

Convergence rate of expectation-maximization Raunak Kumar (UBC), Mark Schmidt (UBC)

Expectation-Maximization

- Expectation-maximization (EM) is a popular tool in statistics and machine learning.
- \rightarrow First introduced in the 1970s.
- Applications: fit models with latent or hidden variables, hidden Markov models, semisupervised learning, generative models with missing data, etc.
- Prior works analyzing convergence rate of EM make very strong assumptions
- \rightarrow Initial estimate of parameters needs to be close to the optima.
- \rightarrow Fraction of missing information needs to be small.
- \rightarrow Other regularity conditions.
- **This Work**: We provide a bound on the number of iterations of EM.
- * Provide a lower bound on the decrease in the negative log-likelihood (NLL) on each iteration.
- * Provide the first convergence rate for non-convex functions in a generalized surrogate optimization framework and, consequently, for EM.

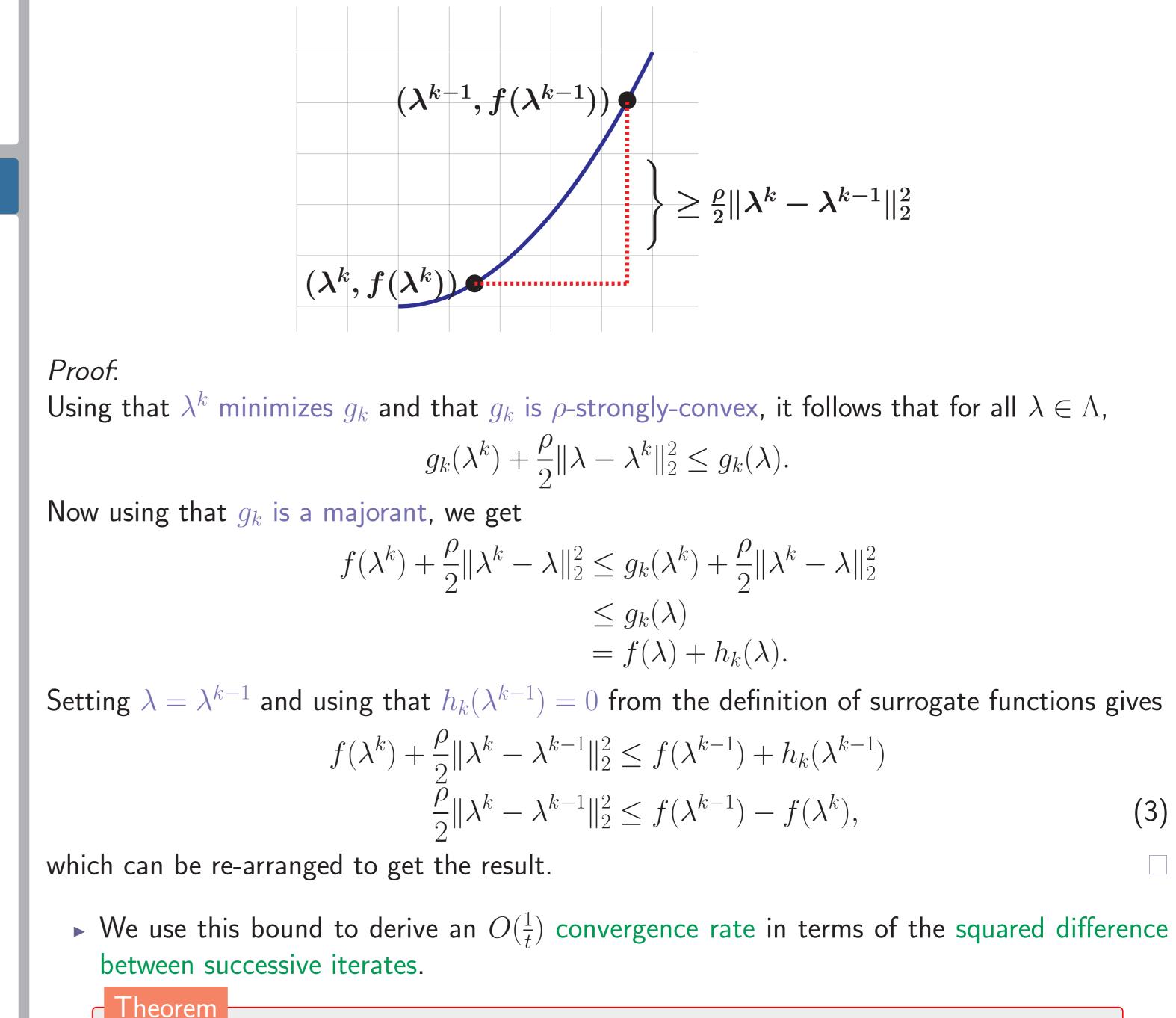
Convergence rate

Informally, if the iterates stay within a convex set and the surrogates are ρ -strongly convex, then the further away successive iterates are, the greater the decrease in the objective.

Theorem

Let g_k be a ρ -strongly-convex surrogate of f near λ^{k-1} , and $\lambda^k \in \operatorname{argmin}_{\lambda \in \Lambda} g_k(\lambda)$. Then, $f(\lambda^k) \le f(\lambda^{k-1}) - \frac{\rho}{2} \|\lambda^k - \lambda^{k-1}\|_2^2.$

Lower bound on decrease in NLL



Surrogate Optimization

• Consider the following problem: suppose $\Lambda \subset \mathbb{R}^d$ is convex, and $f : \mathbb{R}^d \to \mathbb{R}$ is continuous and bounded below; solve for

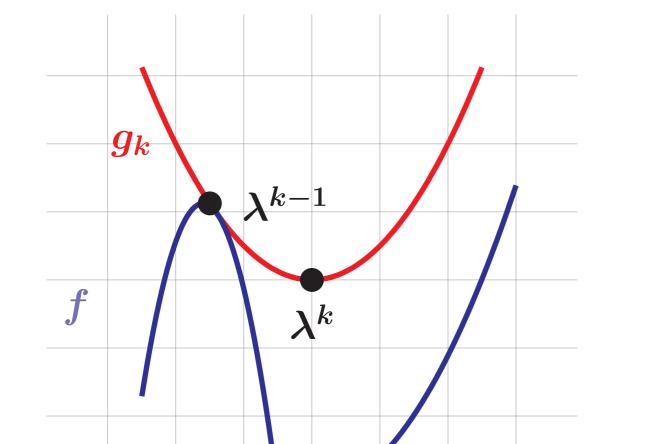
 $\lambda^* \in \operatorname*{argmin}_{\lambda \in \Lambda} f(\lambda).$

▶ We first generalize the definition of first-order surrogate functions [1].

Definition

- Let f and g be functions from $\mathbb{R}^d \to \mathbb{R}$. We say that g is a surrogate of f near $\lambda^k \in \Lambda$ if it satisfies:
- ▶ Majorization: $\forall \lambda' \in \operatorname{argmin}_{\lambda \in \Lambda} g(\lambda), f(\lambda') \leq g(\lambda')$. If $f(\lambda) \leq g(\lambda)$ for all $\lambda \in \Lambda$, then g is called a majorant function;
- **Smoothness**: Denote the approximation error as h = g f. Then, the functions agree at λ^k so that $h(\lambda^k) = 0$.

 g_k is a majorant surrogate of f at λ^{k-1}



▶ In this setting, Mairal [1] defines the following surrogate optimization framework: \rightarrow Initialize parameters λ^0 .

- \rightarrow Compute surrogate g_k of f near λ^{k-1} .
- \rightarrow Update parameters $\lambda^k \in \operatorname{argmin}_{\lambda \in \Lambda} g(\lambda)$.
- In contrast to [1], we do not require differentiability of h_k or that $\nabla h_k(\lambda^k) = 0$.

EM as a Surrogate Optimization Algorithm

- ▶ In EM, we want to find parameters $\lambda \in \Lambda$ to maximize the likelihood, $P(X|\lambda)$.
- Introducing hidden or latent variables, we can write the likelihood as $\sum P(X, z|\lambda)$.
- Equivalently, we can minimize the negative log-likelihood (NLL). So, our goal is to find

 $\lambda^* \in \operatorname*{argmin}_{\lambda \in \Lambda} - \log \sum_{\tilde{z}} P(X, z | \lambda).$

- Let λ^k denote the estimate of the parameters after the k^{th} iteration and define $Q(\lambda|\lambda^k) = \sum P(z|X,\lambda^k) \log P(X,z|\lambda).$
- Using Jensen's inequality, we get the following well-known upper bound on the NLL

 $-\log P(X|\lambda) \leq -Q(\lambda|\lambda^k) - \mathsf{entropy}(z|X,\lambda^k).$

► The iterations of EM are defined as

 $\lambda^{k+1} \in \operatorname{argmin} -Q(\lambda|\lambda^k) - \operatorname{entropy}(z|X,\lambda^k)$

$$\min_{k \in \{1,2,\dots,t\}} \|\lambda^k - \lambda^{k-1}\|_2^2 \le \frac{2(f(\lambda^0) - f(\lambda^*))}{\rho t}.$$

Let g_k be a ρ -strongly-convex surrogate of f near λ^{k-1} , and $\lambda^k \in \operatorname{argmin}_{\lambda \in \Lambda} g_k(\lambda)$.

Proof:

Then,

Summing up (3) for all k and telescoping the sum we get

$$\begin{split} \sum_{k=1}^t \frac{\rho}{2} \|\lambda^k - \lambda^{k-1}\|_2^2 &\leq \sum_{k=1}^t f(\lambda^{k-1}) - f(\lambda^k) \\ &= f(\lambda^0) - f(\lambda^t) \\ &\leq f(\lambda^0) - f(\lambda^*). \end{split}$$

Taking the min over all iterations, we get

$$\min_{k \in \{1,2,\dots,t\}} \|\lambda^k - \lambda^{k-1}\|_2^2 \cdot \frac{\rho t}{2} \le f(\lambda^0) - f(\lambda^*)$$
$$\min_{k \in \{1,2,\dots,t\}} \|\lambda^k - \lambda^{k-1}\|_2^2 \le \frac{2(f(\lambda^0) - f(\lambda^*))}{\rho t}.$$

Discussion

(1)

- Our analysis is quite general and relies on mild assumptions.
- \blacktriangleright If we make a slightly stronger assumption that the approximation error h_k is differentiable, ∇h_k is L-Lipschitz continuous, and the gradients agree, ie. $\nabla h(\lambda^{k-1}) = 0$, then we can derive a similar convergence rate in terms of the norm of the gradient of f.
- Using the above, the standard gradient descent progress bound and that λ^k is a global

 $\lambda \in \Lambda$ $\equiv \lambda^{k+1} \in \underset{\lambda \in \Lambda}{\operatorname{argmin}} - Q(\lambda | \lambda^k).$

► Define

$$\begin{split} f(\lambda) &= -\log P(X|\lambda) = -\log \sum_{z} P(X, z|\lambda), \\ g_k(\lambda) &= -Q(\lambda|\lambda^{k-1}) - \mathsf{entropy}(z|X, \lambda^{k-1}). \end{split}$$

- We need to verify that g_k as defined above is indeed a surrogate of f.
- \rightarrow From equation (1), we can see that g_k is a majorant of f, and thus, it satisfies the majorization condition.
- \rightarrow It is a well-known fact that $h_k(\lambda^{k-1}) = 0$, and thus, it satisfies the smoothness condition.
- \blacktriangleright In addition, to derive our convergence results, we will assume that for all iterations, g_k is ρ -strongly-convex. This is satisfied in many scenarios, like mixtures of exponential families, or when using a strongly-convex regularizer with a convex complete-data NLL.

minimizer of g_k , we can follow the above proofs to derive

 $\min_{k \in \{1,2,\dots,t\}} \|\nabla f(\lambda^{k-1})\|_2^2 \le \frac{2L(f(\lambda^0) - f(\lambda^*))}{t}.$

(3)

(4

(5)

- ► Future work:
- \rightarrow It would be interesting to see if some assumptions could be relaxed, like strong-convexity of the surrogates.
- \rightarrow It would also be interesting to derive stronger convergence results using the same set of assumptions for "nice" scenarios, like mixtures of exponential families.
- \rightarrow Viewing EM in such an optimization framework allows future work to use numerical optimization techniques to develop improved variants of EM, like a variance reduced version of EM.

References

[1] Mairal, J., 2013. Optimization with first-order surrogate functions. In Proceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 783-791).