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OVERVIEW: Convergence Analysis of Sequential Minimal Optimization

Motivation:

I Support vector machines (SVMs) are widely used in many applictions.

I Sequential minimal optimization (SMO) has been a popular dual 2-coordinate ascent method
for training SVMs for around 20 years.

I SMO can train SVMs with an unregularized bias, which is preferred when there are imbal-
anced class labels.

(a) regularized bias (b) unregularized bias

I This unregularized bias leads to a linear equality constraint across the dual variables,
n∑
i=1

αixi = 0 where αi ∈ {−1, 1}

in addition to the constraints

0 ≤ xi ≤ c for all i ∈ {1, 2, ..., n}
which complicates analysis of modern stochastic dual coordinate ascent (SDCA) methods.

This Work:

? New convergence analysis of SMO with uniformly random coordinate selection (rSMO).

→ Show linear convergence of rSMO by generalizing convergence result of block coordinate
descent (BCD) with linearly coupled constraints.

→ Previous works give sublinear rates.

→ Show that rSMO identifies the final set of support vectors in a finite number of iterations
under mild conditions.

Problem of Interest

I We consider the SVM dual as an instance of the general problem

minimize
x∈X

f (x), (1)

where X is a set of the form {x | l ≤ x ≤ u,Ax = b}.
→ l and u are upper and lower bounds on the variables.

→ A is an m× n matrix where m ≤ n and b is a m× 1 vector defining linear constraints.

I The gradient ∇f is L-Lipschitz continuous,

‖∇f (y)−∇f (x)‖ ≤ L‖y − x‖, for all x, y ∈ X , (2)

and the problem satisfies proximal-PL inequality (prox-PL), written in this case as

1

2
Dg(x, L) ≥ µ(f (x)− f ∗), for all x, y ∈ X , some µ > 0, (3)

where

Dg(x, µ) ≡ −2µ argminy∈X{〈∇f (x), y − x〉 +
L

2
||y − x||2}].

→ Prox-PL is weaker than strong convexity and always holds for SVMs by convexity of f
and quadratic growth (QG) property.

Figure: convex + QG but not strongly convex

Sequential Minimal Optimization

? On each iteration, SMO chooses a block from the candidate block set

B = {{i, j}|i, j ∈ {1, 2, ..., n}, i 6= j}.
? The iteration update corresponds to

xk+1i =

{
xi −

1

Hk
ii +Hk

jj ± 2Hk
ij

[∇if (x)±∇jf (x)]

}
clipped

xk+1j =

{
xj −

1

Hk
jj +Hk

ii ± 2Hk
ij

[∇jf (x)±∇if (x)]

}
clipped

where ± is −αi · αj, and the updates are clipped to stay within the bounds [Lki ,Uki ]:

Lki =

{
max{0, xki − (c− xkj )} αi = αj

max{0, xki − xkj} αi 6= αj
Uki =

{
min{c, xki + xkj} αi = αj

min{c, xki + (c− xkj )} αi 6= αj

and [Lkj ,Ukj ] (with the indices swapped) respectively.

I Hk = ∇2f (xk)

→ Avoid Hk
ii +Hk

jj ± 2Hk
ij = 0 without strong convexity by using Hk = LI instead.

Block Coordinate Descent

I SMO is an instance of general BCD with an iteration update given by

xk+1 = argmin
{y

bk
| y∈X}

{f (xk) + 〈∇f (xk), y − xk〉 + L

2
||y − xk||2Hk}. (4)

I The candidate block set B contains the supports of the elementary vectors of null(A):

→ For A ∈ Rm×n and m ≤ n, an elementary vector of null(A), is a vector
d ∈ null(A) such that

∀d′ ∈ null(A) that are conformal to d, supp(d′) = supp(d).

→ Let d, d′ ∈ Rn. Then d′ is conformal to d if

supp(d′) ⊆ supp(d) and d′jdj ≥ 0, ∀j = 1, ..., n.
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conformal not conformal
I The matrix Hk satisfies the generalized inequality,

∇2f (xk) � Hk � LI. (5)

Linear Convergence

BCD with uniformly random block selection with updates (4) for problem (1) achieves

E[f (xk)]− f ∗ ≤
(
1− µ

|B|L

)k
(f (x0)− f ∗). (6)

Lemma

Proof Outline:
Our argument closely follows the analysis of Necoara & Patrascu.

→ By Lipschitz-continuity of ∇f (2) and the property Hk � LI (5) ,

E[f (xk+1)] ≤ f (xk) +
1

|B|

|B|∑
i=1

min
{dbi | x

k
bi
+dbi∈X}

{
〈∇fbi(xk), dbi〉 +

L

2
||dbi||2

}
. (7)

→ By B containing the supports of the elementary vectors and properties of comformality,

(7) ≤ f (xk) +
1

|B|
min

{d | xk+d∈X}

{
〈∇f (xk), d〉 + L

2
||d||2

}
= f (xk) +

1

|B|
min
y∈X

{
〈∇f (xk), y − xk〉 + L

2
||y − xk||2

}
. (8)

→ By prox-PL inequality (3),

(8) ≤ f (xk)− 1

|B|
µ

L
(f (xk)− f ∗).

We can subtract f ∗ from both sides and rearrange the terms, and apply this recursively to get
the linear convergence result (6).

Support Vector Identification

I We additionally require that the active set of the solution set X∗ is unique,

The active set for SVMs is the set Z = {i :x∗i = 0 or c for all x∗ ∈ X∗}.
Definition

and the non-degeneracy conditions:

→ ∇if (x
∗) 6= 0 for all i ∈ Z and x∗ ∈ X∗,

→ |∇if (x
∗)| 6= |∇jf (x

∗)| for all i ∈ Z, j = 1, ..., n, i 6= j and x∗ ∈ X∗.

rSMO for problems satisfying the additional requirements above detects the final set of
support vectors after some finite iterate K.

Lemma

Intuition:

→ Use induction on decreasing order of |∇if (x
∗)|, for i ∈ Z to show that rSMO detects the

active set after some finite iterate K.
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→ Follow the argument used in Nutini et. al.’s work.

→ Pick out the indices i that are not on the active set.


