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Bayesian Optimization (BO) vs. Random Search

Bayesian optimization has a long history and is used in many fields.

In machine learning, it has been proposed for automatic hyper-parameter tuning.

Li et al. [2016] questions usefulness of BO for hyper-parameter tuning:

117 hyper-parameter tuning problems.
BO typically has small gains over random guesses.
BO typically outpeformed by doubling number of random guesses.

But BO practioners know BO is often much faster than random.

??????????????????????????????????????????????????????????????????

This talk:

Why BO might/not-might beat random, and how we can improve BO.



Iteration Complexity Framework

We consider a minimizing a real f over upper/lower bounds X ,

argmin
x∈X

f(x).

At each iteration t of the iteration complexity game:

Algorithm can pick parameter vector xt.
Algorithm receives function value f(xt) (noiseless).

We want to minimize number of iterations t before algoirthm guarantees

f(x̂t)− f∗ ≤ ε,

where x̂t is algorithm’s guess of global optimum f∗, and accuracy ε > 0.



Iteration Complexity vs. Error after Fixed Time

Iteration complexitystuides how big t need to be to guarantee ε accuracy.

Example:

For high-dimensional convex functions, we need O(1/ε2) iterations.

Can equivalently state results in terms of error ε after fixed iterations t.

If we need t = O(1/ε2) iterations, then error after t steps is ε = O(1/
√
t).



Difficulty of Real-Valued Optimization

We’re minimizing a real f over bounds X ,

argmin
x∈X

f(x).

How many iterations t before any algorithm could guarantee f(x̂t)− f∗ ≤ ε?

Impossible!

Given any algorithm, we can construct an f where error > ε forever.

Make f(x) = 0 everywhere except 1 real number x∗ where f(x∗) = −ε− 2whatever.
(The x∗ is algorithm-specific.)

To say anything about runtime we need assumptions on f .



Difficulty of Lipschitz-Continuous Optimization

One of the simplest assumptions is Lipschitz-continuity (others are possible):

|f(x)− f(y)| ≤ L‖x− y‖,

for all x and y and some L <∞.

Function can’t change arbitrarily fast as you change x.

Under this assumption, any algorithm requires at least Ω(1/εd) iterations.

An optimal O(1/εd) worst-case rate is achieved by a grad-based search method.

See Chapter 1 of Nesterov’s book.

An optimal O(1/εd) worst-case rate is achieved by random guesses.

Probability that a random guess is ε-optimal is Ω(εd).

So random guessing is optimal.



Bayesian Optimization for Lipschitz-Continuous Optimization

So we have that convergence rate of random guesses is O(1/εd).

Under certain assumptions, BO convergence rate is Õ(1/εν/d) [Bull, 2011].

Parameter ν is a masure of “smoothness” of f .

If ν > 1, BO can be exponentially faster than random guessing.

Supports empirical experiments where BO crushes random.

If ν < 1, BO can be slower than random guessing.



Harmless Bayesian Optimization (HBO)

We typically don’t know η, so we don’t know if BO will beat random.

Motivates harmless Bayesian optimization (HBO).

“An HBO algorithm requires at most O(1/εd) iterations
to achieve accuracy ε on a Lipschitz-continuous function.”

HBO algorithms guaranteed to perform within constant factor of random.



A Simple Harmless Method

A simple way to make an existing BO method harmless:

On odd iterations, pick a random xt.
On even iterations, apply the BO method.

Achieves a faster rate of Õ(1/εmin{d,d/ν}) under Bull’s assumptions.

Similar to ε-greedy algorithms for exploration vs. exploitation.

We could use random iterations for any fixed porition of the time.

There are probably better methods that:

Share information between random/BO iterations, and/or locally exploit smoothness.



Experiment with Harmless Bayesian Optimization

We applied a kernel smoother to samples from a 10-dimensional t-distribution.
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Yields a differentiable function where BO converges slowly.



Experiment with Harmless Bayesian Optimization



Beating Random: Exploiting Structure

HBO ensures we aren’t beaten by random, but this is a bar for “success”.

How can we do go significantly faster than random?

Usually, we aren’t really optimizing a black box:

Problems have structure, and we can exploit this to give faster methods.

Structure in convex optimization giving faster algorithms:

Convexity, smoothness, projections, proximal operators, linear oracles, analytic
optimization over subsets, finite-sum problems, strong-convexity, self-concordance.

Structure in non-convex optimization giving faster algorithms:

Polyak-Lojasiewicz condition, label switching arguments, instability of non-global
critical points.



First-Order Bayesian Optimization (FOBO)

We can do significantly better than random using structure in f .

We focus on one of the simplest structures: f is differentiable.

First-Order Bayesian optimization: Bayesian optimization with derivatives.

Using derivatives in GPs/BOs is not a new idea.
[Morris et al., 1993, Solak et al., 2003, Rasmussen & Williams, 2006, Lizotte, 2008, Osborne, 2010, ??????]

But it’s under-utilized:
Many problems where we apply BO are differentiable:

Gradient-based hyper-parameter learning [Bengio, 2000, Maclaurin et al., 2015].

Cost of getting gradient is same order as getting function value.
For sufficiently smooth functions, convergence rate should be faster (conjecture).



First-Order Bayesian Optimization (FOBO)

Key idea: assume funtion value and all first derivatives are jointly Gaussian.

If covariance kernel is twice-differentiable, extra covariance matrix elements are

cov(f(xi), ∂pf(xj)) = ∂pk(xi, xj),

cov(∂pf(xi), ∂qf(xj)) = ∂p∂qk(xi, xj),

where ∂pf is the directional derivative of f in the direction p.



FOBO with Directional Derivatives

FOBO increases space from O(t2) to O(t2d).

FOBO increases time from O(t3) to O(t3d3).

If this is too large, we can focus on modeling directional derivatives.

We considered using gradient direction or a random direction.
Has same time/space complexity as function-only BO.
Can be computed exactly using forward-mode automatic differentiation.

Don’t need gradient code or doesn’t increase cost.



Experiment with First-Order Bayesian Optimization

Experiments with 2D and 3D Rosenbrock function:



Summary

Effectiveness of continuous optimizers depends on assumptions.

For fairly-general functions, random is optimal.

We proposed harmless Bayesian optimization (HBO):

Similar to random for “hard” functions.
Can be much faster for “easy” functions.

If we want to beat random, we need extra structure in the problem.

We explored first-order Bayesian optimization (FOBO):

Incorporates derivatives to converge faster.
Can use directional derivatives to reduce cost.


