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Do we need “Harmless” Bayesian Optimization

and “First-Order” Bayesian Optimization?
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Motivation and Overview of Contribution Experiment Results on Harmless BO

» Recent empirical study on hyper-parameter tuning [Li et al., 2016]:

» Bayesian optimization outperformed by random run for twice as long.
» So should we use Bayesian optimization?

» Random is an optimal solver in the worst-case ( “hard” problems).

» But on certain problems, Bayesian optimization is exponentially faster (“easy” problems).
» We propose two research directions to improve Bayesian optimization:

» For “hard” problems; armless Bayesian optimization methods that do no worse than random.
» For “easy” problems: first-order Bayesian optimization (FOBO) uses gradients to solve even faster.

» And possibly using directional derivatives to reduce the cost.

» To test harmless BO on a “hard” function, we applied kernel smoother to
10-dimensional samples from a student t-distribution (differentiable but not sufficiently
smooth for BO to be effective).

Problem formulation

» We consider the problem of minimizing a real-valued f with lower and upper bounds,

arg min £(x). (1)

» At iteration t, the algorithm chooses an x' and receives f(x t)
» Goal: minimize number of iterations t before we have f(x*) —

» Equivalent to problem of minimizing sub-optimality on iteration t.
» Impossible in any finite number of iterations without assumptions on f.

» A weak assumption is that f is Lipschitz-continuous:

» In worst case, any algorithms requires Q(1/¢9). Experiment Results on FOBO
» Random search requires O(1/¢9) so it is optimal.

» For v-smooth functions Bayesian optimization requires O(1/e9/"):

» Slower than random search when v < 1.
» Faster than random search when v > 1.

» To test FOBO on an “easy” function, we used the Rosenbrock function

F(xr---xg) = S97H100(x? — xi41)2 + (1 — x;)?) for different dimensions d.
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» For “black-box” optimization, we don't want BO to be worse than random.
» A “harmless” BO algorithm is a BO method that requires at most O(1/¢9) iterations.

» Harmless BO methods perform as well as random on “hard” problems.
» Achievable with a simple alternating algorithm:
» Alternate between BO and random iterations to achieve a rate of O(1/emnid:d/v1).

» We also explored neural network training:

First Order Bayesian Optimization )

» For “easy” functions, we should be able to improve BO with derivatives.
» |f the kernel k is twice differentiable, GP directional derivatives are generated by a GP:

cov(f(x'), ,f(x)) = B,k(x', '), and
cov(O,F(x'), Ogf (X)) = D,0.k(x', x'),

where O,f denotes the partial derivative of f with respect to direction p.

Directional Derivatives

» The memory and time requirement increase if we use full gradients: 80 100 120

» Memory is increased from O(t%) to O(t*d?).
» Cost of the GP is increased from O(t%) to O(t3d?).
» We can avoid this using directional derivatives 0,f (x") for directions p:
» If we have the gradient, we could use p = V£ (x%).
» If not, we could set p to a random direction.
» Provides derivative information but only increases time/memory by constant.
» Always cheap for analytic functions.

Extensions

» |s there a better way to combine random and BO?

» Developing black-box Harmless FOBO methods.

» Can we exploit local smoothness?

» We conjecture that gradient information improves the convergence rate.




