
Is Greedy Coordinate Descent

a Terrible Algorithm?

Julie Nutini, Mark Schmidt, Issam Laradji,
Michael Friedlander, Hoyt Koepke

University of British Columbia

Coordinate Descent for Large-Scale Optimizaiton

We consider the basic convex optimization problem:

min
x∈IRn

f(x),

where f is differentiable and n is large.
A popular approach is coordinate descent:

1 Select a coordinate to update.
2 Take a small gradient step along coordinate.

Why use coordinate descent?

Theoretically, it is a provably bad algorithm:

The convergence rate is slower than gradient descent.
The iteration cost can be similar to gradient descent.

But it is widely-used in practice:

Nothing works better for certain problems.
Certain fields think it is the ‘ultimate’ algorithm.

???

Renewed theoretical interest began with Nesterov [2010]:

Global convergence rate for randomized coordinate selection.
Faster than gradient descent if iterations are n times cheaper.

Problems Suitable for Coordinate Descent

Coordinate update is n times faster than gradient update when f has the form:

g(x) =

n∑
i=1

fi(xi)︸ ︷︷ ︸
separable

+

n∑
i=1

n∑
j=1

fij(xi, xj)︸ ︷︷ ︸
pairwise separable

+

(

f(Ax)

)

︸ ︷︷ ︸
linear composition

.

fi general convex functions (can be non-smooth).
fij and f are smooth.
A is a matrix and f is cheap.

Key implementation ideas:

Separable part costs O(1) for 1 partial derivative.
Pairwise part costs O(n) for 1 partial derivative, instead of O(n2).
Linear composition costs O(m) for 1 partial derivative by tracking Ax, instead of O(mn).

Problems Suuitable for Coordinate Descent

Examples: least squares, logistic regression, L1-regularization, SVMs.

min
x∈IRn

1

2
‖Ax− b‖2 + λ

n∑
i=1

|xi|,

More examples: quadratics, graph-based label propagation, graphical models.

min
x∈IRn

1

2
xTAx+ bTx =

1

2

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi.

There are many more examples where coordinate descent is n-times faster:

Matrix/tensor factorization, log-determinant problems, convex sub-modular extensions.

Context: Random vs. Greedy Coordinate Descent

This talk:

Instead of random, consider classic steepest descent rule:

argmax
i
|∇if(x)|,

also known as the greedy rule or the Gauss-Southwell (GS) rule.

x1 x2 x3
Gauss-Southwell

GS is at least as expensive as random.

But Nesterov showed the rate is the same.

But this theory disagrees with practice...

Context: Random vs. Greedy Coordinate Descent

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
`2 -regularized sparse least squares

Epochs

O
b

je
c

ti
v

e

Cyclic

Random

Lipschitz

GS

GSL

If random and GS have similar costs, GS works much better.

This work: refined analysis of GS.

Gauss-Southwell???????????????????????????????

How is computing max(gradient) n-times cheaper than computing the gradient?

Consider a quadratic f(x) = xTAx+ btx with a very-sparse A:

For example, 10 non-zeroes per column.
In this case, only 10 gradients change when you change one variable.
You can efficiently track the max using a max-heap structure [Meshi et al., 2012].

For pairwise objectives like quadratics, need max-degree ≈ average-degree.

Grid-based models, max degree = 4 and average degree ≈ 4.
Dense quadratic: max degree = (n− 1), average degree = (n− 1).

Gradient costs O(n2), updating 1 variable and tracking max(gradient) costs O(n).

Facebook graph: max degree < 7000, average is ≈ 200.

For some problems, Gauss-Southwell is approximated by nearest neighbours search.

Notation and Assumptions

We focus on the convex optimization problem

min
x∈IRn

f(x),

where ∇f is coordinate-wise L-Lipschitz continuous,

|∇if(x+ αei)−∇if(x)| ≤ L|α|.

We focus on the case where f is µ-strongly convex, meaning f(x)− µ
2 ‖x‖

2 is convex.
For some µ > 0.

If f is twice-differentiable, these assumptions are equivalent to

∇2
iif(x) ≤ L, ∇2f(x) � µI.

We’ll analyze coordinate descent with constant step size 1
L ,

xk+1
ik

= xkik −
1

L
∇ikf(xk).

Convergence of Randomized Coordinate Descent

Convergence rate of gradient descent with step-size 1/Lf is

f(xk+1)− f(x∗) ≤
(

1− µ

Lf

)
[f(xk)− f(x∗)],

so we require O(
Lf

µ log(1/ε)) iterations to reach accuracy ε.

With ik chosen uniformly, coordinate descent has [Nesterov, 2010]

E[f(xk+1)]− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)],

so we require O(Lnµ log(1/ε)) iterations to reach accuracy ε.

Assuming “n-times cheaper”, we need O(Lµ log(1/ε)) in terms of gradient cost.

But L ≤ Lf so coordinate descent has a better bound.

Classic Analysis of Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ik ∈ argmax
i
|∇if(xk)|.

From Lipschitz-continuity assumption this rule satisfies

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞.

From strong-convexity we have

f(x∗) ≥ f(xk)− 1

2µ
‖∇f(xk)‖2.

Using ‖∇f(xk)‖2 ≤ n‖∇f(xk)‖2∞, we get

f(xk+1)− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)],

same rate as random [Boyd & Vandenberghe, 2004, §9.4.3].

Classic Analysis of Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ik ∈ argmax
i
|∇if(xk)|.

From Lipschitz-continuity assumption this rule satisfies

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞.

From strong-convexity we have

f(x∗) ≥ f(xk)− 1

2µ
‖∇f(xk)‖2.

Using ‖∇f(xk)‖2 ≤ n‖∇f(xk)‖2∞, we get

f(xk+1)− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)].

same rate as random [Boyd & Vandenberghe, 2004, §9.4.3].

Refined Gauss-Southwell Analysis

To avoid norm inequality, measure strong-convexity in 1-norm,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ1

2
‖y − x‖21.

Using convex conjugate of ‖ · ‖21 we now have that

f(x∗) ≥ f(xk)− 1

2µ1
‖∇f(xk)‖2∞.

Combining with ‖ · ‖2∞ in the GS progress bound gives a rate of

f(xk+1)− f(x∗) ≤
(

1− µ1

L

)
[f(xk)− f(x∗)].

This is the same as random if µ1 = µ/n.

The relationship between µ and µ1 is given by
µ

n
≤ µ1 ≤ µ.

Worst case same as random, but may be faster by factor up to n.
In the paper, we also analyze approximate GS rules and exact coordinate optimization.

Comparison for Separable Quadratic

In f is a quadratic with diagonal Hessian, we can show

µ = min
i
λi, and µ1 =

1∑n
i=1

1
λi

.

µ1 is harmonic mean of λi divided by n:
Time needed for workers “working together” to finish task is µ1 [Ferger, 1931].
Dominated by minimum λi.

If all λi equal:
There is no advantage to GS (µ1 = µ/n).

With one very large λi:
Here you would think that GS would be faster.
But GS and random are still similar (µ1 ≈ µ/n).

With one very small λi:
Here GS bound can be better by a factor of n (µ1 ≈ µ).
In this case, GS can actually be faster than gradient descent.

Fast Convergence with Bias Term

Consider the linear-prediction framework in statistics,

argmin
x,β

n∑
i=1

f(aTi x+ β) +
λ

2
‖x‖2 +

σ

2
β2,

where we’ve included a bias β.

Typically σ << λ to avoid biasing against a global shift.

This is an instance where GS has the most benefit.

Rules Depending on Lipschitz Constants

What about non-uniform randomized sampling?

Consider the case where we have an Li for each coordinate,

|∇if(x+ αei)−∇if(x)| ≤ Li|α|.

Assume that we know the Li or approximate them.
For example, we have L = ‖ai‖2 + λ for L2-regularized least squares,

argmin
x
‖Ax− b‖2 + λ

2
‖x‖2.

Nesterov [2010] shows that sampling proportional to Li yields

E[f(xk+1)]− f(x∗) ≤
(

1− µ

nL̄

)
[f(xk)− f(x∗)],

where L̄ = 1
n

∑n
i=1 Li.

Faster than uniform sampling when the Li are distinct.

If we know gradients and Li then should we use GS or Lipschitz sampling?

Gauss-Southwell-Lipschitz Rule

We obtain a faster rate than both by using Li in the GS rule,

ik ∈ argmax
i

|∇if(xk)|√
Li

,

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if Li is small.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of

f(xk+1)− f(xk) ≤ (1− µL)[f(xk)− f(x∗)].

where µL satisfies the inequality

max

µ

nL̄︸︷︷︸
Li

,
µ1

L︸︷︷︸
GS

 ≤ µL ≤
µ1

mini{Li}
,

so GSL is at least as fast as GS and Lipschitz sampling.

GSL using 1
Lik

is unimprovable for quadratics,

f(xk+1) = min
i,α
{f(xk + αei)}.

Gives tighter bound on maximum improvement rule.

GS vs. GSL Rule

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
`2 -regularized sparse least squares

Epochs

O
b

je
c

ti
v
e

Cyclic

Random

Lipschitz

GS

GSL

GSL rule gives modest but consistent improvements.

Improvement is large if we update multiple variables.

Gauss-Southwell-Lipschitz as Nearest Neighbour

An important problem class in machine learning is objectives of the form

min
x

n∑
i=1

f(aTi x),

where GS rule has the form

jk ∈ argmax
j

|∇jf(xk)| ≡ argmax
j

|r(xk)Taj |.

Dhillon et al. [2011] approximate GS as nearest neighbour,

Gauss-Southwell-Lipschitz as Nearest Neighbour

An important problem class in machine learning is objectives of the form

min
x

n∑
i=1

f(aTi x),

where GS rule has the form

jk ∈ argmax
j

|∇jf(xk)| ≡ argmax
j

|r(xk)Taj |.

Dhillon et al. [2011] approximate GS as nearest neighbour,

argmin
j
‖r(xk)− aj‖2 ≡ argmax

j

{
|∇jf(xk)| − 1

2
‖aj‖2

}
.

Exact if all ‖aj‖ are equal, otherwise it’s biased toward large ‖aj‖.
Usually Lj = γ‖aj‖2, and exact GSL is normalized nearest neighbours,

argmin
j

∣∣∣∣∣∣∣∣r(xk)− aj

‖aj‖

∣∣∣∣∣∣∣∣2 ≡ argmax
j

{
|∇jf(xk)|√

Lj

}
.

Random vs. Approximate GS and GSL

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Over-determined dense least squares

Epochs

O
b

je
c

ti
v
e

Lipschitz

Cyclic

Random

GS

Approximated−GS
Approximated−GSL

Approximate GS can still be faster than random sampling.

And GSL rule is computed exactly via the nearest neighbour “approximation”.

Proximal Coordinate Descent

Coordinate descent is popular for bound-constrained and L1-regularized problems,

argmin
x≥0

‖Ax− b‖2, argmin
x
‖Ax− b‖2 + λ‖x‖1.

Proximal Coordinate Descent

Let’s consider the general problem

min
x∈Rn

F (x) ≡ f(x) +
∑
i

gi(xi),

where f is smooth and gi might be non-smooth or enforce constraints.

Here we can apply exact coordinate optimization or proximal-gradient update,

xk+1 = argmin
α

F (xk + αeik), or xk+1 = prox 1
L gik

[
xk − 1

L
∇ikf(xk)eik

]
,

Richtárik and Takác [2014] show that

E[F (xk+1)− F (xk)] ≤
(

1− µ

Ln

)
[F (xk)− F (x∗)],

the same rate as if non-smooth gi was not there.

Proximal Gauss-Southwell

In the literature there are multiple generalizations of GS to these problems:

GS-s: Minimize directional derivative,

ik = argmax
i

{
min
s∈∂gi

|∇if(xk) + s|
}
.

Used for `1-regularization, but f(xk+1)− f(xk) could be tiny.

GS-r: Maximize how far we move,

ik = argmax
i

{∣∣∣∣xki − prox 1
L gik

[
xki −

1

L
∇ikf(xk)

]∣∣∣∣} .
Effective for bound constraints, but ignores gi(xk+1

i)− gi(xki).

GS-q: Maximize progress under quadratic approximation of f .

ik = argmin
i

{
min
d
f(xk) +∇if(xk)d+

Ld2

2
+ gi(x

k
i + d)− gi(xki)

}
.

Least intuitive, but has the best theoretical properties.
Generalizes GSL if you use Li instead of L.

Proximal Gauss-Southwell Convergence Rate

For the GS-q rule, we show that

F (xk+1)− F (xk) ≤
(

1− µ

Ln

)
[F (xk)− F (x∗)],

the same rate as random selection.

This rate does not hold for GS-s or GS-r: they can be slower than random.

But again theory disagrees with practice (work similarly in practice).

For piecewise-linear gi we can get an asymptotic rate depending on µ1,

F (xk+1)− F (xk) ≤
(

1− µ1

L

)
[F (xk)− F (x∗)],

for the GS-q rule (under a non-degeneracy condition on subdifferential at solution).

Comparison of Proximal Gauss-Southwell Rules

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
`1 -regularized underdetermined sparse least squares

Epochs

O
b

je
c

ti
v

e

Random Cyclic
Lipschitz

GS−q
GS−r

G
S

−s

GSL−q

GSL−r

All three rules seem to work pretty well.
But you can make GS-s work badly with poor initialization.
And GS-r works badly if you use the Li.

Summary

GS is not always practical.

But it is efficient for certain problems.
And even approximations to it tend to converge faster than random.

We’ve given a justification for line-search in certain scenarios.

We proposed GSL rule, and approximate/proximal variants.

Analysis extends to block updates.

Could be used for accelerated/parallel methods [Fercocq & Richtárik, 2013],
primal-dual methods [Shalev-Schwartz & Zhang, 2013], and without strong-convexity
[Luo & Tseng, 1993].

