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» Expectation-maximization (EM) is a popular tool in statistics and machine learning. » Informally, if the iterates stay within a convex set and the surrogates are p-strongly convex,
—s First introduced in the 1970s. then the further away successive iterates are, the greater the decrease in the objective.
» Applications: fit models with latent or hidden variables, hidden Markov models, semi-
suPerwsed Iearnlng, generative models with missing data, etc. | et gi, be a p-strongly-convex surrogate of f near AL, and X¥ € argmin, ., gi(A).
» Prior works analyzing convergence rate of EM make very strong assumptions Then
— Initial estimate of parameters needs to be close to the optima. | k k—1y Pk k—1|2
P P FO) < FOT) = SIAY = Az (2)

— Fraction of missing information needs to be small.
— Other regularity conditions.

L b d d in NLL
This Work: We provide a bound on the number of iterations of EM. ower bound on decrease in

* Provide a lower bound on the decrease in the negative log-likelihood (NLL) on each iteration.

* Provide the first convergence rate for non-convex functions in a generalized surrogate opti-
mization framework and, consequently, for EM.

Surrogate Optimization

> ZlIAY — AM|3

» Consider the following problem: suppose A C IR% is convex, and f : R? — IR is continuous
and bounded below: solve for (Aka f(

A" € argmin f(\).
AEN

» We first generalize the definition of first-order surrogate functions [1].

Proof:
Using that \* minimizes ¢, and that g, is p-strongly-convex, it follows that for all A € A,

g(N) + 510 = X3 < gu(N).

Let f and g be functions from IRY — IR. We say that g is a surrogate of f near

A e A if it satisfies: Now using that ¢, is a majorant, we get
> Majorization:- V' € argmime/\g()\), f()x’) < g\). If f(N) < g(A) for all FONR) + gH)\k R < oW + gH)\k Al
A € A, then g is called a majorant function; < o\
» Smoothness: Denote the approximation error as h = g — f. Then, the gr(N)
functions agree at \* so that h(\*) = 0. = JA) + h(A).
Setting A = \" ! and using that /1,.(\" ') = 0 from the definition of surrogate functions gives
gr is a majorant surrogate of f at \*—! FNY) + gH)\k — NS < A + (WY
0 _ _
PN — N < SR — () ()
which can be re-arranged to get the result. []

» We use this bound to derive an O(%) convergence rate in terms of the squared difference
between successive iterates.

Let g;, be a p-strongly-convex surrogate of f near \*~! and A\* € argmin,_, gr(\).
Then, ;
2(f(AY) — f(A*
ke{l1,2,....t} ot
» In this setting, Mairal [1] defines the following surrogate optimization framework:
— Initialize parameters \'. Proof.
— Compute surrogate gy of f near \F—1. Summing up (3) for all k and telescoping the sum we get
— Update parameters \* € argmin,, g(\). t o - X
» In contrast to [1], we do not require differentiability of h;, or that Vi, (A\¥) = 0. H)‘ — A3 < Z ST = FAY)
=

EM as a Surrogate Optimization Algorithm = f()\(;) f\)
< SIA) = F(AY).

» In EM, we want to find parameters A € A to maximize the likelihood, P(X|\).
» Introducing hidden or latent variables, we can write the likelihood as ) P(X, z|\).

Taking the min over all iterations, we get

L
| . | o : . min [|A" = AT p < fO) = F(A)
» Equivalently, we can minimize the negative log-likelihood (NLL). So, our goal is to find kel2,...,
. - 2(f(\) = fF(A))
N € —1 P(X, 2|\ AT — NS < .
rgmin —low 3 P2 i I =X <S5

]

» Let \* denote the estimate of the parameters after the k' iteration and define

QN = 37 P, X)log P(X, 2

» Our analysis is quite general and relies on mild assumptions.

» Using Jensen's inequality, we get the following well-known upper bound on the NLL
» |If we make a slightly stronger assumption that the approximation error hy is differentiable,

k k
—log P(X[A) = —Q(A[A") — entropy(z| X, A7), (1) V hj. is L-Lipschitz continuous, and the gradients agree, ie. Vh()\k_l) — (), then we can
> The iterations of EM are defined as derive a similar convergence rate in terms of the norm of the gradient of f.
AL € argmin —Q(A|NY) — entropy (2] X, AY) » Using the above, the standard gradient descent progress bound and that \* is a global
. AEA A minimizer of g, we can follow the above proofs to derive
= A" € argmin —Q(A|A"). ST (F(\0) — F()\*
» Define ke{12,...t} t
F3) = ~log PX|3) = ~1og 3 P(X, 2}A) P rutreworke | | | |
— It would be interesting to see if some assumptions could be relaxed, like strong-convexity
g:(N) = —QAIN"H — entropy(z]X, AP, of the surrogates.

— It would also be interesting to derive stronger convergence results using the same set of
assumptions for “nice” scenarios, like mixtures of exponential families.

— Viewing EM in such an optimization framework allows future work to use numerical
optimization techniques to develop improved variants of EM, like a variance reduced
version of EM.

» We need to verify that g;., as defined above is indeed a surrogate of f.
— From equation (1), we can see that g is a majorant of f, and thus, it satisfies the
majorization condition.
— It is a well-known fact that hk()\k_l) — (), and thus, it satisfies the smoothness condition.

» In addition, to derive our convergence results, we will assume that for all iterations, g;. is

p-strongly-convex. This is satisfied in many scenarios, like mixtures of exponential families, References

or when using a strongly-convex regularizer with a convex complete-data NLL.
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