

# Linear Convergence and Support Vector Identifiation of **Sequential Minimal Optimization**

Jennifer She (UBC), Mark Schmidt (UBC)

| <b>OVERVIEW</b> : Convergence Analysis of Sequential Minimal Optimization                                                                                                                                                                                                                                                                                                | Block Coordinate Descent                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Motivation:</li> <li>Support vector machines (SVMs) are widely used in many applictions.</li> <li>Sequential minimal optimization (SMO) has been a popular dual 2-coordinate ascent method for training SVMs for around 20 years.</li> <li>SMO can train SVMs with an unregularized bias, which is preferred when there are imbalanced class labels.</li> </ul> | • SMO is an instance of general BCD with an iteration update given by<br>$x^{k+1} = \underset{\{y_{b^k} \mid y \in \mathcal{X}\}}{\operatorname{argmin}} \{f(x^k) + \langle \nabla f(x^k), y - x^k \rangle + \frac{L}{2}   y - x^k  _{H^k}^2 \}. \tag{4}$ • The candidate block set <i>B</i> contains the supports of the elementary vectors of null( <i>A</i> ):<br>Definition |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                    | → For A ∈ ℝm×n and m ≤ n, an elementary vector of null(A), is a vector d ∈ null(A) such that ∀d' ∈ null(A) that are conformal to d, supp(d') = supp(d). → Let d, d' ∈ ℝn. Then d' is conformal to d if supp(d') ⊆ supp(d) and d'jdj ≥ 0, ∀j = 1,, n.                                                                                                                            |



in addition to the constraints

 $0 \le x_i \le c$  for all  $i \in \{1, 2, ..., n\}$ 

which complicates analysis of modern stochastic dual coordinate ascent (SDCA) methods. This Work:

- ★ New convergence analysis of SMO with uniformly random coordinate selection (rSMO).
- → Show linear convergence of rSMO by generalizing convergence result of block coordinate descent (BCD) with linearly coupled constraints.
- $\rightarrow$  Previous works give sublinear rates.
- $\rightarrow$  Show that rSMO identifies the final set of support vectors in a finite number of iterations under mild conditions.

## Problem of Interest

► We consider the SVM dual as an instance of the general problem

 $\underset{x \in \mathcal{X}}{\text{minimize}} \quad f(x),$ where  $\mathcal{X}$  is a set of the form  $\{x \mid l \leq x \leq u, Ax = b\}$ .  $\rightarrow$  *l* and *u* are upper and lower bounds on the variables.



# Linear Convergence

#### Lemma

BCD with uniformly random block selection with updates (4) for problem (1) achieves

$$\mathbb{E}[f(x^k)] - f^* \le \left(1 - \frac{\mu}{|B|L}\right)^k (f(x^0) - f^*).$$
(6)

(5)

#### *Proof Outline*:

(1)

Our argument closely follows the analysis of Necoara & Patrascu.

 $\rightarrow$  By Lipschitz-continuity of  $\nabla f$  (2) and the property  $H^k \preceq L\mathbb{I}$  (5),

$$\mathbb{E}[f(x^{k+1})] \le f(x^k) + \frac{1}{|B|} \sum_{i=1}^{|B|} \min_{\{d_{b_i} \mid x_{b_i}^k + d_{b_i} \in \mathcal{X}\}} \left\{ \langle \nabla f_{b_i}(x^k), d_{b_i} \rangle + \frac{L}{2} ||d_{b_i}||^2 \right\}.$$
(7)

 $\rightarrow$  By B containing the supports of the elementary vectors and properties of comformality,

- $\rightarrow$  A is an  $m \times n$  matrix where  $m \leq n$  and b is a  $m \times 1$  vector defining linear constraints.
- The gradient  $\nabla f$  is L-Lipschitz continuous,

$$\|\nabla f(y) - \nabla f(x)\| \le L \|y - x\|, \quad \text{for all } x, y \in \mathcal{X},$$
(2)

and the problem satisfies proximal-PL inequality (prox-PL), written in this case as

 $\frac{1}{2}\mathcal{D}_g(x,L) \ge \mu(f(x) - f^*), \quad \text{for all } x, y \in \mathcal{X}, \text{ some } \mu > 0,$ (3)

where

 $\mathcal{D}_g(x,\mu) \equiv -2\mu \operatorname{argmin}_{y \in \mathcal{X}} \{ \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 \} ].$ 

 $\rightarrow$  Prox-PL is weaker than strong convexity and always holds for SVMs by convexity of f and quadratic growth (QG) property.



Figure: convex + QG but not strongly convex

### Sequential Minimal Optimization

★ On each iteration, SMO chooses a block from the candidate block set  $B = \{\{i \ i\} | i \ i \in \{1 \ 2 \ n\} \ i \neq i\}$ 

$$(7) \leq f(x^{k}) + \frac{1}{|B|} \min_{\{d \mid x^{k} + d \in \mathcal{X}\}} \left\{ \langle \nabla f(x^{k}), d \rangle + \frac{L}{2} ||d||^{2} \right\}$$
$$= f(x^{k}) + \frac{1}{|B|} \min_{y \in \mathcal{X}} \left\{ \langle \nabla f(x^{k}), y - x^{k} \rangle + \frac{L}{2} ||y - x^{k}||^{2} \right\}.$$
(8)

 $\rightarrow$  By prox-PL inequality (3),

(8) 
$$\leq f(x^k) - \frac{1}{|B|} \frac{\mu}{L} (f(x^k) - f^*).$$

We can subtract  $f^*$  from both sides and rearrange the terms, and apply this recursively to get the linear convergence result (6).

## Support Vector Identification

 $\blacktriangleright$  We additionally require that the active set of the solution set  $X^*$  is unique,

#### Definition

The active set for SVMs is the set  $\mathcal{Z} = \{i : x_i^* = 0 \text{ or } c \text{ for all } x^* \in X^*\}.$ 

and the non-degeneracy conditions:

 $\rightarrow \nabla_i f(x^*) \neq 0$  for all  $i \in Z$  and  $x^* \in X^*$ ,  $\rightarrow |\nabla_i f(x^*)| \neq |\nabla_j f(x^*)|$  for all  $i \in \mathbb{Z}$ , j = 1, ..., n,  $i \neq j$  and  $x^* \in X^*$ .

Lemma

$$D = \{ \{i, j\} \mid i, j \in \{1, 2, \dots, n\}, i \neq j \}.$$

★ The iteration update corresponds to

$$\begin{aligned} x_i^{k+1} &= \left\{ x_i - \frac{1}{H_{ii}^k + H_{jj}^k \pm 2H_{ij}^k} [\nabla_i f(x) \pm \nabla_j f(x)] \right\}_{\text{clipped}} \\ x_j^{k+1} &= \left\{ x_j - \frac{1}{H_{jj}^k + H_{ii}^k \pm 2H_{ij}^k} [\nabla_j f(x) \pm \nabla_i f(x)] \right\}_{\text{clipped}} \\ \text{where } \pm \text{ is } -\alpha_i \cdot \alpha_j, \text{ and the updates are clipped to stay within the bounds } [\mathcal{L}_i^k, \mathcal{U}_i^k]: \\ \mathcal{L}_i^k &= \left\{ \begin{aligned} \max\{0, x_i^k - (c - x_j^k)\} & \alpha_i = \alpha_j \\ \max\{0, x_i^k - x_j^k\} & \alpha_i \neq \alpha_j \end{aligned} \right. \\ \mathcal{U}_i^k &= \left\{ \begin{aligned} \min\{c, x_i^k + x_j^k\} & \alpha_i = \alpha_j \\ \min\{c, x_i^k + (c - x_j^k)\} & \alpha_i \neq \alpha_j \end{aligned} \right. \\ \text{and } \left[\mathcal{L}_j^k, \mathcal{U}_j^k\right] \text{ (with the indices swapped) respectively.} \end{aligned}$$

 $\blacktriangleright H^k = \nabla^2 f(x^k)$ 

where

 $\rightarrow$  Avoid  $H_{ii}^k + H_{jj}^k \pm 2H_{ij}^k = 0$  without strong convexity by using  $H^k = L\mathbb{I}$  instead.

rSMO for problems satisfying the additional requirements above detects the final set of support vectors after some finite iterate  $\mathcal{K}$ .

#### Intuition:

 $\rightarrow$  Use induction on decreasing order of  $|\nabla_i f(x^*)|$ , for  $i \in Z$  to show that rSMO detects the active set after some finite iterate  $\mathcal{K}$ .



 $\rightarrow$  Follow the argument used in Nutini et. al.'s work.  $\rightarrow$  Pick out the indices *i* that are not on the active set.