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OVERVIEW: Convergence Analysis of Sequential Minimal Optimization Block Coordinate Descent

Motivation: » SMO is an instance of general BCD with an iteration update given by
. . . . . . L
> Support.vect.or. machm.es.(S\(I\/Is) are widely used in many applictions. | = argmin {F(h) + (Vf(2F),y — 2F) + gH?J BTN (4)
» Sequential minimal optimization (SMO) has been a popular dual 2-coordinate ascent method {yr | yeX}

for training SVMs for around 20 years. » The candidate block set B contains the supports of the elementary vectors of null(A):

» SMO can train SVMs with an unregularized bias, which is preferred when there are imbal-

anced class labels. Definition

— For A € R™*" and m < n, an elementary vector of null(A), is a vector

d € null(A) such that
Vd' € null(A) that are conformal to d, supp(d’) = supp(d).
— Let d,d’ € R". Then d’ is conformal to d if
supp(d’) C supp(d) and d;d; > 0, Vj =1,...,n.
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(a) regularized bias (b) unregularized bias Let d= | d3 |, then 0 and 0
» This unregularized bias leads to a linear equality constraint across the dual variables, dy D dy —d - dy
- 0 0 d
ZCVZ'ZIZZ' = (0 where o; € {—1, 1} \ \ / . /

conformal not conformal

i=1

- addition to the constraints » The matrix H" satisfies the generalized inequality,

2 pok k
0<uz;<c forallie{l,2,...n} Vif(a") 2 H" 2 LL (5)
which complicates analysis of modern stochastic dual coordinate ascent (SDCA) methods. :
.
This Work:
» New convergence analysis of SMO with uniformly random coordinate selection (rSMO).

— Show linear convergence of rSMO by generalizing convergence result of block coordinate
descent (BCD) with linearly coupled constraints.

k
— Previous works give sublinear rates. E[f(z")] — f* < (1 BML) (f(z) — ). (6)
— Show that rSMO identifies the final set of support vectors in a finite number of iterations 5|

under mild conditions.

BCD with uniformly random block selection with updates (4) for problem (1) achieves

Proof Outline:
Problem of Interest Our argument closely follows the analysis of Necoara & Patrascu.
» We consider the SVM dual as an instance of the general problem — By Lipschitz-continuity of V f (2) and the property H* < LT (5) ,
minimize  f(x), (1) B T,
ret E[f(«") < f(a*) + = ), min {(Vfb@-(xk),db) + 5 llds, 2} - (7)
where X is a set of the form {x | | < x < u, Ax = b}. | B| & {dy, | 2} +dy,ex} 2
— [ and w are upper and lower bounds on the variables. — By B containing the supports of the elementary vectors and properties of comformality,
— A is an m X n matrix where m < n and b is a m X 1 vector defining linear constraints. , 1 | . L. .
o (1)< fh) b min (Vs ]
» The gradient V f is L-Lipschitz continuous, | B| {d | e++dex) 2
V — V)| < L|ly—=x|, forall z,ye X, 2 | L
and the problem satisfies proximal-PL inequality (prox-PL), written in this case as B yex
. — By prox-PL inequality (3),
D, (x, L) > u(f(x)— f*), forall z,y € X, some u > 0, (3) 1 p .
Pl b2 i) = 1 : (8) < £l — L) - 1),
where BIL
| L , We can subtract f* from both sides and rearrange the terms, and apply this recursively to get
Dy(z, p) = —2pargmin,cx{(V f(2),y — ) + §||y — z||*}]. the linear convergence result (6).

— Prox-PL is weaker than strong convexity and always holds for SVMs by convexity of f
and quadratic growth (QG) property.

Support Vector Identification

» We additionally require that the active set of the solution set X™* is unique,

The active set for SVMs is the set Z = {i:27 =0 or ¢ for all * € X*}.

and the non-degeneracy conditions:
Figure: convex + QG but not strongly convex 5 y

: - — — Vif(x*) #0forall : € Z and z* € X*,
Sequential Minimal Optimization S V(@) # |V f )| foralli€ Z, j=1,..,n, i # j and * € X*

* On each iteration, SMO chooses a block from the candidate block set

B = {{i.j}li.j € {12 anh,i £ j} _
rSMO for problems satisfying the additional requirements above detects the final set of
support vectors after some finite iterate K.

* The iteration update corresponds to

r ) -
1
k41 .
T = H: + HY + ofF Vif(z) £V;f(z)] ¢ Intuition:
Z J) T T i . . . .
\ 7 clipped — Use induction on decreasing order of |V, f(z*)|, for i € Z to show that rSMO detects the
( . o
e _ 1 Vo f() £ V()] active set after some finite iterate K.
T =, flr) £V, f(x
J J k ko kLY J 0
X H]] T H” - ZHZ] J clipped /56(1)\ Illc\ (CE’T
where == is —q; - «j, and the updates are clipped to stay within the bounds [Ef,lx(f]: ) 0 0
0 - . .> . IC *
’ (max{(), xf —(c— x?)} Q= q, ) min{e, :L’f N $§} Q= q, r = ajg after finite IC iterations =z~ = | ¢ |, where 2" =] ¢
£’i — < L I Z/[z — . L L 0 I *
(max{0, zj’ — x5} o # min{c, ¥y + (¢ — 7)} @ # q; Ty Ly Ty
0
and [L%,U}] (with the indices swapped) respectively. \5’35/ 0 / \

> Hk — VQf(Z‘k)
— Avoid HY + HY, & ZHfj — ( without strong convexity by using H* = LI instead.

— Follow the argument used in Nutini et. al.’s work.

jj - — Pick out the indices 7 that are not on the active set.




