Converging on the Ultimate Algorithm for Minimizing Convex Sums

Mark Schmidt

University of British Columbia

Minimizing Convex Sums

• We consider the problem of minimizing a finite sum,

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x),$$

of smooth and convex functions f_i .

- Classic problem frequently arising in machine learning (ML):
 - Basic models like Least squares, logistic regression:

$$f_i(x) = \frac{1}{2}(a_i^T x - b_i)^2, \quad f_i(x) = \log(1 + \exp(-b_i a_i^T x)),$$

and more advanced models like conditional random fields:

$$f_i(x) = -w^T \phi(x_i, y_i) + \log \sum_{y'} \exp(w^T \phi(x_i, y')).$$

• Stochastic gradient methods are traditional approach for large *n*.

Modern Stochastic Gradient Methods

- Classic stochastic gradient have a sublinear convergence rate.
- Since 2012: new stochastic gradient method with linear rates.
 - Many papers on this topic (see our tutorial tomorrow).
- Algorithms from papers often work great in practice.
 - Sometimes better than existing highly-tuned libraries.
 - Now used in standard ML packages and commercial products
- But they could potential work much better in practice.
 - Worst-case analyses don't account for all structure in the data.
 - There are still a important practical tricks to be discovered.

This Talk: Tricks for Speeding Up SAG and SVRG

- This talk: tricks that could make SAG or SVRG much faster.
 - Same tricks could likely speed up other methods.
 - I'm mostly going to stay away from parallel/distributed issues.
- My goal: build the best "black box" implementation possible.
- What I want from you:
 - If you like to prove, some of these are good challenges.
 - If you like to implement, these could help.
 - If I'm missing tricks, let me know!

Stochastic Average Gradient (SAG) Algorithm

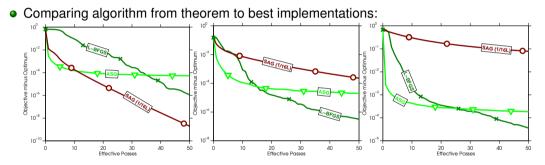
• The stochastic average gradient (SAG) algorithm has the form

$$x^{t+1} = x^t - \frac{\alpha_t}{n} \sum_{i=1}^n f'_i(x^{i_t}),$$

a gradient descent step but with old gradient estimates.

- Each iteration evaluates $f'_i(x^t)$ for a random *i*.
 - We set $i_t = t$ for this example and $i_t = i_{t-1}$ for the others.
- Number of gradients to reach accuracy ϵ : $\tilde{O}((n + \kappa))$.
 - Gradient method requires $\tilde{O}(n\kappa)$.
 - Classic stochastic methods require $O(1/\epsilon)$.

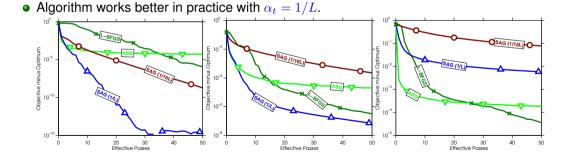
Stochastic Average Gradient (SAG) Algorithm



Sometimes it does better but often it does worse...

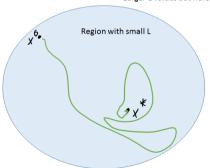
Bigger Step Sizes for SAG

- Assumptions in the analysis:
 - Function *f* is strongly-convex.
 - Gradients f'_i are *L*-Lipschitz continuous.
 - Step-size α_t is set to 1/16L.



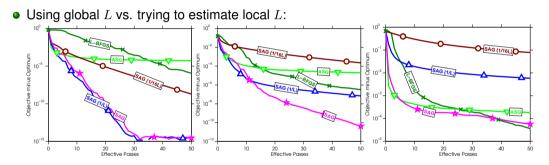
Even-Bigger Step Sizes for SAG

- In general SAG does not work with $\alpha_t = 10/L$ (or even 1/L).
 - But for some problems it works way better with this choice.
- Why???
- For some problems: local *L* is much smaller than global *L*.



Larger L values out here

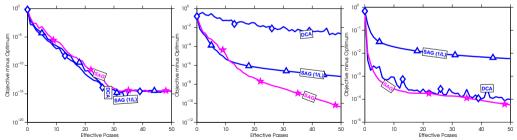
Even-Bigger Step Sizes for SAG



• See Section 4 of Le Roux et al. [2012] and also Vainsencher et al. [2015].

Algorithms Depending on μ

- What about step-sizes depending on µ?
 - Should we use $\alpha_t = \frac{2}{L+n\mu}$?.
- Watch out for local μ vs. global μ .
 - SDCA uses global μ so sometimes does really bad:



- What about just trying to figure out step-size that works the best?
- Mairal [2013] gives a simple line-search method:
 - Search for the best performance on a subset of the data (Bottou trick).
- Is there a better method to be discovered?

- Disadvantage of SAG is that it has a huge memory requirement.
- For many problems, gradient structure allows us to reduce this.
 - Least squares, logistic regression, conditional random fields.
- For general problems, we can instead use SVRG.

SVRG algorithm:

• Start with x_0

• for $s = 0, 1, 2$	(outer loop)
• $d_s = \frac{1}{N} \sum_{i=1}^N f'_i(x_s)$	(full gradient calculation)
• $x^0 = x_s$	
• for $t=1,2,\ldots m$	(inner loop)
• Randomly pick $i_t \in \{1, 2, \dots, N\}$	
• $x^t = x^{t-1} - \alpha_t (f'_{i_t}(x^{t-1}) - f'_{i_t}(x_s) + d_s)$	(two gradients per iteration)
• $x_{s+1} = x^t$	(initialize next outer loop)

- Only need to store x_s and d_s .
- Choices that seem to work well are $\alpha_t = 1/L$ and m = n.
- Full gradient calculations are wasteful when far from the solution.

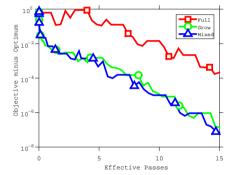
Practical SVRG algorithm:

• Start with x_0

• for $s = 0, 1, 2$	(outer loop)
• $d_s = rac{1}{ \mathcal{B}_s } \sum_{i \in \mathcal{B}_s} f_i'(x_s)$	(batch gradient calculation)
• $x^0 = x_s$	
• for $t = 1, 2, \dots m$	(inner loop)
• Randomly pick $i_t \in \{1, 2, \dots, N\}$	
• $x^{t} = x^{t-1} - \alpha_{t}(f'_{i_{t}}(x^{t-1}) - f'_{i_{t}}(x_{s}) + d_{s})$	(two gradients per iteration)
• $x_{s+1} = x^t$	(initialize next outer loop)

- Control variate d_s can be based on a subset of the examples.
- Preserve rate if \mathcal{B}_s grows fast enough.
- For example, $\mathcal{B}_s = \min\{2^s, n\}$.

• SVRG with full-gradient *d^s* compared to growing batch:



- Is there a better way to grow d^s or choose \mathcal{B}_s ?
- Recent work shows that maybe we should be updating *d^s* [Ngyuen et al., 2017].

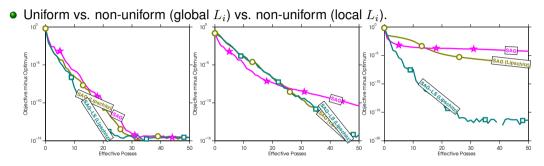
• Can we improve performance by non-uniform sampling?

- Consider case where each f'_i has Lipschitz constant L_i :
 - Improve the rate theoretically by sampling biasing towards L_i .

[Xiao & Zhang, 2014]

- Justification: frequently sample gradients that change quickly.
- In practice, a huge difference between local L_i and global L_i .

Non-Uniform Sampling



- Is this sampling proportional to L_i optimal across iterations?
- Work on stratified sampling and clustering examples.

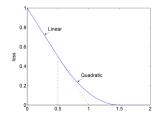
[Zhao & Zhang, 2014, Hoffman et al., 2015, Allen-Zhu et al., 2016]

Identifying Support Vectors

• A related idea: identifying support vectors.

• Consider a smoothed SVM problem [Rosset & Zhu, 2006]:

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(b_i a_i^T x), \quad f(\tau) = \begin{cases} 0 & \text{if } \tau > 1 + \epsilon, \\ 1 - \tau & \text{if } \tau < 1 - \epsilon, \\ \frac{(1 + \epsilon - \tau)^2}{4\epsilon} & \text{if } |1 - \tau| \le \epsilon. \end{cases}$$

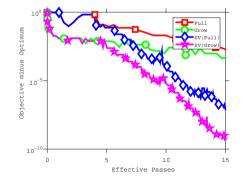


• The solution is sparse in the f'_i (has support vectors).

Identifying Support Vectors

- Keep track of number z of consecutive times $f'_i(x^t)$ was zero.
- If it's zero at least twice $(z \ge 2)$, skip the next 2^{z-2} evaluations.
 - May only evaluate non-support examples a logarithmic number of times.

[Babanezhad et al., 2015]



• We can often evaluate several gradients in parallel.

- Logical way to pick the batch size: number of parallel gradients.
- Two possibilities ways to sample the batch:
 - Sample from a fixed set of data "blocks".
 - Sample the original variables.
- For the original variables, Lipschitz sampling again helps.
- For constructing "blocks", there may be better strategies.
 - Try to make the blocks have small or varied Lipschitz constants.

- Can we accelerate these methods as with gradient methods?
 - Is $\tilde{O}(n+\kappa)$ the best we can do?
- We can't reduce runtime to $\tilde{O}(n + \sqrt{\kappa})$.
- But several authors give algorithms achieving $\tilde{O}(n + \sqrt{n\kappa})$.

Most common strategy: inexact proximal point methods use

$$x_{k+1} = \operatorname*{argmin}_{x} f(x) + \frac{\lambda_k}{2} ||x - x_k||^2,$$

and solve this up to accuracy ϵ_k using stochastic method.

[Shalev-Schwartz & Zhang, 2014]

• But needs sequence of parameters and termination criteria.

- Although some nice tricks in Lin et al. [2015].
- Recent alternatives don't need the inner/outer setup.

[Lan & Zhou, 2015, Allen-Zhu, 2016, Defazio, 2016]

Newton-Like Methods

- Can we make Newton-like versions of these methods?
- If we use a matrix *H* and apply the update

$$x^{t+1} = x^t - \frac{\alpha_t}{n} H \sum_{i=1}^n f'_i(x^{i_t}),$$

then we get the convergence for minimzing $f(H^{1/2}x)$ instead of f(x).

- Can be much faster, but doesn't give superlinear for any *H*.
 - Superlinear not possible for random, but possible for cyclic [Rodomanov & Kropotov, 2016]
- Not clear how to choose a <u>sequence</u> of H_t matrices.
 - But many recent works on this topic.
- Non-diagonal *H_t* substantial increase runtime for sparse datasets.

- Methods are great in theory, but practical details need to be worked out too.
- How do we use/identify bigger step-sizes?
- Is sampling based on Lipschitz constants optimal?
 - Particularly for accelerated and Newton-like methods.
- Can we cleverly choose the batch or batch size?
- Can we make accelerated methods adaptive to μ ?
- Can we design robust/efficient Newton-like method?