Expectation-Maximization (EM) is a popular tool in statistics and machine learning, first introduced in the 1970s.

- **Applications:** fit models with latent or hidden variables, hidden Markov models, semi-supervised learning, generative models with missing data, etc.
- **Prior works analyzing convergence rate of EM** make very strong assumptions
 - Initial estimate of parameters needs to be close to the optima.
 - Fraction of missing information needs to be small.
 - Other regularity conditions.

This Work: We provide a bound on the number of iterations of EM.

- **Provide a lower bound on the decrease in the negative log-likelihood (NLL) on each iteration.**
- **Provide the first convergence rate for non-convex functions in a generalized surrogate optimization framework and, consequently, for EM.**

Surrogate Optimization

- Consider the following problem: suppose $A \subseteq \mathbb{R}^d$ is convex, and $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is continuous and bounded below; solve for $\lambda^* \in \arg\min_{\lambda \in A} f(\lambda)$.

- We first generalize the definition of first-order surrogate functions [1].

Definition

Let f and g be functions from $\mathbb{R}^d \rightarrow \mathbb{R}$. We say that g is a surrogate of f near $\lambda^k \in A$ if it satisfies:

- **Majorization:** $\forall \lambda \in \arg\min_{\lambda \in A} g(\lambda), f(\lambda) \leq g(\lambda)$. If $g(\lambda) \leq f(\lambda)$ for all $\lambda \in A$, then g is a majorant function;
- **Smoothness:** Denote the approximation error as $h = g - f$. Then, the functions agree at λ^k so that $h(\lambda^k) = 0$.

g_k is a majorant surrogate of f at λ^{k-1}

\[g_k \triangleq \min_{\lambda \in \Lambda} g(\lambda) \]

Let g_k be a majorant surrogate of f near λ^{k-1}.

In this setting, Mairal [1] defines the following surrogate optimization framework:

- Initialize parameters λ_0.
- Compute surrogate g_k of f near λ^{k-1}.
- Update parameters $\lambda^k \in \arg\min_{\lambda \in A} g_k(\lambda)$.

In contrast to [1], we do not require differentiability of h_k or that $\nabla h_k(\lambda^k) = 0$.

EM as a Surrogate Optimization Algorithm

- In EM, we want to find parameters $\lambda \in A$ to maximize the likelihood, $P(X|\lambda)$.
- Introducing hidden or latent variables, we can write the likelihood as $\sum P(X, z|\lambda)$.
- Equivalently, we can minimize the negative log-likelihood (NLL). So, our goal is to find $\lambda^* \in \arg\min_{\lambda \in A} \log \sum P(X, z|\lambda)$.

Let λ^k denote the estimate of the parameters after the kth iteration and define $Q(\lambda^k) = \sum_{z} P(z, X|\lambda^k) \log P(X|\lambda^k)$.

Using Jensen’s inequality, we get the following well-known upper bound on the NLL

\[\log P(X|\lambda) \leq -Q(\lambda^k) - \text{ent}(z|X, \lambda^k) \quad \tag{1} \]

The iterations of EM are defined as

\[\lambda^{k+1} \in \arg\min_{\lambda \in A} -Q(\lambda^k) - \text{ent}(z|X, \lambda^k) \]

Define

\[f(\lambda) = -\log P(X|\lambda) = -\log \sum_{z} P(X, z|\lambda), \]

\[g_k(\lambda) = -Q(\lambda^{k-1}) - \text{ent}(z|X, \lambda^{k-1}). \]

We need to verify that g_k as defined above is indeed a surrogate of f.

- From equation (1), we see that g_k is a majorant of f, and thus, it satisfies the majorization condition.
- It is a well-known fact that $h_k(\lambda^{k-1}) = 0$, and thus, it satisfies the smoothness condition.

In addition, to derive our convergence results, we will assume that for all iterations, g_k is ρ-strongly-convex. This is satisfied in many scenarios, like mixtures of exponential families, or when using a strongly-convex regularizer with a convex complete-data NLL.

Convergence rate

- Informally, if the iterates stay within a convex set and the surrogates are ρ-strongly convex, then the further away successive iterates are, the greater the decrease in the objective.

Theorem

Let g_k be a ρ-strongly-convex surrogate of f near λ^{k-1}, and $\lambda^k \in \arg\min_{\lambda \in A} g_k(\lambda)$.

Then,

\[f(\lambda^k) - f(\lambda^{k-1}) \leq \frac{\rho}{2} \| \lambda^k - \lambda^{k-1} \|^2 \quad \tag{2} \]

Proof

Using that λ^k minimizes g_k and that g_k is ρ-strongly-convex, it follows that for all $\lambda \in A$,

\[g_k(\lambda) = P(\lambda) - \frac{\rho}{2} \| \lambda - \lambda^k \|^2 \leq g_k(\lambda^k), \]

Now using that g_k is a majorant, we get

\[f(\lambda^k) = f(\lambda^k) + \frac{\rho}{2} \| \lambda^k - \lambda^{k-1} \|^2 \leq g_k(\lambda^k) + \frac{\rho}{2} \| \lambda^k - \lambda^{k-1} \|^2 \]

\[f(\lambda^k) \leq \frac{\rho}{2} \| \lambda^k - \lambda^{k-1} \|^2 \leq f(\lambda^{k-1}) - f(\lambda^k), \]

which can be re-arranged to get the result.

- We use this bound to derive an $O(\frac{1}{t})$ convergence rate in terms of the squared difference between successive iterates.

Theorem

Let g_k be a ρ-strongly-convex surrogate of f near λ^{k-1}, and $\lambda^k \in \arg\min_{\lambda \in A} g_k(\lambda)$.

Then,

\[\min_{\lambda \in A} \| \lambda - \lambda^{k-1} \|^2 \leq \frac{2(f(\lambda^k) - f(\lambda^{k-1}))}{\rho t} \quad \tag{4} \]

Proof

Summing up (3) for all k and telescoping the sum we get

\[\sum_{k=1}^t \frac{1}{2} \| \lambda^k - \lambda^{k-1} \|^2 \leq \sum_{k=1}^t \| f(\lambda^k) - f(\lambda^{k-1}) \|^2 \leq \frac{f(\lambda^k) - f(\lambda^{k-1})}{\rho t} \]

Taking the min over all iterations, we get

\[\min_{\lambda \in A} \| \lambda - \lambda^{k-1} \|^2 \leq \frac{2(f(\lambda^k) - f(\lambda^{k-1}))}{\rho t}

Discussion

- Our analysis is quite general and relies on mild assumptions.
- If we make a slightly stronger assumption that the approximation error h_k is differentiable, ∇h_k is ρ-Lipschitz continuous, and the gradients agree, i.e., $\nabla g_k(\lambda^{k-1}) = 0$, then we can derive a similar convergence rate in terms of the norm of the gradient of f.
- Using the above, the standard gradient descent progress bound and that λ^k is a global minimizer of g_k, we can follow the above proofs to derive

\[\min_{\lambda \in A} \| \nabla f(\lambda^k) \|^2 \leq \frac{2f(\lambda^k) - f(\lambda^{k-1})}{\rho t} \]

Future work

- It would be interesting to see if some assumptions could be relaxed, like strong-convexity of the surrogates.
- It would also be interesting to derive stronger convergence results using the same set of assumptions for “nice” scenarios, like mixtures of exponential families.
- Viewing EM in such an optimization framework allows future work to use numerical optimization techniques to develop improved variants of EM, like a variance reduced version of EM.

References