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OVERVIEW: Asymptotic finite identification of active-set

Motivation:

I Idea of active-set identification dates back at least 40 years to the work of Bertsekas.

→ Faster if only want to find sparsity pattern (do not have to run to convergence).

→ Faster if switch to solver like Newton’s method on non-zero variables (superlinear).

I Prior works show active-set identification happens after some finite number of iterations.

→ Question: When exactly is this guaranteed?

This Work:

? Give new simple analysis for active-set identification of proximal gradient methods.

? Introduce the notion of the active-set complexity of an algorithm.

→ Number of iterations required before algorithm is guaranteed to have reached active-set.

? Derive explicit bounds on active-set complexity of proximal gradient methods.

I Consider applying proximal gradient methods on an L1-regularized problem,

argmin
x∈IRn

f (x) + λ‖x‖1.

I Under mild assumptions, xk matches sparsity pattern of x∗ for all sufficiently large k.
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Example

Algorithm

I We consider the general optimization problem

argmin
x∈IRn

f (x) +

n∑
i=1

gi(xi), (1)

where each gi is separable, convex and lower semi-continuous (not necessarily smooth).

I In machine learning, common examples are:

→ f is an (L2-regularized) quadratic, f (x) = 1
2‖Ax− b‖

2 ( + ‖x‖2 )

→ (Non-negative constraints) gi is the indicator function on the non-negative orthant,

δ·≥0(xi) =

{
0 if xi ≥ 0,

∞ if xi < 0.

→ (L1-regularized problem) gi = λ|xi| and encourages sparsity in the solution.

I The proximal gradient (PG) method uses an iteration update given by

xk+1 = prox 1
Lg

(
xk − 1

L
∇f (xk)

)
,

where the proximal operator is defined as

prox 1
Lg

(x) = argmin
y

1

2
‖y − x‖2 +

1

L
g(y).

→ For non-negative constraints: prox·≥0(u) = proj·≥0(u) = [u]+.

→ For L1-regularization: proxλ|·|(u) =
u

|u|
[|u| − λ]+.
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Assumptions

I We assume the gradient ∇f is L-Lipschitz continuous,

‖∇f (y)−∇f (x)‖ ≤ L‖y − x‖, for all x, y ∈ IRn, (2)

and that f is µ-strongly convex,

f (y) ≥ f (x) + 〈∇f (x), y − x〉 +
µ

2
‖y − x‖2, for all x, y ∈ IRn.

I By the separability of g, the subdifferential of g at any x ∈ IRn is given by

∂g(x) = {(v1, v2, . . . , vn) ∈ IRn : vi ∈ ∂gi(xi)} ,
where

∂gi(xi) = {v ∈ IR : gi(y) ≥ gi(xi) + v · (y − xi), for all y ∈ dom gi}.
I The subdifferential of each gi is an interval on the real line and the interior of each ∂gi at
xi can be written as an open interval,

int ∂gi(xi) ≡ (li, ui), (3)

where li ∈ IR ∪ {−∞} and ui ∈ IR ∪ {∞}.
I We require the nondegeneracy condition for problem (1) to hold at solution x∗:

A solution x∗ of the problem (1) is nondegenerate if and only if{
−∇if (x∗) = ∇ig(x∗i ) if ∂gi(x

∗
i ) is a singleton (gi is smooth at x∗i )

−∇if (x∗) ∈ int ∂gi(x
∗
i ) if ∂gi(x

∗
i ) is not a singleton (gi is non-smooth at x∗i ).

→ For non-negative constraints, requires ∇if (x∗) > 0 for all variables i with x∗i = 0.

→ For L1-regularization, requires |∇if (x∗)| < λ for all variables i with x∗i = 0.

→ By our assumptions, the PG method converges to a unique solution x∗ at a linear rate,

‖xk − x∗‖ ≤
(
1− 1

κ

)k ‖x0 − x∗‖, (4)

where κ is the condition number of f .

Active-Set Identification

The active-set for separable g is defined as the set Z = {i :∂gi(x∗i ) is not a singleton}.
Definition

→ By (3), the set Z includes indices i where x∗i is equal to the lower bound on xi, is
equal to the upper bound on xi, or occurs at a non-smooth value of gi.

The minimum distance to the nearest boundary of the subdifferential (3) for all i ∈ Z ,

δ := min
i∈Z
{min{−∇if (x∗)− li, ui +∇if (x∗)}} (5)

Definition

→ For non-negative constraints, we have δ = mini∈Z∇if (x∗).

→ For L1-regularization, we have δ = λ−maxi∈Z |∇if (x∗)|.

The active-set identification property for problem (1) is satisfied if for all sufficiently
large k, we have that xki = x∗i for all i ∈ Z .

Definition

→ Our argument essentially states that ‖xk − x∗‖ is eventually always less then δ/2L,
and at this point the algorithm always sets xki to x∗i for all i ∈ Z .

Suppose we apply the PG method with step-size of 1/L to problem (1). If the solution x∗ is
nondegenerate then there exists a k̄ such that for all k > k̄ we have xki = x∗i for all i ∈ Z .

Lemma

Proof:
By the definition of the PG step and the separability of g, for all i we have

xk+1
i ∈ argmin

y

{
1

2

∣∣∣∣y − (xki − 1

L
∇if (xk)

)∣∣∣∣2 +
1

L
gi(y)

}
.

This problem is strongly-convex, and its unique solution satisfies

L(xki − y)−∇if (xk) ∈ ∂gi(y). (6)

By (4), there exists a minimum finite iterate k̄ such that

|xki − x∗i | ≤ ‖xk̄ − x∗‖ ≤ δ/2L,

which implies that for all k ≥ k̄ we have

− δ/2L ≤ xki − x∗i ≤ δ/2L, for all i. (7)

By the Lipschitz continuity of ∇f in (2), we have that

|∇if (xk)−∇if (x∗)| ≤ ‖∇f (xk)−∇f (x∗)‖ ≤ L‖xk − x∗‖ ≤ δ/2,

which implies that

− δ/2−∇if (x∗) ≤ −∇if (xk) ≤ δ/2−∇if (x∗). (8)

Finally, it is sufficient to show that for any k ≥ k̄ and i ∈ Z that y = x∗i satisfies (6).
We first show that the left-side is less than the upper limit ui of the interval ∂gi(x

∗
i ),

L(xki − x∗i )−∇if (xk) ≤ δ/2−∇if (xk) (right-side of (7))

≤ δ −∇if (x∗) (right-side of (8))

≤ (ui +∇if (x∗))−∇if (x∗) (definition of δ, (5))

≤ ui.

Similar steps using LHS of (7) and (8) shows that L(xki − x∗i )−∇if (xk) ≥ li.

Active-Set Complexity

The active-set complexity is the number of iterations required before an algorithm is
guaranteed to have reached the active-set.

Definition

I In our Lemma, we show that active-set identification occurs when ‖xk − x∗‖ ≤ δ/2L.

I Using (1− κ)k ≤ exp(−κk), the linear convergence rate (4) implies the following result.

The active-set will be identified after at most κ log(2L‖x0 − x∗‖/δ) iterations.

Corollary

→ Bound only depends logarithmically on δ.
I if δ is large, then we can expect to identify the active-set very quickly.

→ Can be modified to use other step-sizes and to analyze coordinate descent methods.


