
Do we need “Harmless” Bayesian Optimization
and “First-Order” Bayesian Optimization?

Mohamed Osama Ahmed (UBC), Bobak Shahriari (UBC), Mark Schmidt (UBC)

Motivation and Overview of Contribution

I Recent empirical study on hyper-parameter tuning [Li et al., 2016]:
I Bayesian optimization outperformed by random run for twice as long.

I So should we use Bayesian optimization?
I Random is an optimal solver in the worst-case (“hard” problems).
I But on certain problems, Bayesian optimization is exponentially faster (“easy” problems).

I We propose two research directions to improve Bayesian optimization:
I For “hard” problems; armless Bayesian optimization methods that do no worse than random.
I For “easy” problems: first-order Bayesian optimization (FOBO) uses gradients to solve even faster.

I And possibly using directional derivatives to reduce the cost.

Problem formulation

I We consider the problem of minimizing a real-valued f with lower and upper bounds,

arg min
x∈X

f (x). (1)

I At iteration t, the algorithm chooses an x t and receives f (x t).
I Goal: minimize number of iterations t before we have f (x̂ t)− f ∗ ≤ ε

I Equivalent to problem of minimizing sub-optimality on iteration t.
I Impossible in any finite number of iterations without assumptions on f .

I A weak assumption is that f is Lipschitz-continuous:
I In worst case, any algorithms requires Ω(1/εd).
I Random search requires O(1/εd) so it is optimal.

I For ν-smooth functions Bayesian optimization requires O(1/εd/ν):
I Slower than random search when ν < 1.
I Faster than random search when ν > 1.

Harmless Bayesian Optimization

I For “black-box” optimization, we don’t want BO to be worse than random.

I A “harmless” BO algorithm is a BO method that requires at most O(1/εd) iterations.

I Harmless BO methods perform as well as random on “hard” problems.
I Achievable with a simple alternating algorithm:

I Alternate between BO and random iterations to achieve a rate of O(1/εmin{d ,d/ν}).

First Order Bayesian Optimization

I For “easy” functions, we should be able to improve BO with derivatives.

I If the kernel k is twice differentiable, GP directional derivatives are generated by a GP:

cov(f (x i), ∂pf (x j)) = ∂pk(x i , x j), and (2)

cov(∂pf (x i), ∂qf (x j)) = ∂p∂qk(x i , x j), (3)

where ∂pf denotes the partial derivative of f with respect to direction p.

Directional Derivatives

I The memory and time requirement increase if we use full gradients:
I Memory is increased from O(t2) to O(t2d 2).
I Cost of the GP is increased from O(t3) to O(t3d 3).

I We can avoid this using directional derivatives ∂pf (x t) for directions p:
I If we have the gradient, we could use p = ∇f (x t).
I If not, we could set p to a random direction.

I Provides derivative information but only increases time/memory by constant.
I Always cheap for analytic functions.

I We conjecture that gradient information improves the convergence rate.

Experiment Results on Harmless BO

I To test harmless BO on a “hard” function, we applied kernel smoother to
10-dimensional samples from a student t-distribution (differentiable but not sufficiently
smooth for BO to be effective).

3.5
4.0
4.5
5.0
5.5
6.0

3.5
4.0
4.5
5.0
5.5
6.0

3.5
4.0
4.5
5.0
5.5
6.0

6 4 2 0 2 4 6
3.5
4.0
4.5
5.0
5.5
6.0

Experiment Results on FOBO

I To test FOBO on an “easy” function, we used the Rosenbrock function
f (x1 · · · xd) =

∑d−1
i=1 (100(x2

i − xi+1)2 + (1− xi)
2) for different dimensions d .

I We also explored neural network training:

Extensions

I Is there a better way to combine random and BO?

I Developing black-box Harmless FOBO methods.

I Can we exploit local smoothness?


