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Bayesian Optimization (BO) vs. Random Search

Bayesian optimization has a long history and is used in many fields.
In machine learning, it has been proposed for automatic hyper-parameter tuning.

Li et al. [2016] questions usefulness of BO for hyper-parameter tuning:

e 117 hyper-parameter tuning problems.
e BO typically has small gains over random guesses.
e BO typically outpeformed by doubling number of random guesses.

But BO practioners know BO is often much faster than random.
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This talk:
o Why BO might/not-might beat random, and how we can improve BO.



Iteration Complexity Framework

e We consider a minimizing a real f over upper/lower bounds X,

argmin f(x).
reX

@ At each iteration t of the iteration complexity game:

o Algorithm can pick parameter vector zt.
o Algorithm receives function value f(z') (noiseless).

@ We want to minimize number of iterations t before algoirthm guarantees
f('f"t) - f* < €,

where 2! is algorithm's guess of global optimum f*, and accuracy € > 0.



Iteration Complexity vs. Error after Fixed Time

@ lteration complexitystuides how big ¢ need to be to guarantee ¢ accuracy.

@ Example:
o For high-dimensional convex functions, we need O(1/¢?) iterations.

e Can equivalently state results in terms of error € after fixed iterations ¢.

o If we need t = O(1/€?) iterations, then error after ¢ steps is € = O(1//1).



Difficulty of Real-Valued Optimization
We're minimizing a real f over bounds X,
argmin f(x).
reX

How many iterations ¢ before any algorithm could guarantee f(2!) — f* < ¢?
Impossible!

Given any algorithm, we can construct an f where error > € forever.

o Make f(x) = 0 everywhere except 1 real number z* where f(z*) = —e — 2Whatever,
(The z* is algorithm-specific.)

To say anything about runtime we need assumptions on f.



Difficulty of Lipschitz-Continuous Optimization

One of the simplest assumptions is Lipschitz-continuity (others are possible):

[f(z) = fy)l < Lijz —yl,

for all x and y and some L < oo.

Function can't change arbitrarily fast as you change .

Under this assumption, any algorithm requires at least €(1/¢?) iterations.

An optimal O(1/e?) worst-case rate is achieved by a grad-based search method.
o See Chapter 1 of Nesterov's book.

An optimal O(1/e?) worst-case rate is achieved by random guesses.
o Probability that a random guess is e-optimal is Q(e?).

So random guessing is optimal.



Bayesian Optimization for Lipschitz-Continuous Optimization

@ So we have that convergence rate of random guesses is O(1/¢?).

o Under certain assumptions, BO convergence rate is O(1/¢”/4) [Bull, 2011].
o Parameter v is a masure of “smoothness” of f.

@ If v > 1, BO can be exponentially faster than random guessing.
e Supports empirical experiments where BO crushes random.

o If v < 1, BO can be slower than random guessing.



Harmless Bayesian Optimization (HBO)

@ We typically don’t know 7, so we don’t know if BO will beat random.

e Motivates harmless Bayesian optimization (HBO).

o “An HBO algorithm requires at most O(1/e?) iterations
to achieve accuracy € on a Lipschitz-continuous function.”

@ HBO algorithms guaranteed to perform within constant factor of random.



A Simple Harmless Method

@ A simple way to make an existing BO method harmless:

o On odd iterations, pick a random x?.
e On even iterations, apply the BO method.

o Achieves a faster rate of O(1/e™*{44/"}) ynder Bull's assumptions.

@ Similar to e-greedy algorithms for exploration vs. exploitation.
e We could use random iterations for any fixed porition of the time.

@ There are probably better methods that:
o Share information between random/BO iterations, and/or locally exploit smoothness.



Experiment with Harmless Bayesian Optimization

o We applied a kernel smoother to samples from a 10-dimensional t-distribution.
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@ Yields a differentiable function where BO converges slowly.



Experiment with Harmless Bayesian Optimization
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Beating Random: Exploiting Structure

HBO ensures we aren't beaten by random, but this is a bar for “success”.

How can we do go significantly faster than random?

Usually, we aren’t really optimizing a black box:
e Problems have structure, and we can exploit this to give faster methods.

Structure in convex optimization giving faster algorithms:
e Convexity, smoothness, projections, proximal operators, linear oracles, analytic
optimization over subsets, finite-sum problems, strong-convexity, self-concordance.
Structure in non-convex optimization giving faster algorithms:

o Polyak-Lojasiewicz condition, label switching arguments, instability of non-global
critical points.



First-Order Bayesian Optimization (FOBO)

We can do significantly better than random using structure in f.

We focus on one of the simplest structures: f is differentiable.
First-Order Bayesian optimization: Bayesian optimization with derivatives.

Using derivatives in GPs/BOs is not a new idea.
[Morris et al., 1993, Solak et al., 2003, Rasmussen & Williams, 2006, Lizotte, 2008, Osborne, 2010, ?277777]
But it's under-utilized:
e Many problems where we apply BO are differentiable:
o Gradient-based hyper-parameter learning [Bengio, 2000, Maclaurin et al., 2015].

e Cost of getting gradient is same order as getting function value.
o For sufficiently smooth functions, convergence rate should be faster (conjecture).



First-Order Bayesian Optimization (FOBO)

@ Key idea: assume funtion value and all first derivatives are jointly Gaussian.

@ If covariance kernel is twice-differentiable, extra covariance matrix elements are

cov(f(a"), Bpf(a7)) = Dph(a',27),
cov(9pf(z"), 0f (27)) = OpOyh(a", 27),

where 0, f is the directional derivative of f in the direction p.



FOBO with Directional Derivatives

e FOBO increases space from O(t?) to O(t3d).
e FOBO increases time from O(t3) to O(t3d?).

@ If this is too large, we can focus on modeling directional derivatives.

o We considered using gradient direction or a random direction.
e Has same time/space complexity as function-only BO.
o Can be computed exactly using forward-mode automatic differentiation.

@ Don't need gradient code or doesn't increase cost.



Experiment with First-Order Bayesian Optimization

Experiments with 2D and 3D Rosenbrock function:

107 . . 1 - 107
— GP
10° —  GradGP § 10°
1051 — DirectionalGP(rand) |
- - DirectionalGP 10°
104 L Random
104
10°
10°
107
101 102
10{) il 101
1071 | | I 1 100




Summary

Effectiveness of continuous optimizers depends on assumptions.

For fairly-general functions, random is optimal.

We proposed harmless Bayesian optimization (HBO):

e Similar to random for “hard” functions.
e Can be much faster for “easy” functions.

If we want to beat random, we need extra structure in the problem.

We explored first-order Bayesian optimization (FOBO):

e Incorporates derivatives to converge faster.
o Can use directional derivatives to reduce cost.



