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OVERVIEW:

Motivation:

I Block coordinate descent (BCD) methods are key tools in large-scale optimization.

- Easy to implement.
- Low memory requirements.
- Cheap iteration costs.
- Adaptability to distributed settings.

I Used for almost two decades to solve LASSO and SVMs.

→ Any improvements on convergence will affect many applications.

This work:

xk+1
bk

= xkbk + dk

Approximate greedy block selection rules:
→ Tractable for variable block selection.

New higher-order update:
→ Update large blocks using message
passing in graph-structured problems.

New greedy block selection rules:
→ Exploit structure to ensure more
progress than classic Gauss-Southwell.

Active-set identification results:
→ Analysis for active-set identification
and bounds on active-set complexity.

Greedy Block Selection Rules

I Consider the basic convex optimization problem:

argmin
x∈IRn

f (x),

where f is differentiable and n is large.

I Classic Gauss-Southwell rule selects block whose gradient has largest Euclidean norm,

argmax
b∈B

‖∇bf (xk)‖.

→ Tends to make more progress than cyclic or random block selection.

Block Gauss-Southwell (GS)

I Assume f is Lb-block-wise Lipschitz continuous,

‖∇bf (x + Ubd)−∇bf (x)‖ ≤ Lb‖d‖, for all d.

I Minimizing quadratic bound from block-wise Lipschitz continuity, we have

bk ∈ argmax
b∈B

‖∇bf (xk)‖2√
Lb

.

→ By using Lipschitz constants, guarantees more progress than GS rule.

Block Gauss-Southwell-Lipschitz (GSL)

I Obtain a better bound by measuring Lipschitz continuity using quadratic norms,

‖∇bf (x + Ubd)−∇bf (x)‖H−1b ≤ ‖d‖Hb
=
√
dTHbd,

where Hb is a global upper bound on the Hessian ∇2
bbf .

I Minimizing the Lipschitz quadratic bound measured in the quadratic norm, we have

bk ∈ argmax
b∈B

{
‖∇bf (xk)‖H−1b

}
≡ argmax

b∈B

{
∇bf (xk)TH−1

b ∇bf (xk)
}
.

→ Equivalent to the maximum improvement rule for quadratics.

→ May be difficult to find Hessian bounds Hb, depends on how we define blocks.

Block Gauss-Southwell-Quadratic (GSQ)

I By upper bounding the block-Hessian ∇2
bbf by a diagonal matrix Db, we have,

bk ∈ argmax
b∈B

{
‖∇bf (xk)‖D−1b

}
≡ argmax

b∈B

{∑
i∈b

|∇if (xk)|2

Db,i

}
.

→ Db,i refer to the diagonal element corresponding to coordinate i in block b.

→ Guarantees more progress than GSL rule, may be easier to implement than GSQ rule.

Block Gauss-Southwell-Diagonal (GSD)

0 100 200 300 400
Iterations with 5-sized blocks

3.0× 103

3.2× 103

3.4× 103

3.6× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n 

Da
ta

se
t C

Cyclic-FB Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VBRandom-VB

GS-VB

GSL-VB

0 50 100 150 200 250 300 350
Iterations with 5-sized blocks

2.8× 101

6.3× 101

1.4× 102

3.1× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic 

on
 D

at
as

et
 B

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

→ We can define a set of possible blocks B using two strategies:

Fixed (FB): Initialize partition of variables into groups.

→ E.g., sort according to Lipschitz constants.

Variable (VB): Choose “best” M variables at each step.

→ Guarantees more progress, but GSL/GSQ seem intractable for variable blocks.
? Approximate GSQ using Hb = Mb,b, where M is a fixed upper bounding matrix.
? We can approximate GSD by assuming Db,i = di (same across all blocks b).
? Approximate GSL using GSD rule with Db,i =

∑
jMi,j (approximates Lb).

Message-Passing for Higher-Order Updates

I Consider a basic quadratic minimization problem restricted to the coordinates of block b,

argmin
xb

1

2
xTb Abbxb − c̃Txb,

where
I Abb ∈ IR|b|×|b| is the submatrix of positive-definite and sparse matrix A
I c̃ = cb − Abb̄xb̄ is a vector with b̄ defined as the complement of b

? Solve this problem to find Newton updates and (for sparse quadratics) optimal updates.

I Using matrix factorization methods this costs O(|b|3).

I We exploit connection to Gaussian Markov random fields:

→ Update tree-structured blocks in O(|b|) using Gaussian belief propagation.
→ Equivalent to Gaussian elimination on tree-structured blocks.

I Options for structured partitioning of the blocks into trees:

(a) Classic red-black → loses dependencies.
(b) Fixed tree partition → maintains dependencies, |b| = n/2.
(c) Variable greedy tree→ spans all corners of graph, |b| ≈ 2n/3.
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(a) Red-black.
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(c) Variable greedy tree.

Active-Set Identification

I Consider the composite optimization problem,

argmin
x∈IRn

f (x) +

n∑
i=1

gi(xi),

where f is strongly-convex, ∇f is Lipschitz-continuous, gi convex/lower semi-continuous.

→ E.g., non-negative bound constraints, L1-regularized problem

I The subdifferential of each gi is an interval on the real line and the interior of each ∂gi at
xi can be written as an open interval,

int ∂gi(xi) ≡ (li, ui), (1)

where li ∈ IR ∪ {−∞} and ui ∈ IR ∪ {∞}.

The active-set for separable g is defined as the set Z = {i :∂gi(x∗i ) is not a singleton}.
Definition

I By (1), the set Z includes indices i where x∗i is equal to the lower bound on xi, is
equal to the upper bound on xi, or occurs at a non-smooth value of gi.

→ For L1-regularization, the active-set is the set of indices such that x∗i = 0 (sparsity pattern).

The minimum distance to the nearest boundary of the subdifferential (1) for all i ∈ Z ,

δ := min
i∈Z
{min{−∇if (x∗)− li, ui +∇if (x∗)}} (2)

Definition

→ For non-negative constraints, we have δ = mini∈Z∇if (x∗).

→ For L1-regularization, we have δ = λ−maxi∈Z |∇if (x∗)|.

Assume xk → x∗ and x∗ is a non-degenerate solution. Then for any proximal coordinate de-
scent method with a step-size of 1/L there exists a finite k such that xki = x∗i for all i ∈ Z .

Theorem: Active-Set Identification

Active-Set Complexity

The active-set complexity is the number of iterations required before an algorithm is
guaranteed to have reached the active-set.

Definition

I By our assumptions, proximal BCD with cyclic/greedy selection achieves linear rate,

‖xk − x∗‖ ≤
(

1− 1

κ

)k
γ ≤ exp

(
−k
κ

)
γ. (3)

→ In our Theorem, we show that active-set identification occurs when ‖xk − x∗‖ ≤ δ/2L.

For any δ as defined in (2), we have ‖xk̄−x∗‖ ≤ δ/2L after at most κ log(2Lγ/δ) iterations.
Further, we identify the active-set after an additional t iterations, where t is the number of
iterations required after iteration k̄ to select all suboptimal xi with i ∈ Z as part of some b.

Theorem: Active-Set Complexity

→ Bound only depends logarithmically on δ.
I if δ is large, then we can expect to identify the active-set very quickly.

→ Can be modified to use other step-sizes and to analyze proximal gradient methods.


