“Active-set complexity” of proximal gradient:
How long does it take to find the sparsity pattern?

Julie Nutini (UBC), Mark Schmidt (UBC) and Warren Hare (UBC Okanagan)

OVERVIEW: Asymptotic finite identification of active-set

Motivation:

» |ldea of active-set identification dates back at least 40 years to the work of Bertsekas. » Consider applying proximal gradient methods on an L1-regularized problem,

argmin f(x) + A||x||:.

— Faster if only want to find sparsity pattern (do not have to run to convergence).

— Faster if switch to solver like Newton's method on non-zero variables (superlinear). reR"
» Prior works show active-set identification happens after some finite number of iterations. > Under mild assumptions, % matches sparsity pattern of ™ for all sufficiently large &.
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— Question: When exactly is this guaranteed? 2 /131\ /fl\
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% Give new simple analysis for active-set identification of proximal gradient methods. = | 43 = : —
* Introduce the notion of the active-set complexity of an algorithm. xy 15 )
— Number of iterations required before algorithm is guaranteed to have reached active-set. mg \0) \0/

* Derive explicit bounds on active-set complexity of proximal gradient methods.

Active-Set ldentification

» We consider the general optimization problem

S

The active-set for separable g is defined as the set Z = {7:0¢;(x}

argmin  f(z) + Z gi(x;), (1) :

) is not a singleton }.

relR"
— By (3), the set Z includes indices ¢ where z} is equal to the lower bound on x;, is

where each g; is separable, convex and lower semi-continuous (not necessarily smooth).
equal to the upper bound on z;, or occurs at a non-smooth value of g;.

» In machine learning, common examples are: o
- - - 1 2 2 .. . . . .
— [ is an (L2-regularized) quadratic, f(x) = 3||Az — b ( + [|z|°) The minimum distance to the nearest boundary of the subdifferential (3) for all 1 € Z,
— (Non-negative constraints) g; is the indicator function on the non-negative orthant, 5 — mg} fmin{ —V, f(z*) — L, u; + V, f(z)}} (5)
(1S
5 B 0 if L > 0,
20(%i) = oo if x; < 0. — For non-negative constraints, we have 6 = min;cz V, f(x").
— (L1-regularized problem) g; = A|x;| and encourages sparsity in the solution. — For Ll-regularization, we have 0 = A — maxicz [Vif(2")]
» The proximal gradient (PG) method uses an iteration update given by o S o
The active-set identification property for problem (1) is satisfied if for all sufficiently
1 Y
i = prox., (aﬁk — ZVf(:ﬁ)) , large k, we have that 2 = 27 for all i € Z.
where the proximal operator is defined as _ , _
| | — Our argument essentially states that ||z" — x*|| is eventually always less then 0 /2L,
prox. (z) = argmin =|ly — z||* + —g(y). and at this point the algorithm always sets 2% to x for all i € Z.
LY y 2 L ! !
— For non-negative constraints: prox.-q(u) = proj.sq(u) = [u]".
T N Suppose we apply the PG method with step-size of 1/L to problem (1). If the solution z* is
— For L1-regularization: PrOXA|-|(U) = m ul = Al nondegenerate then there exists a k such that for all k& > k we have 2% = 2 for all i € Z.
U9 \
1 Proof.
0 By the definition of the PG step and the separability of g, for all 7 we have
/ 1 1 o
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r, - €argmin —|ly— |z, — =V, f(x + —g; .
L o cargmin o (- 796 | + qa)
/
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This problem is strongly-convex, and its unique solution satisfies

L(z} —y) — Vif(«") € gi(y). (6)
By (4), there exists a minimum finite iterate % such that

af — x) < ||l2* — 2| < /2L,

; —

il el hafor sl = e e
ssumptions
. —0/2L < wf —x; < 6/2L, forall . (7)

» We assume the gradient V f is L-Lipschitz continuous, By the Lipschitz continuity of V f in (2), we have that
IVf(y) = V()| <Ly — =], forall z,y € R", (2) Vif(2") = Vif ()| < ||V (") = V()| < L|ja* — 2*|| <6/2,
and that f is p-strongly convex, which implies that
_ _ U f(r*) < V. f(F) < N ().
F) > f@) + (Vf(a)y—a) + Sy 2l forall o,y e R TR VIR S -V) S 02 - Vi) )
Finally, it is sufficient to show that for any k > k and ¢ € Z that y = x] satisfies (6).
» By the separability of ¢, the subdifferential of g at any « € IR" is given by We first show that the left-side is less than the upper limit u; of the interval dg;(x),
dg(x) = {(v,v9,...,v,) € R" 1 v; € Og;(x;)}, L(xl — ) — V,f(a") < §/2 — V,f(z") (right-side of (7))
where <o—V;f(x") (right-side of (8))
0g;(x;) ={v e R: gi(y) > gi(x;) +v- (y — x;), for all y € dom g;}. < (u; + V;f(z")) — V,f(x") (definition of 4, (5))
» The subdifferential of each g; is an interval on the real line and the interior of each Jg; at S Ui
r; can be written as an open interval, Similar steps using LHS of (7) and (8) shows that L(z} — z7) — V; f(2"*) > ;. (]
int Jg;(z;) = (l;, ), (3) : :
where [; € R U {—o00} and u; € RU {o0}. Active-Set Complexity

» We require the nondegeneracy condition for problem (1) to hold at solution z*:

The active-set complexity is the number of iterations required before an algorithm is

A solution x* of the problem (1) is nondegenerate if and only if guaranteed to have reached the active-set.

{—Vz-f(x*) = V,g(x}) if Og;(x}) is a singleton (g; is smooth at x7)

—V.f(z*) € intdg;(xF) if Og;(x7) is not a singleton (g; is non-smooth at z7). » In our Lemma, we show that active-set identification occurs when ||z — 2*|| < §/2L.
» Using (1 — k)" < exp(—rkk), the linear convergence rate (4) implies the following result.
— For non-negative constraints, requires V; f(z*) > 0 for all variables ¢ with =} = 0. Corollary

— For L1-regularization, requires |V, f(x*)| < A for all variables ¢ with 27 = 0. | | o | o
The active-set will be identified after at most x log(2L||x” — x*||/d) iterations.

— By our assumptions, the PG method converges to a unique solution x* at a linear rate,

S k S
|o* — 2| < (1=2)" lla® — 7], (4)

— Bound only depends logarithmically on 0.
» if 0 is large, then we can expect to identify the active-set very quickly.
where kK is the condition number of f. — Can be modified to use other step-sizes and to analyze coordinate descent methods.




