
Converging on the Ultimate Algorithm

for Minimizing Convex Sums

Mark Schmidt

University of British Columbia

Minimizing Convex Sums

We consider the problem of minimizing a finite sum,

f(x) =
1

n

n∑
i=1

fi(x),

of smooth and convex functions fi.

Classic problem frequently arising in machine learning (ML):
Basic models like Least squares, logistic regression:

fi(x) =
1

2
(aTi x− bi)

2, fi(x) = log(1 + exp(−biaTi x)),

and more advanced models like conditional random fields:

fi(x) = −wTφ(xi, yi) + log
∑
y′

exp(wTφ(xi, y
′)).

Stochastic gradient methods are traditional approach for large n.

Modern Stochastic Gradient Methods

Classic stochastic gradient have a sublinear convergence rate.

Since 2012: new stochastic gradient method with linear rates.

Many papers on this topic (see our tutorial tomorrow).

Algorithms from papers often work great in practice.

Sometimes better than existing highly-tuned libraries.
Now used in standard ML packages and commercial products

But they could potential work much better in practice.

Worst-case analyses don’t account for all structure in the data.
There are still a important practical tricks to be discovered.

This Talk: Tricks for Speeding Up SAG and SVRG

This talk: tricks that could make SAG or SVRG much faster.

Same tricks could likely speed up other methods.
I’m mostly going to stay away from parallel/distributed issues.

My goal: build the best “black box” implementation possible.

What I want from you:

If you like to prove, some of these are good challenges.
If you like to implement, these could help.
If I’m missing tricks, let me know!

Stochastic Average Gradient (SAG) Algorithm

The stochastic average gradient (SAG) algorithm has the form

xt+1 = xt − αt
n

n∑
i=1

f ′i(x
it),

a gradient descent step but with old gradient estimates.

Each iteration evaluates f ′i(x
t) for a random i.

We set it = t for this example and it = it−1 for the others.

Number of gradients to reach accuracy ε: Õ((n+ κ)).

Gradient method requires Õ(nκ).
Classic stochastic methods require O(1/ε).

Stochastic Average Gradient (SAG) Algorithm

Comparing algorithm from theorem to best implementations:

0 10 20 30 40 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

L−BFGS

ASG

SAG (1/16L)

0 10 20 30 40 50

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes
O

b
je

c
ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFGS

ASG

SAG (1/16L)

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−B
FG

S

ASG

SAG (1/16L)

Sometimes it does better but often it does worse...

Bigger Step Sizes for SAG

Assumptions in the analysis:

Function f is strongly-convex.
Gradients f ′i are L-Lipschitz continuous.
Step-size αt is set to 1/16L.

Algorithm works better in practice with αt = 1/L.

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

L−BFGS

ASG

SAG (1/16L)

SAG (1/L)

0 10 20 30 40 50

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFGS

ASG

SAG (1/16L)

SAG (1/L)

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−B
FG

S

ASG

SAG (1/16L)

SAG (1/L)

Even-Bigger Step Sizes for SAG

In general SAG does not work with αt = 10/L (or even 1/L).
But for some problems it works way better with this choice.

Why???

For some problems: local L is much smaller than global L.

Even-Bigger Step Sizes for SAG

Using global L vs. trying to estimate local L:

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

L−BFGS

ASG

SAG (1/16L)

SAG (1/L)

SAG

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes
O

b
je

c
ti
v

e
 m

in
u

s
O

p
ti
m

u
m

L−BFGS

ASG

SAG (1/16L)

SAG (1/L)

SAG

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

L−B
FG

S

ASG

SAG (1/16L)

SAG (1/L)

SAG

See Section 4 of Le Roux et al. [2012] and also Vainsencher et al. [2015].

Algorithms Depending on µ

What about step-sizes depending on µ?

Should we use αt = 2
L+nµ

?.

Watch out for local µ vs. global µ.

SDCA uses global µ so sometimes does really bad:

0 10 20 30 40 50

10
−20

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

D
C

A

SAG (1/L)

SAG

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m DCA

SAG (1/L)

SAG

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

DCA

SAG (1/L)

SAG

Better Step-Sizes?

What about just trying to figure out step-size that works the best?

Mairal [2013] gives a simple line-search method:

Search for the best performance on a subset of the data (Bottou trick).

Is there a better method to be discovered?

SAG vs. SVRG

Disadvantage of SAG is that it has a huge memory requirement.

For many problems, gradient structure allows us to reduce this.

Least squares, logistic regression, conditional random fields.

For general problems, we can instead use SVRG.

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm:

Start with x0
for s = 0, 1, 2 . . . (outer loop)

ds =
1
N

∑N
i=1 f

′
i(xs) (full gradient calculation)

x0 = xs
for t = 1, 2, . . .m (inner loop)

Randomly pick it ∈ {1, 2, . . . , N}
xt = xt−1 − αt(f ′it (x

t−1)− f ′it (xs) + ds) (two gradients per iteration)

xs+1 = xt (initialize next outer loop)

Only need to store xs and ds.

Choices that seem to work well are αt = 1/L and m = n.

Full gradient calculations are wasteful when far from the solution.

Stochastic Variance-Reduced Gradient (SVRG)

Practical SVRG algorithm:

Start with x0
for s = 0, 1, 2 . . . (outer loop)

ds =
1
|Bs|

∑
i∈Bs f

′
i(xs) (batch gradient calculation)

x0 = xs
for t = 1, 2, . . .m (inner loop)

Randomly pick it ∈ {1, 2, . . . , N}
xt = xt−1 − αt(f ′it (x

t−1)− f ′it (xs) + ds) (two gradients per iteration)

xs+1 = xt (initialize next outer loop)

Control variate ds can be based on a subset of the examples.

Preserve rate if Bs grows fast enough.

For example, Bs = min{2s, n}.

Practical SVRG

SVRG with full-gradient ds compared to growing batch:

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

Mixed

Is there a better way to grow ds or choose Bs?

Recent work shows that maybe we should be updating ds [Ngyuen et al., 2017].

Non-Uniform Sampling

Can we improve performance by non-uniform sampling?

Consider case where each f ′i has Lipschitz constant Li:

Improve the rate theoretically by sampling biasing towards Li.
[Xiao & Zhang, 2014]

Justification: frequently sample gradients that change quickly.

In practice, a huge difference between local Li and global Li.

Non-Uniform Sampling

Uniform vs. non-uniform (global Li) vs. non-uniform (local Li).

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

SAG (Lipschitz)
SAG

SAG
−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

SAG (Lipschitz)

SAG

SAG
−LS (Lipschitz)

0 10 20 30 40 50

10
−20

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

SAG (Lipschitz)

SAG

SAG−LS (Lipschitz)

Is this sampling proportional to Li optimal across iterations?

Work on stratified sampling and clustering examples.
[Zhao & Zhang, 2014, Hoffman et al., 2015, Allen-Zhu et al., 2016]

Identifying Support Vectors

A related idea: identifying support vectors.

Consider a smoothed SVM problem [Rosset & Zhu, 2006]:

min
x∈Rd

1

n

n∑
i=1

f(bia
T
i x), f(τ) =

0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε.

The solution is sparse in the f ′i (has support vectors).

Identifying Support Vectors

Keep track of number z of consecutive times f ′i(x
t) was zero.

If it’s zero at least twice (z ≥ 2), skip the next 2z−2 evaluations.

May only evaluate non-support examples a logarithmic number of times.
[Babanezhad et al., 2015]

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-10

10-5

100

Full

Grow

SV(Full)

SV(Grow)

Choosing the Batch

We can often evaluate several gradients in parallel.

Logical way to pick the batch size: number of parallel gradients.

Two possibilities ways to sample the batch:

Sample from a fixed set of data “blocks”.
Sample the original variables.

For the original variables, Lipschitz sampling again helps.

For constructing “blocks”, there may be better strategies.

Try to make the blocks have small or varied Lipschitz constants.

Acceleration

Can we accelerate these methods as with gradient methods?

Is Õ(n+ κ) the best we can do?

We can’t reduce runtime to Õ(n+
√
κ).

But several authors give algorithms achieving Õ(n+
√
nκ).

Acceleration

Most common strategy: inexact proximal point methods use

xk+1 = argmin
x

f(x) +
λk
2
‖x− xk‖2,

and solve this up to accuracy εk using stochastic method.
[Shalev-Schwartz & Zhang, 2014]

But needs sequence of parameters and termination criteria.

Although some nice tricks in Lin et al. [2015].

Recent alternatives don’t need the inner/outer setup.
[Lan & Zhou, 2015, Allen-Zhu, 2016, Defazio, 2016]

Newton-Like Methods

Can we make Newton-like versions of these methods?

If we use a matrix H and apply the update

xt+1 = xt − αt
n
H

n∑
i=1

f ′i(x
it),

then we get the convergence for minimzing f(H1/2x) instead of f(x).

Can be much faster, but doesn’t give superlinear for any H.

Superlinear not possible for random, but possible for cyclic [Rodomanov & Kropotov, 2016]

Not clear how to choose a sequence of Ht matrices.

But many recent works on this topic.

Non-diagonal Ht substantial increase runtime for sparse datasets.

Summary

Methods are great in theory, but practical details need to be worked out too.

How do we use/identify bigger step-sizes?

Is sampling based on Lipschitz constants optimal?

Particularly for accelerated and Newton-like methods.

Can we cleverly choose the batch or batch size?

Can we make accelerated methods adaptive to µ?

Can we design robust/efficient Newton-like method?

