
Finding a Maximum Weight Sequence
with Dependency Constraints

by

Behrooz Sepehry

B.Sc., Sharif University of Technology, 2014

AN ESSAY SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2016

c© Behrooz Sepehry 2016

Abstract

In this essay, we consider the following problem: We are given a graph and
a weight associated with each vertex, and we want to choose a sequence of
vertices that maximizes the sum of the weights, subject to some constraints
arising from dependencies between vertices. We consider several versions of
this problem with different constraints. These problems have applications
in finding the convergence rates for some optimization algorithms, including
coordinate descent with Gauss-Southwell rule and greedy Kaczmarz.

ii

Preface

The main problem considered in this essay, introduced in chapter 1, was
first introduced in [1]. In that paper, the authors solved the problem for a
special case. In this essay, I solved the problem for the general case. This
solution was published in [2]. I also consider several generalizations of the
problem in this essay and solved some of them.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Figures . vi

1 Introduction . 1
1.1 Coordinate Descent with Gauss-Southsell Rule 1
1.2 Greedy Kaczmarz Method 3

2 The Maximum Weight Sequence with Dependency Con-
straints Problem . 5
2.1 The Problem . 5
2.2 Notations . 5
2.3 Solution . 7

3 Some Generalizations Of The MSD Problem 20
3.1 The Maximum Weight Sequence with k-times Dependency

Constraints Problem . 20
3.2 The Maximum Weight Sequence with k-order Dependency

Constraints Problem . 21
3.3 The Maximum Weight Sequence with k-neighbors Depen-

dency Constraints problem 22
3.3.1 Notations . 23
3.3.2 Solution . 24

3.4 The Probabilistic Sequence with Dependency Constraints Prob-
lem . 39

4 Conclusion and Future Work 43

iv

Table of Contents

Bibliography . 45

v

List of Figures

2.1 An example graph for the MSD problem 19

3.1 The vertices and edges corresponding clauses 26
3.2 The vertices and edges corresponding variables 27
3.3 An example graph for reduction from 3SAT to the problem

of deciding e /∈ U(G, 2) . 27
3.4 The clause gadget . 31
3.5 The binary tree . 31
3.6 The variable gadget . 32
3.7 The edges corresponding to the literals of a clause 32
3.8 The complete graph . 33

vi

Chapter 1

Introduction

This essay is motivated by solving the following problem, which we call the
Maximum weight Sequence with Dependency constraints and abbreviate it
to MSD:

We are given a non-empty graph G = (V,E) with at least one edge, a
weight W (vi) associated with each vertex vi ∈ V , and an iteration number
T . We want to choose a sequence of vertices V = {vit}Tt=1 that maximizes∑T

t=1W (vit), subject to the following constraint: after each time vertex vi
is selected, it cannot be selected again until after a neighbor of vertex vi has
been selected.

This problem naturally arises while trying to find the convergence rates
for coordinate descent with Gauss-Southsell rule and greedy Kaczmarz method.

In this essay, we will solve this problem and will give a polynomial time
algorithm to find the solution. Then we consider several generalization of
this problem, in which the constraints are different.

1.1 Coordinate Descent with Gauss-Southsell
Rule1

In recent years, coordinate descent methods have become very useful in
solving large-scale optimization problems. Nesterov has shown that coor-
dinate descent can be faster than Gradient Descent in the following cases.
Assuming we are optimizing n variables, the cost of performing n coordi-
nate descent updates is similar to the cost of performing one full Gradient
Descent update. These cases includes the family of functions

h(x) =
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fi,j(xi, xj),

where fi,j are smooth, G(V,E) is a graph and all functions are convex. This
family of functions includes quadratic functions, graph-based label propa-

1This section is based on [1]

1

1.1. Coordinate Descent with Gauss-Southsell Rule

gation algorithms for semi-supervised learning, and finding the most likely
assignments in continuous pairwise graphical models [1].

Our objective is to find minx∈Rn h(x). In coordinate descent with Gauss-
Southwell rule with exact optimization, at each step t, we choose a coordi-
nate it as follows

it = argmin
i
|∇ih(xt)|

and then we optimize the function with respect to coordinate it

αt = argmin
α
{h(xt + αeit)}

xt+1 = xt + αteit .

In [1], the authors show that the convergence rate of this method is

h(xt)− h(x∗) ≤

[
T∏
t=1

(
1− µ1

Lit

)]
[h(x0)− h(x∗)], (1.1)

where x∗ is the optimal solution, µ1 is the measure of strong convexity of the
function h with respect to 1-norm, which means that for every two points x
and y, we have

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
µ1
2
||y − x||21,

and Li is the Lipschitz constant for the partial derivative of h with respect
to coordinate i,

|∇ih(x+ αei)−∇ih(x)| ≤ Li|α|.
Furthermore, after we have updated the coordinate i, the algorithm will
never select it again until one of its neighbors has been selected. This is
because when a coordinate i is selected at step t, the function is optimized
with respect to coordinate i, so we would have ∇ih(xt+1) = 0, and based on
the definition of h(x), the value of ∇ih(x) will not be changed until one of
the neighbors of i has been selected.

To find the worst case bound on convergence rate of the algorithm, we

need to find the maximum value of
∏T
t=1

(
1− µ1

Lit

)
in (1.1) subject to the

constraint that a coordinate will never be selected again until after one
of its neighbors has been selected. Note that if we do not have any con-

straints, then the maximum value of
∏T
t=1

(
1− µ1

Lit

)
would be

(
1− µ1

Lmax

)T
.

But because of the constraints, we can not repeatedly select the coor-
dinate coressponding to Lmax, which means that the maximum value of∏T
t=1

(
1− µ1

Lit

)
might be lower than

(
1− µ1

Lmax

)T
.

2

1.2. Greedy Kaczmarz Method

To find the worst case bound, equivalently, if we take logarithm from

both sides of (1.1), we need to find the maximum value of
∑T

t=1 log
(

1− µ1
Lit

)
,

which is the MSD problem with graph G and weight function W (vi) =

log
(

1− µ1
Lvi

)
where vi is the vertex corresponding to the coordinate i in

graph G.

1.2 Greedy Kaczmarz Method2

Large scale linear systems of equations have many applications in machine
learning, including least-squares problems, Gaussian processes, and graph-
based semi supervised learning. The Kaczmarz method is an iterative algo-
rithm for solving consistent linear system of equations of the form Ax = b.

At each step t, the Kaczmarz method selects a row it of the matrix
A based on a “selection rule” and projects the current point xt onto the
hyperplane corresponding to the row it, i.e. the hyperplane a>itx = bit , to
obtain the point xt+1 for the next step. Note that by a>i we mean the ith
row of the matrix A.

There are several selection rules for the Kaczmarz method, such as cyclic,
randomized, and greedy. Here we consider a particular greedy selection rule,
named “maximum residual” rule that selects the row it according to

it = argmax
i
|a>i xt − bi|.

and then updates the point xt by projecting xt onto the hyperplane corre-
sponding to the row it according to the formula

xt+1 = xt +
bit − a>itx

t

||ait ||2
ait .

In general, computing this greedy selection rule exactly is too computa-
tionally expensive, but there are several cases in which we can compute it
efficiently. For example if A is sparse, in [2] the authors show an efficient
way to compute the maximum residual rule. Their method is based on the
fact that when we select a row j that is orthogonal to row i, then the resid-
ual with respect to row i will not change. So if the matrix A is sparse and
many rows are orthogonal to each other, then at each step, many residuals
remain the same and we do not need to recompute them. For simplicity, the
authors defines a graph named “orthogonality graph” G = (V,E), based on

2This section is based on [2]

3

1.2. Greedy Kaczmarz Method

the concept of orthogonal rows in matrix A. In graph G we have a vertex vi
corresponding to each row i of the matrix A. There is an edge between two
vertices vi and vj if and only if the corresponding rows i and j in the matrix
A are not orthogonal. So we only need to update the residual corresponding
to a row i, if a neighbor of vertex vi in graph G is selected.

In [2], the authors show that the convergence rate of this method is

||xt − x∗||2 ≤

[
T∏
t=1

(
1− σ(A,∞)

||ait ||2

)]
||x0 − x∗||2, (1.2)

where x∗ is the optimal solution, and σ(A,∞) is the Hoffman-like constant
of matrix A. Furthermore, after we have selected the row i, the maximum
residual rule will never select it again until one of its neighbors in the orthog-
onality graph has been selected. This is because when a row i is selected at
step t, the residual of row i, i.e. a>i x

t − bi becomes 0, and as we discussed,
it will not be changed until one of the neighbors of i in the orthogonality
graph has been selected. So the maximum residual rule will not select row
i again until after one of its neighbors have been selected.

We can find the worst case convergence rate for the algorithm, we need

to find the maximum value of
∏T
t=1

(
1− σ(A,∞)

||ait ||2

)
in (1.2) subject to the con-

straint that a row will never be selected again until after one of its neighbors
in the orthogonality graph has been selected. Note that if we do not have

any constraints, then the maximum value of
∏T
t=1

(
1− σ(A,∞)

||ait ||2

)
would be(

1− σ(A,∞)
maxi{||ai||2}

)T
. But because of the constraints, we can not repeatedly

select the row coressponding to maxi{||ai||2}, which means that the maxi-

mum value of
∏T
t=1

(
1− σ(A,∞)

||ait ||2

)
might be lower than

(
1− σ(A,∞)

maxi{||ai||2}

)T
.

To find the worst case bound, equivalently, if we take logarithm from

both sides of (1.2), we need to find the maximum value of
∑T

t=1 log
(

1− σ(A,∞)
||ait ||2

)
,

which is the MSD problem with graph G and weight function W (vi) =

log
(

1− σ(A,∞)
||ait ||2

)
where vi is the vertex corresponding to the row i in graph

G.

4

Chapter 2

The Maximum Weight
Sequence with Dependency
Constraints Problem

2.1 The Problem

In this chapter, we try to solve the MSD problem, introduced in chapter 1.

2.2 Notations

Because the total number of sequences of vertices with length T is finite, for
each T , there is at least one sequence with the highest average weight.

Let V = {v1, v2, ..., vn} where n = |V |. We define the binary vector
st = (stv1 , s

t
v2 , ..., s

t
vn) as the state of our structure at time t such that

st = (stv1 , s
t
v2 , ..., s

t
vn), where stvi =

{
1 vertex vi is selectable

0 vertex vi is not selectable
, (2.1)

Note that a vertex is selectable, either from the beginning, or because one of
it’s neighbors have been selected. Also, note that when a vertex is selected,
it becomes not selectable, until one of it’s neighbors is selected.

For an arbitrary finite sequence of vertices V = {vit}bt=a, we define the
average weight of the sequence as

W (V) =

∑b
t=aW (vit)∑b

t=a 1
. (2.2)

We define
Wmax = max{W (vi)| v ∈ V }. (2.3)

So for any sequence V of vertices V , we have

W (V) ≤Wmax. (2.4)

5

2.2. Notations

We denote the number of appearances of a vertex vi ∈ V in sequence V
as count(V, vi).

We denote the length of sequence V with |V|.
For two sequences V1 and V2, we denote the sequence obtained by con-

catenating the sequence V2 to V1 as V1V2.
We define the set F(G) as the set of all valid finite sequences of vertices

with respect to graph G. By valid, we mean that we can begin from some
initial state s and perform the sequence with the constraint of MSD problem.
By finite, we mean that it’s length is finite.

We define the set Fmax(G,T) ⊆ F(G) as the set of all valid, finite se-
quences with the highest average weight with length T that can be started
from the initial state s = 1. Note that in the state s = 1, all vertices are
selectable. Note that because we are assuming that the graph G has at least
one edge, we have Fmax(G,T) 6= ∅, as we can have valid sequences with any
lengths, because we can repeat two adjacent vertices indefinitely.

We defineW (Fmax(G,T)) as the average weight of sequences in Fmax(G,T).
We define C(G) ⊆ F(G) as the set of all cyclical sequences. By cyclical,

we mean that it is valid and finite, and from some initial state s, we can
begin and repeat the sequence indefinitely. Also note that because E 6= ∅,
then C(G) 6= ∅.

We defineWmax(C(G)) = max{W (V)| V ∈ C(G)}. Note thatWmax(C(G)) 6=
∞ because of (2.4).

We define Cmax(G) as the set of all cyclical sequences with the highest
average weight among all cyclical sequences. Note that if E 6= ∅, then as
C(G) 6= ∅, we have Cmax(G) 6= ∅.

For set of vertices U ⊆ V , we define G(U) as the sub-graph of G whose
vertices are U . Similarly, for a sequence of vertices V, we define G(V) as
the sub-graph of G whose vertices have been appeared in the sequence. By
diam(G), we mean the diameter of the graph G. By N(G, v) we mean the
set of all neighbors of vertex v in graph G.

Let U2 be the collection of all sets of vertices such that their corre-
sponding sub-graph is connected and has diameter 1 or 2, in other words,
the collection of all star sub-graphs. Formally, let

U2 = {U | U ⊆ V, G(U) is connected, 0 < diam(G(U)) ≤ 2}. (2.5)

Note that if E = ∅, then U2 = ∅.
For each set of vertices U ⊆ V , we define a binary vector eU denoting

6

2.3. Solution

membership in U . Formally, let

eU = (e1, e2, ..., en), where ei =

{
1 vi ∈ U
0 vi /∈ U

. (2.6)

2.3 Solution

To solve the MSD problem, we prove several useful lemmas related to the
problem.

In the next lemma, we show that if a sequence of vertexes is a combina-
tion of several smaller sequences, then at least one of the smaller sequences
must have a higher average weight than the original sequence.

Lemma 2.1. Let V, and V1,V2, ...,Vm be sequences of vertices. If for every
vertex v ∈ V we have

count(V, v) =
m∑
i=1

count(Vi, v), (2.7)

then there is a sequence Vi such that

W (Vi) ≥W (V). (2.8)

Proof. Because of (2.7), we have

W (V)
m∑
i=1

|Vi| =
m∑
i=1

W (Vi)|Vi| ⇒
m∑
i=1

|Vi| =
m∑
i=1

W (Vi)
W (V)

|Vi|.

Assume for all Vi we have MVi < MV . This yields
∑m

i=1 |Vi| <
∑m

i=1 |Vi|,
which is a contradiction. So the result holds.

Note that because of the constraints of the MSD problem, we can not
select a vertex repeatedly. In the next lemma, we show that there is an
upper bound on the number of times that a vertex can be selected in a
sequence.

Lemma 2.2. Let V ∈ F(G) be a sequence that can be started from some
initial state s. Then for all vertices v ∈ V we have

count(V, v) ≤ sv +
∑

u∈N(G,v)

count(V, u). (2.9)

7

2.3. Solution

Proof. When vertex v is selected, it must be in selectable state. This means
it was selectable from the beginning or one of its neighbor was selected. So
the result is correct.

Note that in the lemma 2.2, the upper bound depends on the initial
state. In the next lemma, we show that if the sequence is cyclical, i.e. it can
be repeated indefinitely, then we can have an upper bound not depending
on the initial state. This lemma will allow our proofs to not depend on the
initial state.

Lemma 2.3. If V ∈ C(G), then for all vertices v ∈ V we have

count(V, v) ≤
∑

u∈N(G,v)

count(V, u). (2.10)

Proof. Because V ∈ C(G), we can repeat the sequence V indefinitely. Con-
sider repeating V twice beginning from some initial state s. We denote this
new sequence by V2.

As V2 ∈ F(G), from lemma 2.2, we can conclude that for all vertices
v ∈ V we have

count(V2, v) ≤ sv +
∑

u∈N(G,v)

count(V2, u).

As sv ∈ {0, 1} and count(V2, v) = 2 count(V, v), we have

2 count(V, v) ≤ 1 +
∑

u∈N(G,v)

2 count(V, u)

< 2 +
∑

u∈N(G,v)

2 count(V, u).

Dividing by 2, we have

count(V, v) < 1 +
∑

u∈N(G,v)

count(V, u),

which yields our result, as count(V, v) is always an integer.

The next lemma, is a core lemma, that when is combined with other
lemmas, will show that we can decompose a valid cyclical sequence into
several smaller cyclical sequences. Furthermore, the sub-graphs formed by
each of these smaller cyclical sequences, is a star sub-graphs.

8

2.3. Solution

Lemma 2.4. Let cv be a non-negative integer associated with each vertex
v ∈ V , and let c = (cv1 , cv2 , ..., cvn) be the associated vector. Suppose that,
for all v ∈ V ,

cv ≤
∑

u∈N(G,v)

cu. (2.11)

Let U2 be the set defined in (2.5). Then we can assign a non-negative integer
aS to each S ∈ U2 such that,

c =
∑
S∈U2

aSeS . (2.12)

Proof. If c = 0, then for all S ∈ U2, we can assign aS = 0 to satisfy (2.11).
So assume that c 6= 0. As c 6= 0, there must be a vertex x such that

cx > 0. Because of (2.11), for at least one of the neighbors of x such as y,
we must have cy > 0, because otherwise (2.11) will be violated for vertex x
as the left-hand side is non-zero and right-hand side is zero. So there must
be an edge {x, y} ∈ E such that cx > 0, cy > 0.

Consider
L =

∑
v∈V

cv. (2.13)

We use induction on L to prove the lemma.
First we prove the lemma is correct for L = 2. As we argued, there are

two neighbor vertices x, y, such that cx > 0, cy > 0. As L = 2, we must
have cx = 1, cy = 1 and for all other vertices v, we must have cv = 0. Let
S∗ = {u, v}. As c = eS∗ and S∗ ∈ U2, by setting aS∗ = 1 and aS = 0 for
all other sets S ∈ U2 that S 6= S∗, we can satisfy (2.12). So the lemma is
correct for L = 2.

Assume that the lemma holds for L = 2, ..., k − 1. We show that the
lemma holds for L = k.

For any vector c ∈ Nn and graph G satisfying (2.11), we define the
remainder operator remG(c) = (rv1 , rv2 , ..., rvn) such that for every v ∈ V
we have

rv = −cv +
∑

u∈N(G,v)

cu. (2.14)

We can see that (2.11) is satisfied if and only if for all vertices v ∈ V , we
have

rv ≥ 0. (2.15)

Let V1 = {v| cv ≥ 1} and G1 = G(V1). Let rmin = min{rv| v ∈ V1}.
We divide the problem into different cases based on the value of rmin. In

9

2.3. Solution

each case we find some set S∗ ∈ U2 such that the vector c′ = c − eS∗

satisfies the constraint (2.11). To do this we show that all elements of vector
r′ = remG(c′) are non-negative.

Note that because we have

c′v =

{
cv v /∈ S∗

cv − 1 v ∈ S∗
, (2.16)

we have

r′v =

{
rv − |S∗ ∩N(G, v)| v ∈ V − S∗

rv − |S∗ ∩N(G, v)|+ 1 v ∈ S∗
. (2.17)

For vertices v ∈ V that cv = 0, it is clear that r′v ≥ 0 is satisfied. So
we should only consider the vertices in V1. For vertices v ∈ V1 − S∗ that
don’t have a neighbor in S∗, we have S∗ ∩N(G, v) = ∅, so r′v = rv ≥ 0. So
we only need to prove that for all the vertices v in S∗ or neighbors of S∗ in
V1, r

′ ≥ 0. We divide the problem into three cases: rmin = 0, rmin = 1 and
rmin ≥ 2.

• Case 1 (rmin = 0):

Consider a vertex x ∈ V1 such that rx = 0. As cx > 0, then because of
(2.11), x should have some neighbor in V1, say y. Now consider the set
N0(y) = {v| v ∈ V1 ∩N(G, y), rv = 0}. We choose S∗ = {y} ∪N0(y),
which is in U2. Note that x ∈ N0(y), so there are some vertices other
than y in S∗.

– Claim: For all vertices v ∈ N0(y), we have r′v ≥ 0.

Proof. First we prove that there are no two neighbor vertices
u, v ∈ N0(y). By way of contradiction, assume u, v ∈ N0(y) are
neighbors. Because ru = 0 and v ∈ N(G, u), we have cu ≥ cv.
Because rv = 0 and u ∈ N(G, v), we have cv ≥ cu. So cv = cu.
But as u, v ∈ N(G, y), we have rv > 0, ru > 0 which contradicts
the fact that ru = 0, rv = 0.

So there are no two neighbor vertices u, v ∈ N0(y). So for all
vertices x ∈ N0(y), y is their only neighbor in S∗. So for all
vertices v ∈ N0(y), we have |S∗ ∩ N(G, v)| = 1 and because
N0(y) ⊆ S∗, based on (2.17), we have r′v = rv = 0.

– Claim: For all vertices v ∈ V1 that have some neighbors in N0(y)
(including y itself), we have rv ≥ 0.

10

2.3. Solution

Proof. Consider a vertex v that is neighbor of a vertex u ∈ N0(y).
Because r′u = 0, we have c′u ≥ c′v, so r′v ≥ 0.

– Claim: For all neighbors v of y with v /∈ N0(y), we have r′v ≥ 0.

Proof. Note that rv ≥ 1, because if rv = 0, then based on the
definition of N0(y), we would have v ∈ N0(y) which contradict
our assumption that v /∈ Ny

0 . If v has a neighbor in N0(y), we
showed in previous claim that rv ≥ 0. If v is not a neighbor
of any vertices of N0(y), then |S∗ ∩ N(G, v)| = 1 and because
v ∈ V −S∗, then based on (2.17), r′v = rv−1 and because rv ≥ 1,
we have r′v ≥ 0.

• Case 2 (rmin = 1):

We divide this case into different sub-cases.

– Case A: There are no two neighbor vertices u, v ∈ V1 such that
rv = 1, ru = 1.

Approach: We pick some vertex x such that rx = 1. Then
because of (2.11), x has some neighbor y such that cy > 0. We
choose S∗ = {x, y} which is in U2. Note that r′x = rx ≥ 0,
r′y = ry ≥ 0. For all vertices v outside of S∗ that are connected to
S∗, if |S∗ ∩N(G, v)| = 1, then as v ∈ V − S∗ and rv ≥ rmin = 1,
based on (2.17) we have r′v ≥ 0. If |S∗ ∩ N(G, v)| = 2, then
because v is neighbor of x, then rv ≥ 2, otherwise our assumption
will be violated. So based on (2.17) we have r′v ≥ 0.

– Case B: There are two neighbor vertices x, y ∈ V1 such that
rx = 1, ry = 1.

∗ Case (i): For all v ∈ V1 − {x, y} connected to both of x, y,
we have rv ≥ 2.
Approach: In this case we choose S∗ = {x, y} which is
in U2. We have r′x = rx ≥ 0 and r′y = ry ≥ 0. For all
vertices v connected to one of x, y, as rv ≥ rmin = 1 and
|S∗ ∩ N(G, v)| = 1, we have r′v ≥ 0 based on (2.17). For
vertices v connected to both of x, y we have rv ≥ 2, and as
|S∗ ∩N(G, v)| = 2 we have r′v ≥ 0 based on (2.17).

∗ Case (ii): There is some vertex z ∈ V1 − {x, y} connected
to both of x, y, with rz = 1.

11

2.3. Solution

Approach: In this case, using rx = 1 and

cx = −rx +
∑

u∈N(G,x)

cu = −1 + cy + cz +
∑

u∈N(G,x)−{y,z}

cu,

as cz > 0, we have cx ≥ cy. Using a similar argument, we
have cx ≤ cy. So we have cx = cy. Similarly we can prove
cx = cz. So cx = cy = cz.
We choose S∗ = {x, y, z}, which is in U2. We claim that
x, y, z are not connected to any other vertex in V1. For the
sake of contradiction, assume that there is a vertex v con-
nected to x. So we have

rx = −cx+cy+cz +
∑

u∈N(G,x)−{y,z}

cu = cz +
∑

u∈N(G,x)−{y,z}

cu.

(2.18)
As v is a neighbor of x, we have∑

u∈N(G,x)−{y,z}

cu > 0,

and as cz > 0, based on (2.18) we have rx > 1, which is a
contradiction. So {x, y, z} has no neighbor in V1 and based
on (2.17) we have r′x = r′y = r′z = 0 because rx = ry = rz = 1.

• Case (rmin ≥ 2):

As argued before, there are two neighbor vertices x, y ∈ V1 because
of (2.11). We choose S∗ = {x, y} which is in U2. Then we have
r′x = rx ≥ 0 and r′y = ry ≥ 0. For all other vertices v ∈ V1 − S∗, we
have |S∗ ∩N(G, v)| ≤ 2. As rv ≥ 2, by (2.17) we have r′v ≥ 0.

So we proved that all vertices of S∗ and neighbors of S∗ in V1 has non
negative r′ value. So we have shown that the vector c′ satisfies the condition
of (2.11). We assumed that the lemma is true for L = 2, ..., k − 1. As∑

u∈V c
′
u < L, the lemma is true for vector c′, so we have c′ =

∑
S∈U2

a′SeS .
As c = c′ + eS , we have our result.

In the next lemma we show that if in the initial state, at least one of
the vertexes of a star sub-graph is selectable, then we can form a cyclical se-
quence from the vertexes of the star sub-graph and repeat them indefinitely.

12

2.3. Solution

Lemma 2.5. Let S ∈ U2, and s = (sv1 , sv2 , ..., svn) be a state such that
for at least one of the vertices x ∈ S we have sx = 1. Then there exists a
cyclical sequence V ∈ C(G) with the following properties.

• For every vertex v ∈ S, count(V, v) = 1.

• For every vertex v /∈ S, count(V, v) = 0.

• The sequence V can be started from the initial state s.

Proof. If |S| = 2, assume S = {x, y}. Based on the definition of U2 in 2.5,
G(S) is connected, so there is an edge between x and y. Let V = (x, y). Note
that we can repeat this sequence indefinitely from state s. For every vertex
v ∈ S, count(V, v) = 1, and for all other vertices v /∈ S, count(V, v) = 0. So
the lemma holds for |S| = 2.

If |S| > 2, based on the definition of U2 in 2.5, there must be a vertex y ∈
S such that the degree of y in the sub-graph G(S) is greater than 1. Assume
S = {x, y, z1, z2, ..., zm}. Note that in the sub-graph G(S), the degree of
all vertices {z1, z2, ..., zm} is 1. If x 6= y, we set V = (x, y, z1, z2, ..., zm),
otherwise V = (x, z1, z2, ..., zm). Note that we can repeat this sequence
indefinitely from state s. For every vertex v ∈ S, count(V, v) = 1, and for
all other vertices v /∈ S, count(V, v) = 0. So the lemma holds for |S| > 2.

In the next lemma, we show that if a vertex of a star sub-graph is
selectable, then in all subsequent steps, at least one of the vertexes of the
star sub-graph will be selectable.

Lemma 2.6. Let S ∈ U2 and s0 be an initial state in which for at least
one of the vertices v ∈ S we have s0v = 1. Suppose V ∈ F(G) is a valid
sequence that can be started from the initial state s0. Let s1 be the state
after performing the sequence V. Then there exists at least one vertex v ∈ S
such that s1v = 1.

Proof. We use induction on the length of V.
When |V| = 0, the lemma clearly holds.
Assume the lemma holds for |V| = 0, 1, ..., k − 1. We show that it holds

for |V| = k.
So suppose |V| = k. Assume the last vertex of V is x and the rest is the

sequence V ′. Suppose after performing the sequence V ′, we are in state s′.
As V ′ is a valid sequence with length k− 1, and the lemma is correct for the
sequences with length k − 1, there exists a vertex y ∈ S such that s′y = 1.

13

2.3. Solution

Now we choose vertex x to complete the sequence V. If x 6= y, then after
choosing x, we still have s′y = 1. If x = y, note that based on the definition
of U2, G(S) is connected, so y has a neighbor, say z ∈ S. So after choosing
y, z is selectable. As z ∈ S, so the lemma also holds in this case.

In the next lemma, we show how we can use lemma 2.4 to decompose a
valid cyclical sequence into several smaller cyclical sequences.

Lemma 2.7. Let cv be a non-negative integer associated with each vertex
v ∈ V , and let c = (cv1 , cv2 , ..., cvn) be the associated vector. Suppose that,
for all v ∈ V , (2.11) holds. Then there exists a valid cyclical sequence
V ∈ C(G) such that for all vertices v ∈ V , count(V, v) = cv. Furthermore,
V = V1V2...Vm, where for all 1 ≤ i ≤ m, we have Vi ∈ C(G), diam(G(Vi)) ≤
2, and for all vertices v ∈ V , count(Vi, v) ≤ 1.

Proof. Using lemma 2.4, we can assign a non-negative integer aS to each set
S ∈ U2, such that (2.12) holds. Consider all sets S ∈ U2 with non-zero aS .
We denote these sets with S1, S2, ..., Sl.

To construct V, we begin with the initial state s0 = 1. From lemma 2.5,
we can find a cyclical sequence S1, corresponding to the set S1, such that
all vertices of S1 are appeared in S1 exactly once, and no other vertex is
appeared in it, and it can be started from the state s0. We repeat S1 for
aS1 times and set V1, ...,VaS1

to S1.
After repeating S1 for aS1 times, suppose we are in state s1. By lemma

2.6, for all sets Si, i = 1, ..., l, there exists a vertex v such that s2v = 1. By
lemma 2.5, there exists a cyclical sequence S2, corresponding to S2. We
repeat S2 for aS2 times.

Similarly, for each set Si, i = 1, ..., l, we can continue and repeat a
corresponding cyclical sequence Si for aSi times. Because c satisfies 2.12, for
all vertices v ∈ V we have count(V, v) = cv. Note that based on lemma 2.5,
each vertex v, appears at most once in Si. As Si ∈ U2, diam(G(Si)) ≤ 2.
So the constructed sequence V satisfies all the properties required by the
lemma.

In the next lemma, we put together all of the previous lemmas to con-
clude that there is a cyclical sequence with the highest average weight whose
vertexes form a star sub-graph. Hence, to find a cyclical sequence with the
highest average weight, we can just limit our search to star sub-graphs.

14

2.3. Solution

Theorem 2.1. If for graph G = (E, V), E 6= ∅, then there exists a
cyclical sequence with the highest average weight V∗ ∈ Cmax(G) such that
diam(G(V∗)) ≤ 2 and for all vertices v ∈ V , count(V, v) ≤ 1.

Proof. Because E 6= ∅, Cmax(G) 6= ∅. So there exists a sequence V ∈
Cmax(G). From lemma 2.3, this implies (2.10). We construct a vector c =
(cv1 .cv2 , ..., cvn), such that for all vertices v ∈ V , cv = count(V, v). Under this
construction, c satisfies (2.11). So based on lemma 2.4 we have (2.12). By
lemma 2.7, V = V1V2...Vm, where for all Vi, i = 1, ...,m, diam(G(Vi)) ≤ 2
and for all vertices v, count(Vi, v) ≤ 1. By lemma 2.1, there is some Vj
such that W (Vj) ≥ W (V). Note that as V ∈ Cmax(G), for all i, we have
W (Vi) ≤ W (V), but as W (Vj) ≥ W (V) we must have W (Vj) = W (V). So
the result holds for V∗ = Vj .

Based on theorem 2.1, we can find cyclical sequences with the highest
average weight in graphs efficiently. The basic idea is to search over all sub-
graphs of graph G that has diameter less than or equal to 2, and pick the
one with the highest average weight.

Algorithm 1: Finding a cyclical sequence with the highest average
weight in graphs.

Data: A graph G = (E, V) and a weight function W : V → R
Result: A cyclical sequence V∗ ∈ Cmax(G) with the highest average

weight.
1 Sort vertices of V by their weight in descending order;
2 for All vertices vi ∈ V do
3 Vvi ← (vi);
4 end
5 for All vertices vi ∈ V from highest weight to lowest do
6 for All vertices vj ∈ N(G, vi) do
7 if W (vi) ≥W (Vvj) then
8 Insert vi to Vvj ;
9 end

10 end

11 end
12 v∗ ← argmaxv∈V W (Vv);
13 Return Vv∗ ;

Theorem 2.2. Given a graph G = (V,E) and a weight function W : V →
R, The algorithm 1 returns an cyclical sequence with the highest average

15

2.3. Solution

weight in time O(|E|+ |V | log |V |).

Proof. In a sub-graph with diameter of exactly 2, there is one vertex that
is connected to all other vertices. We call this special vertex, the center
of the sub-graph. When the diameter of a sub-graph is exactly 1, which is
simply two vertices connected to each other, we can assume any of them as
the center. For simplicity, we refer to sub-graphs with diameter less than or
equal 2 as star sub-graphs.

In the algorithm, for each vertex vi ∈ V , we find the star sub-graph with
the center of vi with the highest average weight. We put the corresponding
vertices in a list named Vvi .

One inefficient way to find Vvi for each vertex vi ∈ V , might be the
following approach. Sort all the neighbors of vi by their weights in descend-
ing order and beginning from the vertex with highest weight, insert them
to Vvi as long as the insertion increase the average weight of Vvi . In order
to see why this approach works, consider two cases. First, if vi has only
one neighbor, then there is only one possible star graph with center vi, and
our approach will finds it. Seconds, if vi has more than 1 neighbors, then
consider two vertices x and y that are neighbors of vi, where W (x) ≤W (y).
Note that if y is in the star sub-graph with highest average weight with
center vi, then x must also be in the sub-graph, because otherwise we could
replace y with x and get a star sub-graph with higher average weight. So
we can insert vertices to Vvi in descending order based on their weights.

However this approach is not the most efficient way to solve the problem.
As for each vertex we sort all it’s neighbors, the running time would be∑

vi∈V
d(vi) log d(vi),

where d(vi) is the degree of vertex vi. If we assume our graph is the complete
graph, then the running time would be Θ(|V |2 log |V |).

Now consider the approach used in the algorithm 1. In the algorithm,
instead of sorting the neighbors of each vertex separately, we sort all vertices
once, and then we consider vertices vi in descending order, and for each
vertex vj that is neighbor of vi, insert vi to Vvj if the insertion improves
the average weight of Vvj . Note that again, for each Vvj , the vertices are
inserted in descending order, like previous approach, so it works correctly.
The running time of the algorithm is Θ(|V | log |V |) for sorting the vertices,
and |E| for considering the neighbor for each vertex. So the total running
time is be Θ(|V | log |V | + |E|), which is better than the running time of
previous approach.

16

2.3. Solution

In the next lemma, we show that although the sequence with the highest
average weight with a particular length may have a higher average than the
cyclical sequence with the highest average weight, when the length goes
to infinity they would have similar average weight. Thus for long enough
sequences, in order to find a sequence with high average weight, we can use
a cyclical sequence with the highest average weight and repeat it.

Theorem 2.3.

lim
T→∞

W (Fmax(G,T)) = W (Cmax(G)). (2.19)

Proof. Let VT0 = {vit}Tt=1 ∈ Fmax(G) and {st}Tt=1 be the corresponding se-
quence of states where s1 = 1. If |VT0 | > 2n, then by pigeon hole princi-
ple, there must be t1 and t2 such that st1 = st2 . Let AT0 = {it}t1−1t=1 and
BT0 = {it}t2−1t=t1

and CT0 = {it}Tt=t2 , so that VT0 = AT0 BT0 CT0 . Now because
st1 = st2 , VT1 = AT0 CT0 is a valid sequence. Note that BT0 ∈ C(G), so
W (BT0) ≤ W (Cmax(G)). If |VT1 | > 2n, we repeat the process and obtain a
new sequence VT2 . As long as |VTj | > 2|V |, we repeat this process until we

obtain a sequence VTm such that

|VTm| ≤ 2n. (2.20)

We denote the omitted sub-sequence from Vkj in step j as Bkj . As we
argued,

W (BTj) ≤W (Cmax(G)). (2.21)

We have

W (VT0) =
1

T

|VTm|W (VTm) +

m−1∑
j=0

|Bkj |W (BTj)

 . (2.22)

Combining (2.4) and (2.20) and (2.21) and (2.22), we have

W (VT0) ≤ 1

T
(2nWmax + TW (Cmax(G))) . (2.23)

Let V∗ be a sequence satisfying the conditions of theorem 2.1. We con-
struct the new sequence V∗↓ by sorting the elements of V∗ by their weight in
descending order. Because diam(G(V∗)) ≤ 2, V∗↓ is also a valid cycle. Now
we construct the sequence Z by repeating V∗↓ until we obtain a sequence

17

2.3. Solution

with length T . Note that in the last repeat of V∗↓ , all of it’s elements may
not be inserted. So

W (Cmax(G)) ≤W (Z). (2.24)

And because Vk0 ∈ Fmax(G) and |Z| = T , we have

W (Z) ≤W (VT0). (2.25)

Combining (2.23), (2.24) and (2.25), we get

W (Cmax(G)) ≤W (VT0) ≤ 1

T
(2nWmax + TW (Cmax(G))) . (2.26)

Because

lim
k→∞

W (Cmax(G)) = lim
k→∞

1

T
(2nWmax + TW (Cmax(G))) = W (Cmax(G)),

by the sandwich theorem we have our result.

So far, we are able to find cyclical sequences with average weightW (Cmax(G)),
using algorithm 1. Given a sequence length T , we can repeat the cyclical
sequence to generate a sequence with length T . However this approach may
not be optimal. For example consider the graph shown in figure 2.1. Using
the algorithm 1, we can find the cyclical sequence with the highest aver-
age weight, which is the sequence (1, 2, 3, 4, 0). So if we want a sequence
with length 11, by repeating the cyclical sequence with the highest average
weight, we would have the sequence (1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1). However, the
sequence (1, 2, 3, 4, 0, 1, 2, 3, 9, 5, 6) has greater average weight. However, if
the length of the desired sequence, goes to infinity, by theorem 2.3, we know
that the average weight of the sequence that we get, by repeating the cyclical
sequence with the highest average weight, is asymptotically tight.

18

2.3. Solution

0

1

2

3

4
56

7

89

100

90

80

70

6050
40

090

0

Figure 2.1: An example graph. In this figure, each circle corresponds to a
vertex, the numbers insides the circles are the number of the vertex and the
numbers outside of the circles are the weight corresponding to the vertex.
The Grey vertices are the vertices of the cyclical sequence with the highest
average weight.

19

Chapter 3

Some Generalizations Of The
MSD Problem

In this chapter, we consider some generalizations of the the MSD problem.
We use the notations introduced in section 2.2. Whenever we change the
notations, we will explicitly indicate it.

3.1 The Maximum Weight Sequence with k-times
Dependency Constraints Problem

The first generalization that we consider, is the following problem, which we
call The Maximum weight Sequence with k-times Dependency constraints
problem and abbreviate it to k-times-MSD:

We are given a graph G = (V,E), a weight W (vi) associated with each
vertex vi ∈ V , and an iteration number T , and a positive integer k. Choose
a sequence of vertices V = {vit}Tt=1 that maximizes

∑T
t=1W (vit), subject to

the following constraint: after k times that vertex vi is selected, it cannot
be selected again until after a neighbor of vertex vi has been selected.

Theorem 3.1. The k-times-MSD problem can be reduced to the MSD prob-
lem in polynomial time.

Proof. Given a graph G = (V,E) and weight function W : V → R, we
construct a new graph G′ = (V ′, E′) and weight function W ′ : V ′ → R, and
use it as the input for the MSD problem, and we reconstruct the solution of
k-times-MSD problem from the solution of MSD problem.

For every vertex vi ∈ V , there are k vertices v′i,1, v
′
i,2, ..., v

′
i,k in V ′. For

every edge {vi, vj} ∈ E, we add k2 edges to E′ by connecting every vertex
v′i,1, v

′
i,2, ..., v

′
i,k to every vertex v′j,1, v

′
j,2, ..., v

′
j,k. We define W ′(v′i,l) = W (vi).

Assume the sequence V ′ is the solution to the MSD with graph G′ and
weights W ′. To reconstruct the solution of the k-times-MSD problem, de-
noted by V, from V ′, we replace each vertex v′i,l in V ′ with vi.

20

3.2. The Maximum Weight Sequence with k-order Dependency Constraints Problem

Note that the sequence V is valid, because a vertex in V can not be
selected for more than k times before selecting any of it’s neighbors, because
otherwise we must have been selected a vertex for two times before selecting
any of it’s neighbors in V ′ which contradicts the assumption that V ′ is a
valid sequence for the MSD problem. Also note that the average weight of
V and V ′ is the same.

We claim that V is an optimal solution for k-times-MSD problem, if V ′
is an optimal solution for the MSD problem.

Assume to the contrary that V is not optimal. So there exists another
sequence U which is optimal for the k-times-MSD problem. From U , we
construct a sequence U ′ for the MSD problem, with the same average weight
of U .

Whenever a vertex vi is selected for the jth time in the sequence U
before selecting any of it’s neighbors, we select the vertex v′〉,| in sequence

U ′. Sequence U ′ is valid, because no vertex in U ′ is selected for two times
before selecting any of it’s neighbors. Because otherwise, we must have been
selected vi for more than k times before selecting any of it’s neighbors. Also
note that the average weight of U and U ′ is the same. As the average weight
of V and V ′ were the same, and average weight of U is higher than V, the
average weight of U ′ must be higher than V ′ which contradicts the fact that
V ′ were optimal.

So we have found an optimal sequence V for the k-times-MSD problem
by solving a k-times-MSD problem.

3.2 The Maximum Weight Sequence with k-order
Dependency Constraints Problem

The second generalization that we consider, is the following problem, which
we call the Maximum weight Sequence with k-order Dependency constraints,
and abbreviate it to k-order-MSD:

We are given a graph G = (V,E), a weight W (vi) associated with each
vertex vi ∈ V , and an iteration number T , and a positive integer k. Choose
a sequence of vertices V = {vit}Tt=1 that maximizes

∑T
t=1W (vit), subject to

the following constraint: after each time that vertex vi is selected, it cannot
be selected again until after a vertex vj has been selected, such that the
length of the shortest path between vi and vj , is less than or equal k.

Theorem 3.2. The k-order-MSD problem can be reduced to the MSD prob-
lem in polynomial time.

21

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

Proof. Given a graph G = (V,E) and weight function W : V → R, we
construct a new graph G′ = (V ′, E′) and weight function W ′ : V ′ → R,
and use it as the input for the MSD problem, and we show how to find the
solution of k-order-MSD problem from the solution of MSD problem.

For every vertex vi ∈ V , we add one vertex v′i to V ′. For every two
vertices vi ∈ V and vj ∈ V , if there is a path with length less than or equal
k, we add the edge {v′i, v′j} to E′. For every v′i ∈ V ′, we set W ′(v′i) = W (vi).

Assume the sequence V ′ is the solution to the MSD with graph G′ and
weights W ′. To construct the solution of the k-order-MSD problem, denoted
by V from V ′, we replace each vertex v′i in V ′ with vi.

Note that the sequence V is a valid sequence for the k-order-MSD prob-
lem. Because whenever a vertex vi is selected in the sequence V, one of the
vertices that it’s distance is not more than k must have been selected before.
Because one of the vertices that are neighbor of v′i, say v′j must have been
selected, so vj whose distance from vi is not more than k must have been
selected in V. Also note that the weight of V and V ′ is equal.

We claim that V is an optimal solution for k-order-MSD problem, if V ′
is an optimal solution for the MSD problem.

Assume to the contrary, that V is not optimal. So there is another
sequence U which is optimal for the k-order-MSD problem. We construct
a valid sequence U ′ for the MSD problem. For each vertex vi that appears
in the sequence U , we replace vi with v′i to obtain the sequence U ′. Note
that U ′ is valid, because whenever a vertex v′i is selected in U ′, one of it’s
neighbors must have been selected before v′i. Because when vi is selected in
U , a vertex vj that has a distance not more than k must have been selected
before vi. So the vertex v′j which is a neighbor of v′i must have been selected
before v′i. Also note that the average weight of the sequence U and U ′ is
equal. So the average weight of U ′ is higher than the average weight of V ′
which contradicts the assumption that V ′ was optimal for the MSD problem.

So we have found an optimal sequence V for the k-order-MSD problem
by solving a MSD problem.

3.3 The Maximum Weight Sequence with
k-neighbors Dependency Constraints problem

The third generalization that we consider, is the following problem, which we
call the maximum weight Sequence with k-neighbors dependency constraints
problem, and abbreviate it to k-neighbors-MSD:

We are given a graph G = (V,E), a weight W (vi) associated with each

22

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

vertex vi ∈ V , and an iteration number T , and a positive integer k. Choose
a sequence of vertices V = {vit}Tt=1 that maximizes

∑T
t=1W (vit), subject to

the following constraint: after each time vertex vi is selected, it cannot be
selected again until after k neighbors of vertex vi has been selected.

Note that if k = 1, then this problem would be the MSD problem. So
we focus on the case that k ≥ 2.

3.3.1 Notations

In this section, we redefine some of the notations, introduced in section 2.2.
For all notations that we don’t explicitly redefine, we use the same notation
introduced in section 2.2.

We define the state vector st = (stv1 , s
t
v2 , ..., s

t
vn) as the state of our struc-

ture at time t such that svi ∈ [k] indicates the number of vertices adjacent
to vi that are selected since the last time vi is selected. So, once svi = k,
the vertex vi becomes selectable.

We define the set F(G, k) as the set of all valid finite sequences of vertices
with respect to graph G. By valid, we mean that we can begin from some
initial state s and perform the sequence with the constraint of k-neighbors-
MSD problem. By finite, we mean that it’s length is finite.

We define the set F(G, k) ⊆ F(G, k) as the set of all valid, finite sequences
that can be started from some initial state s.

We define the set F(G, k, s) ⊆ F(G, k) as the set of all valid, finite se-
quences that can be started from the initial state s.

We define the set Fmax(G, k) ⊆ F(G, k) as the set of all valid, finite
sequences with the highest average weight that can be started from some
initial state s.

We define C(G, k) ⊆ F(G, k) as the set of all cyclical sequences. By
cyclical, we mean that it is valid and finite, and from some initial state s,
we can begin and repeat the sequence indefinitely.

We define Wmax(C(G, k)) = max{W (V)| V ∈ C(G, k)}. Note that
Wmax(C(G, k)) 6=∞ because of (2.4).

We define Cmax(G, k) as the set of all cyclical sequences with the highest
average weight.

Consider the set of vectors c = (cv1 , cv2 , ..., cvn) ∈ Nn, in which for every
vertex v ∈ V , there is a corresponding non-negative integer cv. Let H(G)
be the subset of this set of vectors, such that for all vectors c ∈ H(G), and
for all vertices v ∈ V we have

kcv ≤
∑

u∈N(G,v)

cu. (3.1)

23

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

We define the set U(G, k) as the set of vectors in H(G), such that it is not
the sum of two other vectors of H(G). Formally

U(G, k) = {c| c ∈ H(G),@c′, c′′ ∈ H(G), c = c′ + c′′, c′ 6= 0, c′′ 6= 0}.
(3.2)

3.3.2 Solution

In this section, we try an approach, similar to the one introduced in section
2.3.

The next lemma, is the lemma 2.2 counterpart.

Lemma 3.1. Let V ∈ F(G, k) be a sequence that can be started from some
initial state s. Then for all vertices v ∈ V we have

k count(V, v) ≤ sv +
∑

u∈N(G,v)

count(V, u). (3.3)

Proof. The proof is very similar to the proof of lemma 2.2.

The next lemma, is the lemma 2.3 counterpart.

Lemma 3.2. If V ∈ C(G, k), then for all vertices v ∈ V we have

k count(V, v) ≤
∑

u∈N(G,v)

count(V, u). (3.4)

Proof. The proof is very similar to the proof of lemma 2.3. Because V ∈
C(G, k), we can repeat the sequence V indefinitely. Consider repeating V
for k + 1 times, beginning from some initial state s. We denote this new
sequence by Vk+1.

As Vk+1 ∈ F(G, k), from lemma 3.1, we can conclude that for all vertices
v ∈ V we have

k count(Vk+1, v) ≤ sv +
∑

u∈N(G,v)

count(Vk+1, u).

As sv ∈ [k] and count(Vk+1, v) = k + 1 count(V, v), we have

k(k + 1) count(V, v) ≤ k +
∑

u∈N(G,v)

(k + 1) count(V, u)

< (k + 1) +
∑

u∈N(G,v)

(k + 1) count(V, u).

24

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

Dividing by k + 1, we have

k count(V, v) < 1 +
∑

u∈N(G,v)

count(V, u),

which yields our result, as count(V, v) is always an integer.

To generalize lemma 2.4, we propose the following conjecture.

Conjecture 3.1. Let c ∈ H(G). Then we can assign a non-negative integer
ae to each e ∈ U(G, k) such that,

c =
∑

e∈U(G,k)

aee. (3.5)

Remember that lemma 2.4, was the key step in finding a cyclical sequence
with the highest average weight for the problem MSD. We might think that if
we could prove the conjecture 3.1, then we can apply a similar approach that
we used in theorem 2.1 and algorithm 1 to solve the problem k-neighbors-
MSD. However, proving the conjecture will not help us in developing an
algorithm, as even deciding whether a vector e ∈ U(G, k) is NP-complete.

Theorem 3.3. The problem of deciding if a vector e is not in U(G, k), is
NP-complete, for k ≥ 2.

Proof. Note that the problem is in NP, because when e /∈ U(G, k), then we
can find two vectors e′ and e′′ such that

e = e′ + e′′,

e′, e′′ ∈ H(G).
(3.6)

Given such e′ and e′′ as certificate, we can easily check in polynomial time
if they satisfy the conditions (3.6).

We assume k = 2. In the end of the proof, we will show how to change
the reduction to handle the case that k > 2.

We reduce the 3SAT problem to deciding e /∈ U(G, k). In the 3SAT
problem, we are given a 3-cnf-formula φ with Boolean variables x1, x2, ..., xm
and we want to decide if φ is satisfiable. To reduce the 3SAT problem to
the problem of deciding e /∈ U(G, 2), we construct a graph G = (E, V) and
a vector e, such that

φ is satisfiable ⇔ e /∈ U(G, 2). (3.7)

25

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

Let m be the number of variables of φ and l be the number of clauses.
Now we show how to construct the graph G from φ. First we add vertices

and edges according to figure 3.1. Note that in the figure, for each clause
i, we have a corresponding vertex Ci, and for each variable xi, we have two
vertices ti and fi. We refer to the vertices of the left connected component
as left vertices and to the vertices of the right connected component as right
vertices (note that these are not all of the vertices, as we will add some other
vertices soon).

.

.

.

.

.

.

.

.

.

C1

C2

Cm

t1

t2

tl

f1

f2

fl

Figure 3.1: The vertices and edges corresponding clauses.

Then for each variable xi, we add vertices and edges according to figure
3.2.

26

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

xi ~xi
ti fi

Figure 3.2: The vertices and edges corresponding variables.

We refer to these vertices as middle vertices.
Note that for each literal xi and ¬xi, we have a vertex, and they are

connected to vertices ti and fi, the same vertices shown in figure 3.1.
Finally, for each clause i, we connect the vertex Ci to the vertices corre-

sponding to the literals that appears in the clause.
We can see an example in figure 3.3

C1

C2

C3

t1

t2

t3

f1

f2

f3

x1 ~x1

x2 ~x2

x3 ~x3

Figure 3.3: An example graph for reduction from 3SAT to the problem of
deciding e /∈ U(G, 2), where φ = (x1 ∨x2 ∨x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (¬x1 ∨
x2 ∨ x3).

Now our graph G = (V,E) is completed. We set e = 1.
To prove (3.7), first assume that φ is satisfiable. So there is an assignment

for variables x1, ..., xm such that φ is satisfied. We show that we can find

27

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

two vectors e′ and e′′ such that the condition (3.6) is held, which means
that e /∈ U(G, 2). To construct e′ and e′′, we color the vertices of the graph
with colors BLUE and RED, such that each vertex has at least 2 neighbors
with the same color. For all vertices v ∈ V , we set

e′v =

{
1 Color of v is BLUE

0 Color of v is RED
, e′′v =

{
1 Color of v is RED

0 Color of v is BLUE
. (3.8)

We color all left vertices with BLUE and all right vertices with RED.
For middle vertices, if xi = TRUE then we color all vertices in the triangle
corresponding to xi with BLUE and all the vertices in the triangle corre-
sponding to ¬xi with RED. If xi = FALSE then we color all vertices in the
triangle corresponding to xi with RED and all the vertices in the triangle
corresponding to ¬xi with BLUE.

Note that for vertices other than C1, ..., Cl and t1, ..., tm and f1, ..., fm,
obviously each vertex has at least 2 neighbors with the same color.

For vertices ti and fi, as one of the triangles corresponding to xi or ¬xi
is colored with BLUE, and the other one with RED, ti and fi also has two
neighbors with the same color.

For vertices Ci, as each clause of φ has at least one TRUE literal, and
the triangle corresponding to the literal is colored with BLUE, and Ci is
connected to the triangle, Ci has at least two neighbors with the same color.

So we have colored the vertices of the graph G with two colors, such that
each vertex has at least two neighbors with the same color, and both colors
are used. So the two vectors e′ and e′′ obtained from the coloring, satisfy
the condition 3.6. So e /∈ U(G, 2).

So assuming φ is satisfiable, we proved that S /∈ U(G, 2).
Conversely assume that e /∈ U(G, 2). So we can find two vectors e′ and

e′′ such that the condition (3.6) is held. As e = 1, so all elements of vectors
e′ and e′′ are either 0 or 1. We define the sets of vertices U ′ = {v| e′v = 1}
and U ′′ = {v| e′′v = 1}. As e = e′ + e′, we have partitioned the set V into
two set U ′ and U ′′. Note that all left vertices must be in the same partition,
because otherwise we would have a vertex v1 with degree 2 in one partition
connected to a vertex v2 in another partition. So it is not possible for v1 to
have two neighbors in the same partition, which violates the condition 3.6.
Similarly, all right vertices are in the same partition. Furthermore, for each
triangle corresponding to literals, all vertices of the triangle are in the same
partition. Note that The left vertices and right vertices are not in the same
partition. Because otherwise, then all triangles corresponding to the literals
must also be in the same partition of the left and right vertices, because

28

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

otherwise the vertices t1, ..., tm or f1, ..., fm would not have 2 neighbors in
the same partition.

Without loss of generality, assume all left vertices are in U ′ and all right
vertices are in U ′′. We color all vertices of U ′ with BLUE and all vertices of
U ′′ with RED.

For each vertex xi, if its color is BLUE, we assign the Boolean variable
xi = TRUE, otherwise xi = FALSE.

We claim that with this assignment of the Boolean variables x1,, xm,
φ must be satisfied. Note that the color of the vertices C1, ..., Cl is BLUE.
Each vertex Ci, has at least two neighbors with the same color. So there
must be at least one vertex xj with color BLUE connected to Ci. So the
corresponding clause of φ is satisfied, as xj = TRUE. So all clauses of φ is
satisfied.

So we proved that assuming e /∈ U(G, 2), φ is satisfiable.
So (3.7) is correct and we can reduce the 3SAT problem to e /∈ U(G, 2).

Note that the reduction is polynomial as the number of vertices of the con-
structed graph G is O(l +m).

So the problem of deciding if a e /∈ U(G, k) is NP-complete for k = 2.
If k > 2, we can construct the same graph G described for the case k = 2,
but add 2(k − 2) special vertices V ∗ = {v∗1, v∗2, ..., v∗2(k−2)}, and connect all
vertices of V ∗, to all vertices. Then we set e = 1.

We must prove that

φ is satisfiable ⇔ e /∈ U(G, k). (3.9)

First, if φ is satisfiable, ignoring vertices of V ∗, we color the vertices of G as
described for the case k = 2. We color k − 2 vertices of V ∗ with BLUE and
the other half with red. As based on this coloring for the case k = 2, every
vertex had at least 2 vertices with the same color, now as vertices of V ∗ are
connected to all vertices, every vertex has at least 2 + k − 2 = k neighbors
with the same color.

Conversely, if e /∈ U(G, k), then we can find e′ and e′′ such that they
satisfy 3.6. We color the vertices based on e′ and e′′ similar to the way
we did for the case k = 2. Note that exactly k − 2 vertices of V ∗ must be
BLUE and the other half must be RED. Because for the left vertices that are
BLUE, there are some vertices with degree exactly 2, ignoring the vertices
of V ∗ that are neighbor of every vertex. So these vertices must have at least
k−2 BLUE neighbors in V ∗. So at least half of vertices of V ∗ must be blue.
Also note that in the right vertices that are RED, there are some vertices
with degree 2, ignoring the vertices of V ∗ that are neighbor of every vertex.

29

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

With the same argument that we used, we can conclude that at least half of
vertices of V ∗ must be RED. So exactly half of vertices of V ∗ must be BLUE
and the other half must be RED. As each vertex has at least k neighbors
with the same color and exactly k− 2 neighbors with the same color in V ∗,
every vertex has at least 2 neighbors with the same color in V − V ∗. Hence
we can use the same method that used for the case k = 2 to find a satisfying
assignment for φ.

So we have shown how to reduce the 3SAT problem to e /∈ U(G, k) for
all k ≥ 2.

Corollary 3.1. The problem of deciding if a set e ∈ U(G, k), is co-NP-
complete.

Unless P = NP, because of the corollary 3.1, even if the conjecture 3.1
is correct, it is not possible to apply the approach of algorithm 1 to get
a polynomial time algorithm for the k-neighbors-MSD problem. However,
we may think that there might be some other approach that works for the
k-neighbors-MSD problem. But in the following theorem, we prove that the
k-neighbors-MSD problem itself is NP-complete, at least for k ≥ 3.

Theorem 3.4. Consider the decision problem of k-neighbors-MSD, in which
we have to decide whether there is a valid sequence of vertices that can be
started from a given initial state s, with average weight of at least a given
number Wd. This problem is NP-complete for k ≥ 3.

Proof. First note that this problem is in NP, because if we have the sequence
as the certificate, we can easily check in polynomial time that if it is a valid
sequence of vertices with average weight of at least Wd.

We reduce the 3SAT problem to the decision problem of k-neighbors-
MSD. In the 3SAT problem, we are given a 3-cnf-formula φ with Boolean
variables x1, x2, ..., xm and we want to decide if φ is satisfiable. To reduce the
3SAT problem to the decision problem of k-neighbors-MSD, we construct a
graph G = (E, V), a weight function W : V → R, an initial state s, and a
value Wd, such that

φ is satisfiable ⇔ the k-neighbors-MSD has a solution with weight at least Wd.
(3.10)

Let m be the number of variables of φ and l be the number of clauses.
Now we show how to construct the graph G from φ.
For each clause of φ, we add a clause gadget with 3 vertices with the

initial states and weights as follows, such that the weight of c′i, c
′′
i and c′′′i is

−4ml and the weight of ci is 4ml.

30

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

 𝒄𝒊

 𝒄𝒊
′

 𝒄𝒊
′′

 𝒄𝒊
′′′

𝒘 = −𝟒𝒎𝒍
𝒔 = 𝒌 − 𝟏

𝒘 = −𝟒𝒎𝒍, 𝒔 = 𝒌 − 𝟏

𝒘 = 𝟒𝒎𝒍
𝒔 = 𝒌 − 𝟏

𝒘 = −𝟒𝒎𝒍, 𝒔 = 𝒌 − 𝟏

Figure 3.4: The clause gadget, with it’s vertices, edges, weights and states.

Then considering the vertices c1, ..., cl from clause gadgets, we construct
a binary tree with leaves c1, ..., cl. We set the state of all of the inner vertices
of the binary tree to k − 2 and the weight of all of them except the root to
0, and the weight of the root to 1. So after adding the vertices of the binary
tree, the graph look likes the following figure.

 𝒄𝟏

 𝒄𝟐

 𝒄𝒍

𝒘 = 𝟎
𝒔 = 𝒌 − 𝟐

𝒘 = 𝟏
𝒔 = 𝒌 − 𝟐

Figure 3.5: The binary tree constructed on vertices coressponding to the
clauses.

For each variable xi, we add a variable gadget with 2l + 1 vertices, as
follows, such that the initial state of vertices xi,1 and x̄i,1 is k and all other
vertices are k − 1, and the weight of x+i is 2l and all other vertices are −2.

31

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

 𝒙𝒊
+

 𝒙𝒊,𝒍 𝒙 𝒊,𝒍 𝒘 = −𝟐
𝒔 = 𝒌 − 𝟏

𝒘 = −𝟐
𝒔 = 𝒌 − 𝟏

𝒘 = 𝟐𝒍, 𝒔 = 𝒌 − 𝟏

 𝒙𝒊,𝟐 𝒙 𝒊,𝟐

 𝒙𝒊,𝟏 𝒙 𝒊,𝟏

𝒘 = −𝟐
𝒔 = 𝒌

𝒘 = −𝟐
𝒔 = 𝒌

Figure 3.6: The variable gadget, with it’s vertices, edges, weights and states.

Each clause of φ contains 3 literals. For each literal xi appearing in clause
j, we connect the vertex xi,j to one of the vertices c′j , c

′′
j and c′′′j , such that

each of c′j , c
′′
j and c′′′j is connected to exactly one vertex coressponding to the

literals. For example if vertex c1 corresponds to the clause (x1 ∨ x̄2 ∨ x3),
then we will add the edges shown in the following figure.

𝒄𝟏

 𝒙𝟏
+

 𝒙𝟏,𝒍 𝒙 𝟏,𝒍

 𝒙𝟏,𝟐 𝒙 𝟏,𝟐

 𝒙𝟏,𝟏 𝒙 𝟏,𝟏

 𝒙𝟐
+

 𝒙𝒊,𝒍 𝒙 𝟐,𝒍

 𝒙𝟐,𝟐 𝒙 𝟐,𝟐

 𝒙𝟐,𝟏 𝒙 𝟐,𝟏

 𝒙𝒎
+

 𝒙𝒎,𝒍 𝒙 𝒎,𝒍

 𝒙𝒎,𝟐 𝒙 𝒎,𝟐

 𝒙𝒎,𝟏 𝒙 𝒎,𝟏

Figure 3.7: The edges corresponding to the literals of the clause (x1∨x̄2∨x3)
is shown with dotted lines.

So the whole graph G will look like the following figure.

32

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

 𝒄𝟏

 𝒄𝟐

 𝒄𝒍

 𝒙𝟏
+

 𝒙𝟏,𝒍 𝒙 𝟏,𝒍

 𝒙𝟏,𝟐 𝒙 𝟏,𝟐

 𝒙𝟏,𝟏 𝒙 𝟏,𝟏

 𝒙𝟐
+

 𝒙𝒊,𝒍 𝒙 𝟐,𝒍

 𝒙𝟐,𝟐 𝒙 𝟐,𝟐

 𝒙𝟐,𝟏 𝒙 𝟐,𝟏

 𝒙𝒎
+

 𝒙𝒎,𝒍 𝒙 𝒎,𝒍

 𝒙𝒎,𝟐 𝒙 𝒎,𝟐

 𝒙𝒎,𝟏 𝒙 𝒎,𝟏

Figure 3.8: The complete graph

We set Wd = 0. We claim that

φ is satisfiable⇔ ∃V ∈ F(G, k), W (V) > Wd (3.11)

First we try to prove

φ is satisfiable⇒ ∃V ∈ F(G, k), W (V) > Wd.

So assume that φ is satisfiable, so there is an assignment to the Boolean
variables x1, ..., xm such that φ is satisfied. From this assignment of values to
variables x1, ..., xm, we construct a sequence V ∈ F(G, k) such that W (V) ≥
Wd.

For each variable xi, we have 2l + 1 vertices, as shown in figure 3.6.
If the Boolean variable xi = TRUE, we select vertices labeled xi,1, ..., xi,l
otherwise we select vertices labeled x̄i,1, ..., x̄i,l, in V. Then we select the
vertex with label x+i in V. Because of the initial state of the vertices, this
sequence is valid. Note that the sum of the weights of the selected vertices
is 0. For each clause i, there is a literal ai = TRUE, where ai is a literal like
xj or x̄j . So among vertices with label c′i, c

′′
i and c′′′i , at least one of them,

33

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

say c′i, is connected to a vertex corresponding to a literal which is TRUE.
As the state of c′i was initially k − 1 and one of it’s neighbors is selected,
then it is selectable. We select c′i (note that if among c′i, c

′′
i and c′′′i , more

than one of them are selectable, we just select one of them) in V. Because
of this selection, ci becomes selectable, and we select ci in V. Note that the
sum of weights of c′i and ci is 0. As all clauses are satisfiable, all vertices ci
are selected. So all vertices of the binary tree, can be selected, by beginning
from the leaves and going up to the root.

Now the sequence V is completed. To calculate the sum of weight of the
vertices of the sequence, note that the sum of weight of all vertices other than
the vertices of the binary tree are 0 and the sum of vertices of the binary
tree is 1. So the average weight of the sequence is positive. So assuming
that φ is satisfiable, we have found a valid seuqunce V with positive weight.

Now we try to prove

∃V ∈ F(G, k), W (V) > Wd ⇒ φ is satisfiable.

So assume that there exists a valid sequence V such that the sum of
weights of vertices of V is positive. We prove that φ is satisfiable.

Let Vc be the set of vertices of the clause gadgets, shown in figure 3.4,
except vertices c1, ..., cl. Let Vx be the set of all vertices of the variable
gadgets shown in figure 3.6. Let Vt be the set of all vertices of the binary
tree. Note that we have Vt = V − (Vx ∪ Vc). We claim that the vertices of
Vx ∪ Vc, must be selected at most once in V. For the sake of contradiction,
assume at least one of the vertices of Vx ∪ Vc is selected more than once.

Let u2 be the first vertex of Vx∪Vc that is selected for the second time in
V. First consider the case that u2 is a vertex of a Vx. Before u2 is selected,
each of it’s neighbors are selected for at most once. If the initial state of u2
is k, then it has 2 neighbors that are currently selected for at most once. So
if u2 is selected for the second time, then the equation (3.3) from lemma 3.1
would be violated, as the left hand side would be 2k and the right hand side
would be at most 4, and we have k ≥ 3. If the initial state of u2 is k − 1,
then it has at most 3 neighbors, and as all of them are currently selected for
at most once, again the lemma 3.1 would be violated.

Now consider the case that u2 is a vertex of a Vc. Before reaching a
contradiction for this case, we prove a claim.

We claim that if all vertices of Vc are selected for at most once, then
all vertices of Vt must be selected for at most 2 times. For the sake of
contradiction, assume at least one of the vertices of Vt is selected for more
than 2 times. Let u3 be a vertex of the binary tree with the highest depth

34

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

that is selected for more than 2 times. Assume u3 is selected for g times
where g ≥ 3. Based on the definition of u3, the two children of u3 must
be selected for at most g − 1. Based on lemma 3.1, the parent of u3 must
be selected for at least g + 1 times. Let u4 be the parent of u3. Again
using lemma 3.1, we can conclude that the parent of u4 must be selected
for at least g + 2 times. Repeating this argument, we can conclude that if
the root is selected for h times, where h ≥ g, then the two children of the
root must be selected for at most h − 1 times. As the root doesn’t have
any other neighbors, lemma 3.1 would be violated for the root, which is a
contradiction.

Now we backtrack to reach a contradiction for the case that u2 is a vertex
of a Vc. Consider the second time that u2 is selected. One step before this
selection, all vertices of the Vc are selected once. So all vertices of the binary
tree must be selected for at most 2 times. As u2 has one neighbor in Vx which
is selected for at most once, and one neighbor in Vt which is selected for at
most 2 times, 3.1 would be violated if u2 is selected for the second time.

Note that the root of the binary tree can be selected for at most once.
Because if it is selected for more than once, then as it’s two children can be
selected for at most 2 times, then lemma 3.1 would be violated.

We claim that for every clause gadget i, shown in figure 3.4, it is not
possible to select a vertex ci without selecting at least one of the vertices
c′i, c

′′
i , c
′′′
i beforehand. Assume to the contrary, that we can select ci without

selecting any of c′i, c
′′
i , c
′′′
i beforehand. So the parent of ci in the binary

tree must be selected before the selection of ci. Let p1 be the parent of ci.
Consider the first time that p1 is selected. Consider the child of p1 which is
not ci. We name it p′1. It must be selected for at most once, before selection
of p1. Because if we assume that it was selected for 2 times, then if p′1 is
an inner vertex of the binary tree, as it’s two childern can be selected for
at most 2 times, lemma 3.1 would be violated. If p′1 is a leaf of the binary
tree, the 3 vertices connected to it other than it’s parent can be selected for
at most once, so again lemma 3.1 would be violated. So based on 3.1, the
parent of p1, which we denote it by p2, must be selected before p1. Now
consider the first time that p2 is selected. We can repeat the same argument
that we used for p1, to conclude that the parent of p2, denoted by p3 must
be selected before p2. If we repeat this argument, then we can conclude
that the root of the binary tree must be selected before at least one of it’s
children. But from our argument, we also know that the other child of the
root must be selected for at most once. So based on lemma 3.1, it is not
possible to select the root, which is a contradiction.

We claim that for each clause gadget i, shown in figure 3.4, the sum of

35

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

weight gained by selecting vertices ci, c
′
i, c
′′
i , c
′′′
i can not be positive. Assume

to the contrary that it is positive. So the vertex ci must be selected at least
once, as it is the only vertex with positive weight among the vertices of the
clause gadget. As we argued before, ci can be selected for at most 2 times
and c′i, c

′′
i , c
′′′
i for at most 1 time. If ci is selected for 2 times, then as it’s

parent in the binary tree can be selected for at most 2 times, based on lemma
3.1, all of c′i, c

′′
i , c
′′′
i must be selected, but this would result in negative sum

of weights of the vertices ci, c
′
i, c
′′
i , c
′′′
i . If ci is selected for 1 time, then as we

argued in the previous paragraph, at least one of c′i, c
′′
i , c
′′′
i must be selected

before ci. So the sum of the weights of ci, c
′
i, c
′′
i , c
′′′
i can be at most 0 which

is not positive.
We claim that for each variable gadget shown in figure 3.6, the sum

of weights of the vertices selected from xi,1, ..., xi,l, x̄i,1, ..., x̄i,l, and x+i can
not be positive. Assume to the contrary that it is positive. As x+i is the
only vertex with positive weight, it must be selected. So at least one of
it’s neighbors must be selected before x+i . We denote the neighbor by yi,l.
yi,l was selectable because one of it’s neighbors was selected before it. The
neighbor is either a vertex of the variable gadget, or a vertex of a clause
gadget. If the neighbor is a vertex of the variable gadget, we denote it by
yi,l−1. We repeat this process and find the neighbor of yi,l−1 and repeat this
as long as the neighbor is also a vertex of the variable gadget. In the end two
case can happen. Either we reach the vertex yi,1 or we reach a vertex like c′j
(without loss of generality) from some clause gadget. If we reach the vertex
yi,1, as the vertices yi,1, ..., yi,l must have been selected, the sum of weights
of the selected vertices of the variable gadget can not be positive, which
is a contradiction. If c′j was selected before some vertex yi,p, then c′j must
have become selectable because of selecting cj . As we argued before, if cj is
selected, then at least one of the vertices c′j , c

′′
j , c
′′′
j must have been selected

before cj . So at least two neighbors of cj are selected. Note that based on
weights of cj and it’s neighbors, cj must be selected for 2 times. Because if
it is selected for 1 time, then the sum of weights of the sequence can not be
positive. Note that we proved that the sum of weights of vertices of each of
the clause gadgets can not be positive. For the other vertices with positive
weights, we proved that they can be selected for at most once. Now note that
the sum of weights of these vertices is less than the negative sum of weights
of the clause gadget. So the total sum of weights in the sequence would be
negative which is a contradiction. So cj must be selected for 2 times. In this
case, exactly two vertices from c′j , c

′′
j , c
′′′
j must have been selected. Because

otherwise, the sum of weights of the sequence would be negative. So based
on lemma 3.1, the parent of cj must have been selected for 2 times, before

36

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

selecting cj for the second time. Let p1 be the parent of cj . So when p1 was
selected for the second time, cj was selected for at most 1 time. Based on
lemma 3.1, the other two neighbors of p1 was selected for 2 times. So the
parent of p1, denoted by p2 must have been selected for the second time,
before selecting p1 for the second time. Repeating this argument, we can
conclude that the root must have been selected for 2 times, which contradict
the fact that the root must be selected for at most 1 time. So we reached a
contradiction for the case that cj is selected for 2 times. So our assumption
that the sum of weights of the vertices of a variable gadget can be positive
was false.

So it is not possible to gain any positive weight by selecting the vertices of
clause gadgets and variable gadgets. The only vertex with positive weight
that is remained, is the root of the binary tree. So it must be selected,
otherwise the weight of the sequence would be 0 at most.

We claim that for a variable gadget i, if the vertex x+i is selected, then
either all of the vertices xi,1, ..., xi,l and none of the vertices x̄i,1, ..., x̄i,l are
selected or none of the vertices xi,1, ..., xi,l and all of the vertices x̄i,1, ..., x̄i,l
are selected. Assume to the contrary, that x+i is selected and there exists
two vertices xi,j1 and x̄i,j2 that are also selected. At least one of the neigh-
bors of x+i is selected. We denote it with yi,l. yi,l have become selectable,
because one of it’s neighbors was previously selected. As we argued before,
this neighbor can not be a vertex of clause gadgets, as it makes the sum
of weights of the sequence negative. So the vertex that was selected and
made yi,l selectable, is also a vertex of the variable gadget. We denote it
with yi,l−1. By repeating this argument, we can conclude that all vertices
yi,1, ..., yi,l must have been selected. As both of the vertices xi,j1 and x̄i,j2
are selected, one of them is not among yi,1, ..., yi,l. So at least l + 1 vertices
other than x+i is selected from the variable gadget. So the sum of weights
of the variable gadget is negative. As we argued the sum of weights of the
vertices of variable and clause gadgets can not be positive. The only vertex
with positive weight is the root which can be selected at most once. As
the sum of the weight of the root and the negative weight of the variable
gadget i is negative, the total weight of the sequence would be negative,
which is a contradiction. So our assumption was false, and if the vertex x+i
is selected, then either all of the vertices xi,1, ..., xi,l and none of the ver-
tices x̄i,1, ..., x̄i,l are selected or none of the vertices xi,1, ..., xi,l and all of the
vertices x̄i,1, ..., x̄i,l are selected.

We claim that for a variable gadget i, if the vertex x+i is not selected,
then no other vertices of the variable gadget is selected. Because if a vertex
of the variable gadget, other than x+i is selected, then the sum of weights of

37

3.3. The Maximum Weight Sequence with k-neighbors Dependency Constraints problem

the variable gadget is negative and as the sum of weights of the vertices of
clause and variable gadgets can not be positive, and the positive weight of
the root is smaller than the negative weight of the variable gadget, the total
sum of weights would be negative which contradicts our assumption.

We claim that all vertices c1, ..., cl must have been selected, otherwise it
is not possible to select the root. Assume to the contrary that a vertex ci
is not selected. Consider the path from the root of the binary tree to ci.
We know that the root is selected. In the path from root to ci, consider
the first vertex that is not selected. We denote this vertex with p0. Such
vertex exists, as ci itself, is not selected. So the parent of p0, denoted by
p1 is selected. Note that the other two neighbors of p1 can be selected for
at most 2 times. So based on lemma 3.1, p1 can be selected for at most 1
time. Consider the time just before when p1 was selected for the first time.
One child of p1, i.e. p0 is not selected. We claim that the other child of p1,
denoted by p′0 have not been selected for more than 1 time, at this moment.
Because as p1 is not selected at this moment, and the other neighbors of p′0
can be selected for at most 4 times in total, based on lemma 3.1, p′0 can be
selected for at most 1 time, at this moment. So p′0 is selected for at most 1
time at this moment. So based on 3.1, the parent of p1, denoted by p2 must
have been selected for at least 1 time at this moment. So the p2 must have
been selected before the first selection of p1. Using the argument that we
used for p1, we can conclude that the parent of p2, denoted by p3 must have
been selected before p2. Repeating this argument, we can conclude that the
root of the binary tree must have been selected before at least one of it’s
two children. As the other child of the root can be selected for at most 1
time, this would contradict the lemma 3.1.

Now we find an assignment for the Boolean variables x1, ..., xm that
satisfies the formula φ. For each variable gadget i, as we argued, if the
vertex x+i is selected, then either all of the vertices xi,1, ..., xi,l and none of
the vertices x̄i,1, ..., x̄i,l are selected or none of the vertices xi,1, ..., xi,l and
all of the vertices x̄i,1, ..., x̄i,l are selected. If xi,1, ..., xi,l are selected, then we
assign the Boolean variable xi = TRUE. If x̄i,1, ..., x̄i,l are selected, then we
assign the Boolean variable xi = FALSE. If x+i is not selected, then none of
xi,1, ..., xi,l and x̄i,1, ..., x̄i,l are selected. We can assign the Boolean variable
xi to whatever value. It’s value is “don’t care”.

As we argued, all vertices c1, ..., cl are selected in the sequence. As we
proved in our arguments, for each of the vertices ci, if ci is selected, then at
least one of the vertices c′i, c

′′
i , c
′′′
i must have been selected before ci. Without

loss of generality assume c′i is selected before ci. Note that the only neighbor
of c′i, other than ci, is a vertex from a variable gadget, like xj,p. So based

38

3.4. The Probabilistic Sequence with Dependency Constraints Problem

on our argument, all vertices xj,1, ..., xj,l must have been selected. So the
Boolean variable xi which appears in clause i, is set to TRUE, and the clause
i from φ is satisfied. So all clauses of φ are satisfied. So assuming that there
exists a valid sequence for graph G with the initial state s with a positive
weight, we proved that φ is satisfiable.

So we have proved both direction of (3.11). So we have reduced the
3SAT problem to the decision version of k-neighbors-MSD problem. Note
that the reduction is polynomial, as the size of the graph and all weights
are polynomial in size of the input of the 3SAT problem. So the decision
version of k-neighbors-MSD is NP-complete.

In theorem 3.4 we proved that the decision version of the k-neighbors-
MSD problem is NP-complete, for k ≥ 3. It remains a question whether
the problem is also NP-complete for k = 2 or not. Also in our proof of
theorem 3.4, we used an initial state which would not allow to produce
infinite sequences. When the initial state is such that we can have long
sequences, it may be possible to find at least a good approximation of the
sequence with the highest average weight.

3.4 The Probabilistic Sequence with Dependency
Constraints Problem

The probabilistic sequence with dependency constraints problem, which we
abbreviate it to probabilistic-SD is similar to the original MSD problem.
The only difference is that we select the vertices probabilistically.

Formally, we have a function f(s, v) which gives the probability of select-
ing the vertex v when we are in state s. If in state s, no vertex is selectable,
the value of f(s, v) would be 0 for all vertices v ∈ V . We would like f(s, v)
to be a probability distribution over V . So we add a dummy vertex vdummy

with weight 0, so that when no vertex is selectable in an state s, then vdummy

is selectable and selecting it would result in remaining in the same state. So
in such state, we would have f(s, vdummy) = 1. So for every state s, we have∑

v∈V
f(s, v) = 1.

Similar to the MSD problem, we have the constraint that after each time
vertex vi is selected, it cannot be selected again until after a neighbor of

39

3.4. The Probabilistic Sequence with Dependency Constraints Problem

vertex vi has been selected. So when a vertex v is not selectable in an state
s, we must have set f(s, v) = 0.

It is possible to have a positive number g(v) for each vertex v ∈ V and
define the function f as follows, which satisfies the condition of the MSD
problem.

f(s, v) =

{
g(v)/

∑
u∈V, su=1 g(u) sv = 1

0 sv = 0
,

But here we consider the general case and assume that the function f
can be any probability function.

We denote the selected vertex at step t with vt and the state at step t
with st. So Pr

[
st = s, vt = v

]
= f(s, v).

The question is, given the graph G = (V,E) and a weight function
W : V → R and a probability function f , what is the expected average
weight of the sequence generated by the following rule:

At each state st, the vertex v is selected with probability of f(st, v),
and based on the selected vertex, the state is changed to the state st+1 by
changing the state of the selected vertex to not selectable and changing the
state of all neighbors of the selected vertex to selectable.

Let Sn be the set of all possible 2n states. Let σ : Sn → {1, ..., 2n} be a
mapping from the 2n states to numbers 1, ..., 2n. Let β : Sn × Sn → V be
a function, such that if we are in state s1 and selecting a vertex v ∈ V will
result in the new state s2, then β(s2, s1) = v.

Based on the function f , we define a 2n×2n matrix F such that the value
of each element is defined as follows. Assume from state s1, we can select
a vertex v1, and this selection results in the new state s2. Then we set the
element in row σ(s2) and column σ(s1), to f(s1, v1). All other unassigned
elements are assigned to 0. Note that the sum of the elements of each column
of F is 1, so F is a “Markov Matrix”.

Note that based on the definition of F , Pr
[
st = s2|st−1 = s1

]
= Fσ(s2),σ(s1).

So we have

Pr
[
st = s2

]
=
∑

s1∈Sn

Pr
[
st = s2, s

t−1 = s1
]

=
∑

s1∈Sn

Pr
[
st = s2|st−1 = s1

]
Pr
[
st−1 = s1

]
=
∑

s1∈Sn

Fσ(s2),σ(s1) Pr
[
st−1 = s1

] . (3.12)

We define the column vector with 2n elements pt = [pt1, ..., p
t
2n]> such

40

3.4. The Probabilistic Sequence with Dependency Constraints Problem

that
pti = Pr

[
st = σ−1(i)

]
.

So, we can represent the equation(3.12), in the following compact form
using matrix multiplication

pt = Fpt−1. (3.13)

We denote the initial state with s0. So all elements of p0 is 0 except the
σ(s0) one which is 1. Using (3.13) repeatedly, we have

pt = F tp0. (3.14)

Let VT be a random sequence of vertices with length T selected according
to the rule of the probabilistic-SD problem. In the next theorem, we give an
equation to calculate the expected average weight of the sequence VT , when
the length of the sequence goes to infinity.

Theorem 3.5. Let VT be a random sequence of vertices with length T se-
lected according to the rule of the probabilistic-SD problem, started from the
initial state s0. We have

lim
t→∞

pt = π, (3.15)

where π is an eigenvector π of F with the coressponding eigenvalue of 1.
Moreover,

lim
T→∞

E [W (VT)] =
∑
s∈Sn

πσ(s)
∑

v∈V, sv=1

f(s, v)W (v). (3.16)

Proof. Because the matrix F is a Markov Matrix, F t converges as t → ∞.
Based on (3.14), we can conclude that pt also converges to a vector π as
t→∞.

Note that because limt→∞ F
t = limt→∞ F

t−1, then based on (3.14) we
have limt→∞ pt = limt→∞ pt−1 = π. Based on (3.13), we have pt = Fpt−1.
So we must have π = Fπ. So π is an eigenvector of F with eigenvalue of 1.

To find the expected value of the average weight of the random sequence
VT , we first find the expected value of the weight of the vertices selected at

41

3.4. The Probabilistic Sequence with Dependency Constraints Problem

step t.

E
[
W (vt)

]
=
∑
v∈V

Pr[vt = v]W (vt)

=
∑
v∈V

W (v)
∑
s∈Sn

Pr[vt = v, st = s]

=
∑
v∈V

W (v)
∑
s∈Sn

Pr
[
vt = v|st = s

]
Pr
[
st = s

]
=
∑
s∈Sn

Pr
[
st = s

]∑
v∈V

Pr
[
vt = v|st = s

]
W (v).

So if t→∞, because limt→∞ Pr
[
st = s

]
= πσ(s), we have

lim
t→∞

E
[
W (vt)

]
=
∑
s∈Sn

πσ(s)
∑

v∈V, sv=1

f(s, v)W (v)

Note that as limt→∞ E
[
W (vt)

]
converges, we have limT→∞ E [W (VT)] =

limt→∞ E
[
W (vt)

]
. So we can get the result (3.16).

Note that to use the formula (3.16) in practice, we need the vector π. But
note that the size of the matrix F and vector π is 22n and 2n respectively.
So forming them explicitly is intractable. However, it might be possible
for some specific type of functions f , to calculate the result of the formula
(3.16) without forming F and π explicitly, maybe using ideas similar to the
“Kernel Trick”.

42

Chapter 4

Conclusion and Future Work

In chapter 1 we introduced the Maximum weight Sequence with Dependency
constraints problem (MSD) which has application in finding the convergence
rates of coordinate descent with Gauss-Southwell rule and exact optimiza-
tion, and Kaczmarz method with the maximum residual rule.

In chapter 2 we solved the MSD problem when the length of the sequence
goes to infinity. We showed that to find the solution, we only need to check
the star sub-graphs of our graph, and we gave an algorithm that could find
the solution in time Θ(|V | log |V | + |E|). However, the problem for finite
length sequences is still open.

In chapter 3, we considered 4 generalizations of the MSD problem.
The first generalization was the k-times-MSD problem, which was similar

to the MSD problem, except that we could choose a vertex k times until it
becomes unelectable. We showed that this problem is equivalent to the
original MSD problem.

The second generalization was the k-order-MSD problem which was sim-
ilar to the MSD problem, except that when we select a vertex, all vertices
whose distance from the vertex is not grater than l becomes selectable. We
also showed that this problem is equivalent to the MSD problem.

The third generalization that we considered was the k-neighbors-MSD
problem which was similar to the MSD problem, except that we need to
select k neighbors of a vertex to make it selectable. We showed that this
problem is NP-Hard for k ≥ 3. In our proof, we constructed a graph that it
was not possible to have an infinite sequence. The problem for the graphs
that we can have infinite sequences remains open. Also the k-neighbors-
MSD problem for k = 2 remained unsolved (and the case k = 1 is the
MSD problem that we solve in polynomial time). Also we introduced the
conjecture 3.1 which can help in developing an algorithm to find an optimal
solution for the k-neighbors-MSD problem, by limiting our search to just a
particular class of sub-graphs in our graph.

The last generalization of our problem that we considered was the probabilistic-
SD problem, which is similar to the MSD, except that the vertices are se-
lected randomly. We derived a formula for the expected value of the average

43

Chapter 4. Conclusion and Future Work

weights if we leave the system for a long time. However finding the value
needs exponential time. Finding an approximation of the value, or the exact
value for some special cases (that are useful) in polynomial time, remains
open. Also finding the value for finite sequences remains unsolved.

44

Bibliography

[1] Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and
Hoyt Koepke. Coordinate descent converges faster with the gauss-
southwell rule than random selection. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15), pages 1632–1641,
2015.

[2] Julie Nutini, Behrooz Sepehry, Issam Laradji, Mark Schmidt, Hoyt
Koepke, and Alim Virani. Convergence rates for greedy kaczmarz algo-
rithms, and randomized kaczmarz rules using the orthogonality graph.
In Proceedings of the 32nd conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 547–556, 2016.

45

	Abstract
	Preface
	Table of Contents
	List of Figures
	Introduction
	Coordinate Descent with Gauss-Southsell Rule
	Greedy Kaczmarz Method

	The Maximum Weight Sequence with Dependency Constraints Problem
	The Problem
	Notations
	Solution

	Some Generalizations Of The MSD Problem
	The Maximum Weight Sequence with k-times Dependency Constraints Problem
	The Maximum Weight Sequence with k-order Dependency Constraints Problem
	The Maximum Weight Sequence with k-neighbors Dependency Constraints problem
	Notations
	Solution

	The Probabilistic Sequence with Dependency Constraints Problem

	Conclusion and Future Work
	Bibliography

