordinate descent.

This work has made me think about why newer algorithms might be found.

Key differences when you analyse active-set complexity of coordinate descent:
The radius where we identify the active set is larger than δ/2L.

Because you can use larger step-sizes in coordinate descent.

You don’t identify active set immediately when you enter the radius.

You still have to select all sub-optimal i ∈ Z (“coupon collecting”).

Coupon collecting for different coordinate selection strategies:

Cyclic selection: n iterations.
Random: O(n log n) iterations for uniform, can be much higher for non-uniform.
Greedy: very-bad theoretically but good in practice.

I suspect a simple fix to this is possible.

Superlinear Convergence

In a typical setting, we might hope that |Zc| << n.

Here we have the potential for faster algorithms by doing Newton steps on Z.

Some possibilities:
At some point, switch from proximal-gradient to Newton on the manifold.

Unfortunately, hard to decide when to switch.

Each iteration checks progress of proximal-gradient and Newton [Wright, 2012].
Two-metric projection [Gafni & Bertsekas, 1984].

May require expensive Newton steps before we’re on the manifold.

Block coordinate descent with proximal-Newton or two-metric projection updates.

May be able to keep cost low but eventually get superlinear convergence.

There remains some theoretical and experimental work to do here.

Summary

Proximal-gradient methods identify the sparsity pattern in finite iterations.

We define “active-set complexity” as the number of iterations needed.

We bound active-set complexity bound for proximal-gradient.

Smooth and strongly-convex f with a separable regularizer.

We discussed other issues like coordinate descent methods and Newton hybrids.

Thanks for the invite.

