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OVERVIEW:

Motivation:

» Block coordinate descent (BCD) methods are key tools in large-scale optimization.

- Easy to implement.

- Low memory requirements.

- Cheap iteration costs.

- Adaptability to distributed settings.

» Used for almost two decades to solve LASSO and SVMs.

— Any improvements on convergence will affect many applications.

This work:

‘New higher-order update:
— Update large blocks using message
passing in graph-structured problems.

‘New greedy block selection rules:

— Exploit structure to ensure more
progress than classic Gauss-Southwell. \ J
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Approximate greedy block selection rules:
— Tractable for variable block selection.

kE+1

K’ $bk -

Active-set identification results:
— Analysis for active-set identification
and bounds on active-set complexity.

Greedy Block Selection Rules

» Consider the basic convex optimization problem:

argmin f(x),
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where f is differentiable and n is large.

Block Gauss-Southwell (GS)

» Classic Gauss-Southwell rule selects block whose gradient has largest Euclidean norm,

argmax ||V, f(2")]|.
beb

— Tends to make more progress than cyclic or random block selection.

Block Gauss-Southwell-Lipschitz (GSL)

» Assume f is Lj-block-wise Lipschitz continuous,

|Vif(x+ Upd) — Vi f(x)|| < Ly||d||, for all d.
» Minimizing quadratic bound from block-wise Lipschitz continuity, we have
k
b € argmax [Vo/(@ )H2
beBB \/L_b

— By using Lipschitz constants, guarantees more progress than GS rule.

Block Gauss-Southwell-Quadratic (GSQ)

» Obtain a better bound by measuring Lipschitz continuity using quadratic norms,
|Vof(z + Ud) = Vi f (2)]| g+ < ||l i, = Vd" Hyd,
where Hj is a global upper bound on the Hessian V%bf.

» Minimizing the Lipschitz quadratic bound measured in the quadratic norm, we have

br. € argmax{\|vbf(zvk)HHb1} = argmax { V, f(z")" H, 'V, f(z")} .
beb beb

— Equivalent to the maximum improvement rule for quadratics.

— May be difficult to find Hessian bounds H;, depends on how we define blocks.

Block Gauss-Southwell-Diagonal (GSD)

» By upper bounding the block-Hessian V%, f by a diagonal matrix D;, we have,
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— Dy, refer to the diagonal element corresponding to coordinate ¢ in block b.

b;. € argmax
belb
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= argmax <
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— Guarantees more progress than GSL rule, may be easier to implement than GSQ rule.
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— We can define a set of possible blocks 5 using two strategies:
Fixed (FB): Initialize partition of variables into groups.
— E.g., sort according to Lipschitz constants.
Variable (VB): Choose “best” M variables at each step.

— Guarantees more progress, but GSL/GSQ seem intractable for variable blocks.
~ Approximate GSQ using Hy = My, where M is a fixed upper bounding matrix.
» We can approximate GSD by assuming D;; = d; (same across all blocks b).

* Approximate GSL using GSD rule with Dy; = » .. M; ; (approximates Ly).

Message-Passing for Higher-Order Updates

» Consider a basic quadratic minimization problem restricted to the coordinates of block b,

1 5
argmin —ngbba:b — oy,
h w2
where

» Ay, € R s the submatrix of positive-definite and sparse matrix A
» ¢ = ¢y — Ay is a vector with b defined as the complement of 0

* Solve this problem to find Newton updates and (for sparse quadratics) optimal updates.

» Using matrix factorization methods this costs O(|b]?).
» We exploit connection to Gaussian Markov random fields:
— Update tree-structured blocks in O(|b|) using Gaussian belief propagation.
— Equivalent to Gaussian elimination on tree-structured blocks.
» Options for structured partitioning of the blocks into trees:

(a) Classic red-black — loses dependencies.
(b) Fixed tree partition — maintains dependencies, |b| = n /2.
(c) Variable greedy tree — spans all corners of graph, |b| ~ 2n/3.
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C) Variable greedy tree.

Active-Set ldentification

» Consider the composite optimization problem,

argmin f(x) + Z gi(;),
i=1
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where f is strongly-convex, V f is Lipschitz-continuous, g; convex/lower semi-continuous.
— E.g., non-negative bound constraints, L1-regularized problem

» The subdifferential of each g; is an interval on the real line and the interior of each Jg; at
x; can be written as an open interval,

int g;(xz;) = (l;, w;),
where [; € RU {—oc} and u; € RU {0}

(1)

The active-set for separable g is defined as the set Z = {7:0¢;(x}

[/

*) is not a singleton }.

» By (1), the set Z includes indices ¢ where z} is equal to the lower bound on x;, is
equal to the upper bound on z;, or occurs at a non-smooth value of g;.

— For L1-regularization, the active-set is the set of indices such that x7 = 0 (sparsity pattern).

The minimum distance to the nearest boundary of the subdifferential (1) for all i € Z,

0 = I;Iélzigl {mm{—sz(:z:*) — {;,u; + sz(ﬁl?*)}} (2)

— For non-negative constraints, we have § = min;cz V, f(z*).
— For L1-regularization, we have § = A — max;cz |V, f(x¥)|.

Theorem: Active-Set Identification

Assume ¥ — x* and x* is a non-degenerate solution. Then for any proximal coordinate de-
scent method with a step-size of 1/L there exists a finite k such that 2% = z* for all i € Z.

Active-Set Complexity

The active-set complexity is the number of iterations required before an algorithm is
guaranteed to have reached the active-set.

» By our assumptions, proximal BCD with cyclic/greedy selection achieves linear rate,

1\ " k
2 — 27 < (1——) 3 < exp (——) . €
K K

— In our Theorem, we show that active-set identification occurs when ||z* — z*|| < §/2L.

Theorem: Active-Set Complexity

For any ¢ as defined in (2), we have ||zF—z*|| < §/2L after at most «log(2L~/8) iterations.
Further, we identify the active-set after an additional ¢ iterations, where ¢ is the number of
iterations required after iteration £ to select all suboptimal x; with 7« € Z as part of some b.

— Bound only depends logarithmically on 0.
» if 0 is large, then we can expect to identify the active-set very quickly.
— Can be modified to use other step-sizes and to analyze proximal gradient methods.




