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Expectation-Maximization

I Expectation-maximization (EM) is a popular tool in statistics and machine learning.

→ First introduced in the 1970s.

I Applications: fit models with latent or hidden variables, hidden Markov models, semi-
supervised learning, generative models with missing data, etc.

I Prior works analyzing convergence rate of EM make very strong assumptions

→ Initial estimate of parameters needs to be close to the optima.
→ Fraction of missing information needs to be small.
→ Other regularity conditions.

This Work: We provide a bound on the number of iterations of EM.

? Provide a lower bound on the decrease in the negative log-likelihood (NLL) on each iteration.

? Provide the first convergence rate for non-convex functions in a generalized surrogate opti-
mization framework and, consequently, for EM.

Surrogate Optimization

I Consider the following problem: suppose Λ ⊂ IRd is convex, and f : IRd→ IR is continuous
and bounded below; solve for

λ∗ ∈ argmin
λ∈Λ

f (λ).

I We first generalize the definition of first-order surrogate functions [1].

Let f and g be functions from IRd → IR. We say that g is a surrogate of f near
λk ∈ Λ if it satisfies:

I Majorization: ∀λ′ ∈ argminλ∈Λ g(λ), f (λ′) ≤ g(λ′). If f (λ) ≤ g(λ) for all
λ ∈ Λ, then g is called a majorant function;

I Smoothness: Denote the approximation error as h = g − f . Then, the
functions agree at λk so that h(λk) = 0.

Definition
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gk is a majorant surrogate of f at λk−1

I In this setting, Mairal [1] defines the following surrogate optimization framework:

→ Initialize parameters λ0.
→ Compute surrogate gk of f near λk−1.
→ Update parameters λk ∈ argminλ∈Λ g(λ).

I In contrast to [1], we do not require differentiability of hk or that ∇hk(λk) = 0.

EM as a Surrogate Optimization Algorithm

I In EM, we want to find parameters λ ∈ Λ to maximize the likelihood, P (X|λ).

I Introducing hidden or latent variables, we can write the likelihood as
∑
z
P (X, z|λ).

I Equivalently, we can minimize the negative log-likelihood (NLL). So, our goal is to find

λ∗ ∈ argmin
λ∈Λ

− log
∑
z

P (X, z|λ).

I Let λk denote the estimate of the parameters after the kth iteration and define

Q(λ|λk) =
∑
z

P (z|X,λk) logP (X, z|λ).

I Using Jensen’s inequality, we get the following well-known upper bound on the NLL

− logP (X|λ) ≤ −Q(λ|λk)− entropy(z|X,λk). (1)

I The iterations of EM are defined as

λk+1 ∈ argmin
λ∈Λ

−Q(λ|λk)− entropy(z|X,λk)

≡ λk+1 ∈ argmin
λ∈Λ

−Q(λ|λk).

I Define

f (λ) = − logP (X|λ) = − log
∑
z

P (X, z|λ),

gk(λ) = −Q(λ|λk−1)− entropy(z|X,λk−1).

I We need to verify that gk as defined above is indeed a surrogate of f .

→ From equation (1), we can see that gk is a majorant of f , and thus, it satisfies the
majorization condition.

→ It is a well-known fact that hk(λ
k−1) = 0, and thus, it satisfies the smoothness condition.

I In addition, to derive our convergence results, we will assume that for all iterations, gk is
ρ-strongly-convex. This is satisfied in many scenarios, like mixtures of exponential families,
or when using a strongly-convex regularizer with a convex complete-data NLL.

Convergence rate

I Informally, if the iterates stay within a convex set and the surrogates are ρ-strongly convex,
then the further away successive iterates are, the greater the decrease in the objective.

Let gk be a ρ-strongly-convex surrogate of f near λk−1, and λk ∈ argminλ∈Λ gk(λ).
Then,

f (λk) ≤ f (λk−1)− ρ
2
‖λk − λk−1‖2

2. (2)

Theorem

(λk, f(λk))

(λk−1, f(λk−1)) }
≥ ρ

2
‖λk− λk−1‖22

Lower bound on decrease in NLL

Proof:
Using that λk minimizes gk and that gk is ρ-strongly-convex, it follows that for all λ ∈ Λ,

gk(λ
k) +

ρ

2
‖λ− λk‖2

2 ≤ gk(λ).

Now using that gk is a majorant, we get

f (λk) +
ρ

2
‖λk − λ‖2

2 ≤ gk(λ
k) +

ρ

2
‖λk − λ‖2

2

≤ gk(λ)

= f (λ) + hk(λ).

Setting λ = λk−1 and using that hk(λ
k−1) = 0 from the definition of surrogate functions gives

f (λk) +
ρ

2
‖λk − λk−1‖2

2 ≤ f (λk−1) + hk(λ
k−1)

ρ

2
‖λk − λk−1‖2

2 ≤ f (λk−1)− f (λk), (3)

which can be re-arranged to get the result.

I We use this bound to derive an O(1
t) convergence rate in terms of the squared difference

between successive iterates.

Let gk be a ρ-strongly-convex surrogate of f near λk−1, and λk ∈ argminλ∈Λ gk(λ).
Then,

min
k∈{1,2,...,t}

‖λk − λk−1‖2
2 ≤

2(f (λ0)− f (λ∗))

ρt
. (4)

Theorem

Proof:
Summing up (3) for all k and telescoping the sum we get

t∑
k=1

ρ

2
‖λk − λk−1‖2

2 ≤
t∑

k=1

f (λk−1)− f (λk)

= f (λ0)− f (λt)

≤ f (λ0)− f (λ∗).

Taking the min over all iterations, we get

min
k∈1,2,...,t

‖λk − λk−1‖2
2 ·
ρt

2
≤ f (λ0)− f (λ∗)

min
k∈{1,2,...,t}

‖λk − λk−1‖2
2 ≤

2(f (λ0)− f (λ∗))

ρt
.

Discussion

I Our analysis is quite general and relies on mild assumptions.

I If we make a slightly stronger assumption that the approximation error hk is differentiable,
∇hk is L-Lipschitz continuous, and the gradients agree, ie. ∇h(λk−1) = 0, then we can
derive a similar convergence rate in terms of the norm of the gradient of f .

I Using the above, the standard gradient descent progress bound and that λk is a global
minimizer of gk, we can follow the above proofs to derive

min
k∈{1,2,...,t}

‖∇f (λk−1)‖2
2 ≤

2L(f (λ0)− f (λ∗))

t
. (5)

I Future work:

→ It would be interesting to see if some assumptions could be relaxed, like strong-convexity
of the surrogates.

→ It would also be interesting to derive stronger convergence results using the same set of
assumptions for “nice” scenarios, like mixtures of exponential families.

→ Viewing EM in such an optimization framework allows future work to use numerical
optimization techniques to develop improved variants of EM, like a variance reduced
version of EM.
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