

Let's Make Block Coordinate Descent Go Fast! Julie Nutini (UBC), Issam Laradji (UBC), Mark Schmidt (UBC) and Warren Hare (UBC Okanagan)

OVERVIEW:

Motivation:

- Block coordinate descent (BCD) methods are key tools in large-scale optimization.
 - Easy to implement.
 - Low memory requirements.
 - Cheap iteration costs.
 - Adaptability to distributed settings.
- ► Used for almost two decades to solve LASSO and SVMs.
- \rightarrow **Any** improvements on convergence will affect many applications.

This work:

New greedy block selection rules: \rightarrow Exploit structure to ensure more progress than classic Gauss-Southwell.

New higher-order update:

 \rightarrow Update large blocks using message passing in graph-structured problems.

Message-Passing for Higher-Order Updates

► Consider a basic quadratic minimization problem restricted to the coordinates of block b,

$$\underset{x_b}{\operatorname{argmin}} \ \frac{1}{2} x_b^T A_{bb} x_b - \tilde{c}^T x_b,$$

where

- $A_{bb} \in \mathbb{R}^{|b| \times |b|}$ is the submatrix of positive-definite and sparse matrix A • $\tilde{c} = c_b - A_{b\bar{b}} x_{\bar{b}}$ is a vector with b defined as the complement of b
- * Solve this problem to find Newton updates and (for sparse quadratics) optimal updates.
- Using matrix factorization methods this costs $O(|b|^3)$.
- ► We exploit connection to Gaussian Markov random fields:
- \rightarrow Update tree-structured blocks in O(|b|) using Gaussian belief propagation.
- \rightarrow Equivalent to Gaussian elimination on tree-structured blocks.
- Options for structured partitioning of the blocks into trees:
 - (a) **Classic red-black** \rightarrow loses dependencies.
 - **Fixed tree partition** \rightarrow maintains dependencies, |b| = n/2. (b)
 - Variable greedy tree \rightarrow spans all corners of graph, $|b| \approx 2n/3$. (c)

(c) Variable greedy tree.

Active-Set Identification

Consider the composite optimization problem,

$$\operatorname{rgmin}_{x \in \mathbb{R}^n} f(x) + \sum_{i=1}^n g_i(x_i),$$

where f is strongly-convex, ∇f is Lipschitz-continuous, g_i convex/lower semi-continuous.

- \rightarrow E.g., non-negative bound constraints, L1-regularized problem
- The subdifferential of each g_i is an interval on the real line and the interior of each ∂g_i at x_i can be written as an open interval,

$b_k \in \underset{b \in \mathcal{B}}{\operatorname{argmax}} \frac{\|\nabla_b f(x^k)\|_2}{\sqrt{L_b}}.$ \rightarrow By using Lipschitz constants, guarantees more progress than GS rule.

Block Gauss-Southwell-Quadratic (GSQ)

- Obtain a better bound by measuring Lipschitz continuity using quadratic norms, $\|\nabla_b f(x + U_b d) - \nabla_b f(x)\|_{H_b^{-1}} \le \|d\|_{H_b} = \sqrt{d^T H_b d},$
- where H_b is a global upper bound on the Hessian $\nabla_{bb}^2 f$.
- ► Minimizing the Lipschitz quadratic bound measured in the quadratic norm, we have

$$b_k \in \underset{b \in \mathcal{B}}{\operatorname{argmax}} \left\{ \|\nabla_b f(x^k)\|_{H_b^{-1}} \right\} \equiv \underset{b \in \mathcal{B}}{\operatorname{argmax}} \left\{ \nabla_b f(x^k)^T H_b^{-1} \nabla_b f(x^k) \right\}$$

- \rightarrow Equivalent to the maximum improvement rule for quadratics.
- \rightarrow May be difficult to find Hessian bounds H_b , depends on how we define blocks.

Block Gauss-Southwell-Diagonal (GSD)

• By upper bounding the block-Hessian $\nabla_{bb}^2 f$ by a diagonal matrix D_b , we have,

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \|\nabla_b f(x^k)\|_{D_b^{-1}} \right\} \equiv \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \sum_{i \in b} \frac{|\nabla_i f(x^k)|^2}{D_{b,i}} \right\}$$

 $\rightarrow D_{b,i}$ refer to the diagonal element corresponding to coordinate i in block b. \rightarrow Guarantees more progress than GSL rule, may be easier to implement than GSQ rule.

int $\partial g_i(x_i) \equiv (l_i, u_i)$,

where $l_i \in \mathbb{R} \cup \{-\infty\}$ and $u_i \in \mathbb{R} \cup \{\infty\}$.

Definition

The *active-set* for separable g is defined as the set $\mathcal{Z} = \{i : \partial g_i(x_i^*) \text{ is not a singleton}\}$.

- ▶ By (1), the set \mathcal{Z} includes indices i where x_i^* is equal to the lower bound on x_i , is equal to the upper bound on x_i , or occurs at a non-smooth value of g_i .
- \rightarrow For L1-regularization, the active-set is the set of indices such that $x_i^* = 0$ (sparsity pattern).

Definition

The minimum distance to the nearest boundary of the subdifferential (1) for all $i \in \mathbb{Z}$,

$$\delta := \min_{i \in \mathcal{Z}} \left\{ \min\{-\nabla_i f(x^*) - l_i, u_i + \nabla_i f(x^*)\} \right\}$$

 \rightarrow For non-negative constraints, we have $\delta = \min_{i \in \mathbb{Z}} \nabla_i f(x^*)$. \rightarrow For L1-regularization, we have $\delta = \lambda - \max_{i \in \mathbb{Z}} |\nabla_i f(x^*)|$.

Theorem: Active-Set Identification

Assume $x^k \to x^*$ and x^* is a non-degenerate solution. Then for any proximal coordinate descent method with a step-size of 1/L there exists a finite k such that $x_i^k = x_i^*$ for all $i \in \mathbb{Z}$.

Active-Set Complexity

Definition

 \rightarrow We can define a set of possible blocks \mathcal{B} using two strategies:

Fixed (FB): Initialize partition of variables into groups.

 \rightarrow E.g., sort according to Lipschitz constants.

Variable (VB): Choose "best" M variables at each step.

 \rightarrow Guarantees more progress, but GSL/GSQ seem intractable for variable blocks.

* Approximate GSQ using $H_b = M_{b,b}$, where M is a fixed upper bounding matrix.

- * We can approximate GSD by assuming $D_{b,i} = d_i$ (same across all blocks b).
- * Approximate GSL using GSD rule with $D_{b,i} = \sum_{j} M_{i,j}$ (approximates L_b).

The *active-set complexity* is the number of iterations required before an algorithm is guaranteed to have reached the active-set.

► By our assumptions, proximal BCD with cyclic/greedy selection achieves linear rate,

$$\|x^k - x^*\| \le \left(1 - \frac{1}{\kappa}\right)^k \gamma \le \exp\left(-\frac{k}{\kappa}\right)\gamma.$$
(3)

 \rightarrow In our Theorem, we show that active-set identification occurs when $||x^k - x^*|| \leq \delta/2L$.

Theorem: Active-Set Complexity

For any δ as defined in (2), we have $||x^k - x^*|| \le \delta/2L$ after at most $\kappa \log(2L\gamma/\delta)$ iterations. Further, we identify the active-set after an additional t iterations, where t is the number of iterations required after iteration k to select all suboptimal x_i with $i \in \mathbb{Z}$ as part of some b.

\rightarrow Bound only depends logarithmically on δ .

 \blacktriangleright if δ is large, then we can expect to identify the active-set very quickly.

 \rightarrow Can be modified to use other step-sizes and to analyze proximal gradient methods.