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Nucleic Acid Kinetic Simulators

Kinetic simulators aim to predict the kinetics of interacting nucleic acid strands
e.g., reaction rate constants.
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Nucleic Acid Kinetic Simulators

Kinetic simulators aim to predict the kinetics of interacting nucleic acid strands
e.g., reaction rate constants.

Useful for biological and biotechnological applications.

[Yurke et al., 2000]

Predicting kinetics is di�cult (dependent on sequence, temperature, ...).
Accurate models of nucleic acid kinetics are required.
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Contributions

We introduce an Arrhenius kinetic model.

We train kinetic models.
We collect a dataset of experimentally determined reaction rate constants.
We introduce a computational framework for predicting reaction rate constants.

Our Arrhenius model performs better than an existing model.
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Modelling Kinetics of Interacting Nucleic Acid Strands

Kinetics of interacting strands are modelled as continuous time Markov chains
(CTMC) [Schae�er et al., 2015].

The state space represents non-pseudoknotted secondary structures.
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kji

ssstate jstate i
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The transition rates are determined by a kinetic model and obey detailed balance:

kij
kji

= e−
∆G0(j)−∆G0(i)

RT

∆G 0(i): free energy of state i , R: gas constant, T : temperature.

Estimate reaction rate constants from mean �rst passage times (MFPTs).
The MFPT of a CTMC is the average time it takes to reach one of a set of �nal states
from an initial state.
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The Metropolis Kinetic Model

A kinetic model is the Metropolis model [Schae�er et al., 2015].

Bimolecular transitions are given by:

ssstate j

state i

kij = kbiu

kji

kbi > 0: bimolecular rate constant
u: initial concentration of the reactants

The model predictions are o� by several orders of magnitude when we train it with
our framework.
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The Arrhenius Kinetic Model

We introduce a new model that has locally context-dependent Arrhenius rates.
Transition rates depend on the pairing status of the bases immediately to left and the
right side of the base pair forming or breaking.

ssstate j

state i

kij

kji

ssstate j

state i

kij

kji

loopend

Our model di�erentiates between seven di�erent half contexts:

C = {stack, loop, end, stack+loop, ...}
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The Arrhenius Kinetic Model

We introduce a new model that has locally context-dependent Arrhenius rates.
Transition rates depend on activation energy.

We rede�ne kbi : C × C → R>0:

kbi(left, right) = αkuni(left, right)

α: bimolecular scaling constant

kbi(end, loop) = αAende
−Eend/RTAloope

−Eloop/RT
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Dataset of Experimental Reaction Rate Constants

|Training set| = 320, |Testing set| = 56

Hairpin closing and opening [Bonnet et al., 1998],
[Bonnet, 2000], [Kim et al., 2006]

Bubble closing [Altan-Bonnet et al., 2003]

+

Helix association and dissociation [Morrison
and Stols, 1993], [Reynaldo et al., 2000]

+
TS

3

S

4

+
TS

3

S

4

Toehold-mediated 3-way strand displacement
[Reynaldo et al., 2000], [Zhang and Winfree, 2009],
[Machinek et al., 2014]

+ +

Toehold-mediated 4-way strand exchange [Dabby, 2013]
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Example: Hairpin Closing and Opening
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1000/T(K 1)
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Hairpin closing (solid) and opening (open) [Bonnet et al.,
1998]. The legend shows the hairpin loop length.
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Example: Toehold-mediated 3-way Strand Displacement With Mismatches
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Mismatch position (nt)
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M
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7nt
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Toehold-mediated 3-way strand displacement with
mismatches [Machinek et al., 2014]. The legend shows the
length of the toehold domain.

Mismatch
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Framework Overview
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Predict Reaction Rate Constants

Instead of stochastic simulations, we estimate mean �rst passage times (MFPTs)
with exact solvers [Suhov and Kelbert, 2008].

Can estimate the MFPT of slow reactions e�ciently.

We use a reduced state space approach to enable sparse matrix computations.

Red base pairs can break

Blue bases
can form
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Evaluate Parameter Sets

Let θ be the set of parameters in a kinetic model.
For the Metropolis model, θ = {ln kuni, ln kbi}.
For the Arrhenius model, θ = {lnAl , El | ∀l ∈ C} ∪ {α}.

Let kr and k̂r be the experimental and predicted reaction rate constant of reaction r ,
respectively.

The prediction error, εr , is the di�erence between log10 kr and log10 k̂r
εr ∼ N(0, σ2).

We also use priors.

Thus, the log of the posterior distribution on the training set Dtrain is:

logP(θ, σ|Dtrain) ≈ − 1

2σ2

∑
r∈Dtrain

(
log10 kr − log10 k̂r

)2
− (n + 1) log σ − λ

2
‖θ‖22
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Sample Parameter Sets

We draw samples from the posterior distribution of the parameters.

We approximate the expected value of a reaction rate constant by averaging the
predictions of all samples.

We use the emcee software package [Foreman-Mackey et al., 2013], a Markov chain
Monte Carlo (MCMC) ensemble sampler.
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Results

Initial is an initial parameter set.

Ensemble is the MCMC ensemble approach.
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Hairpin Closing and Opening
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Hairpin closing (solid) and opening (open) [Bonnet et al.,
1998]. The legend shows the hairpin loop length.
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Metropolis Model Fitting for Hairpin Closing and Opening
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Arrhenius Model Fitting for Hairpin Closing and Opening
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Arrhenius with MCMC Ensemble
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Example: Toehold-mediated 3-way Strand Displacement With Mismatches
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Toehold-mediated 3-way strand displacement with
mismatches [Machinek et al., 2014]. The legend shows the
length of the toehold domain.

Mismatch
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Model Predictions for Toehold-mediated 3-way Strand Displacement With
Mismatches
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Summary

We introduce an Arrhenius kinetic model.

We train kinetic models.
We collect a dataset of experimentally determined reaction rate constants.
We introduce a computational framework for predicting reaction rate constants.

Our Arrhenius model performs better than an existing model.
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Thank You!
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