Is Greedy Coordinate Descent

a Terrible Algorithm?

Julie Nutini, Mark Schmidt, Issam Laradiji,
Michael Friedlander, Hoyt Koepke

University of British Columbia

Coordinate Descent for Large-Scale Optimizaiton

@ We consider the basic convex optimization problem:
min f(z),
where f is differentiable and n is large.
@ A popular approach is coordinate descent:
@ Select a coordinate to update.
@ Take a small gradient step along coordinate.

Why use coordinate descent?

@ Theoretically, it is a provably bad algorithm:
e The convergence rate is slower than gradient descent.
e The iteration cost can be similar to gradient descent.
@ But it is widely-used in practice:

o Nothing works better for certain problems.
e Certain fields think it is the ‘ultimate’ algorithm.

@ ?777°7727°°772°?727°°7?72°?7272?7272??72?°?27??7?7?2?°?7??°?7?7?7

@ Renewed theoretical interest began with Nesterov [2010]:

o Global convergence rate for randomized coordinate selection.
e Faster than gradient descent if iterations are n times cheaper.

Problems Suitable for Coordinate Descent

@ Coordinate update is n times faster than gradient update when f has the form:

Zfz (23) +ZZLJ (2, 2;5) f(Az)

=1 j=1 R ,
linear composition

separable pairwise separable

e f; general convex functions (can be non-smooth).
e fi; and f are smooth.
e Ais amatrix and f is cheap.

@ Key implementation ideas:
e Separable part costs O(1) for 1 partial derivative.
e Pairwise part costs O(n) for 1 partial derivative, instead of O(n?).
e Linear composition costs O(m) for 1 partial derivative by tracking Az, instead of O(mn).

Problems Suuitable for Coordinate Descent

@ Examples: least squares, logistic regression, L1-regularization, SVMs.

fA—b2 A
min oAz = b+ A

@ More examples: quadratics, graph-based label propagation, graphical models.
1 T T -
wIél[lRIln 536 Ax+ bz = Zzljzla”xzxj izzlblxz.

@ There are many more examples where coordinate descent is n-times faster:

e Matrix/tensor factorization, log-determinant problems, convex sub-modular extensions.

Context: Random vs. Greedy Coordinate Descent

This talk:
@ Instead of random, consider classic steepest descent rule:

argmax |V f ()],

also known as the greedy rule or the Gauss-Southwell (GS) rule.

- = — - — — — — = = = — =

X2

@ GS is at least as expensive as random.
@ But Nesterov showed the rate is the same.
@ But this theory disagrees with practice...

Context: Random vs. Greedy Coordinate Descent

l5 -regularized sparse least squares

Objective
o
o3

0.2 I I I I I | I L L
0 10 20 30 40 50 60 70 80 90 100
Epochs

@ If random and GS have similar costs, GS works much better.

@ This work: refined analysis of GS.

@ How is computing max(gradient) n-times cheaper than computing the gradient?

@ Consider a quadratic f(z) = 27 Az + b’z with a very-sparse A:

e For example, 10 non-zeroes per column.
e In this case, only 10 gradients change when you change one variable.
e You can efficiently track the max using a max-heap structure [Meshi et al., 2012].

@ For pairwise objectives like quadratics, need max-degree = average-degree.

o Grid-based models, max degree = 4 and average degree = 4.
o Dense quadratic: max degree = (n — 1), average degree = (n — 1).
@ Gradient costs O(n?), updating 1 variable and tracking max(gradient) costs O(n).

o Facebook graph: max degree < 7000, average is ~ 200.

@ For some problems, Gauss-Southwell is approximated by nearest neighbours search.

Notation and Assumptions

@ We focus on the convex optimization problem
zrg]gl" f((E),
where V f is coordinate-wise L-Lipschitz continuous,

IVif(z +ae;) = Vif(x)] < Llal.

@ We focus on the case where f is u-strongly convex, meaning f(z) — 4|z is convex.
e Forsome p > 0.
o If f is twice-differentiable, these assumptions are equivalent to
Vif(x) <L, Vf(x) = pl.

@ We'll analyze coordinate descent with constant step size +,

1
R — xfk — Zvikf(xk).

Convergence of Randomized Coordinate Descent

@ Convergence rate of gradient descent with step-size 1/L; is

F@) — fa) < (1 - L"f) @) — F),

so we require O(%£ log(1/e)) iterations to reach accuracy e.
I

@ With i, chosen uniformly, coordinate descent has [Nesterov, 2010]

Elf @] - f) < (1= L) ") - fa),

so we require O(Z log(1/¢)) iterations to reach accuracy e.
%

@ Assuming “n-times cheaper”, we need O(% log(1/¢)) in terms of gradient cost.

e But L < Ly so coordinate descent has a better bound.

Classic Analysis of Gauss-Southwell Rule

@ GS rule chooses coordinate with largest directional derivative,

ir, € argmax |V, f(«*)

@ From Lipschitz-continuity assumption this rule satisfies

P < F@4) — I VR

@ From strong-convexity we have

1

f@*) > fa*) - @HW’(I'“)IIQ-

@ Using [[Vf(z")[I* < n[[Vf(z")]%., we get

J@ = £t < (1= L) 16 = 1@,

same rate as random [Boyd & Vandenberghe, 2004, §9.4.3].

Classic Analysis of Gauss-Southwell Rule

@ GS rule chooses coordinate with largest directional derivative,

ir, € argmax |V, f(«*)

@ From Lipschitz-continuity assumption this rule satisfies

P < F@4) — IV R

@ From strong-convexity we have

1

f@*) > fa*) - @HW’(I'“)IIQ-

o Using ||V f(«*) 2 < n[V f(a*)|., we get

J@) = £t < (1= L) 6 - @)

same rate as random [Boyd & Vandenberghe, 2004, §9.4.3].

Refined Gauss-Southwell Analysis

@ To avoid norm inequality, measure strong-convexity in 1-norm,

F) = f@) + (V@) =) + Sy — ol

@ Using convex conjugate of || - |2 we now have that

1

fa*) = f(a*) - ﬂHVf(xk)llio

@ Combining with || - |2, in the GS progress bound gives a rate of
Fa) = f@) < (1= 2 [F@h) - 7))
@ This is the same as random if iy = pu/n.
@ The relationship between p and p is given by
£ < pr < pe
n

@ Worst case same as random, but may be faster by factor up to n.
e In the paper, we also analyze approximate GS rules and exact coordinate optimization.

Comparison for Separable Quadratic

@ In f is a quadratic with diagonal Hessian, we can show
p=min);, and p; = %
i Dici %
@ 47 is harmonic mean of \; divided by n:
e Time needed for workers “working together” to finish task is 1 [Ferger, 1931].
e Dominated by minimum ;.
o If all A\; equal:
e There is no advantage to GS (u1 = u/n).
@ With one very large \;:
e Here you would think that GS would be faster.
e But GS and random are still similar (41 ~ u/n).
@ With one very small \;:
@ Here GS bound can be better by a factor of n (u1 &~ u).
e In this case, GS can actually be faster than gradient descent.

Fast Convergence with Bias Term

@ Consider the linear-prediction framework in statistics,
argmin En: f(aTa+)+ 2all? + 262
vy =0 2 277
where we’ve included a bias 5.

@ Typically o << A to avoid biasing against a global shift.

@ This is an instance where GS has the most benefit.

Rules Depending on Lipschitz Constants

What about non-uniform randomized sampling?
@ Consider the case where we have an L, for each coordinate,
IVif(z + ae;) — Vif(x)| < Lilal.

@ Assume that we know the L; or approximate them.
e For example, we have L = |ja;||* + X for L2-regularized least squares,

argmin || Az — b||* + %||a:||2.
@ Nesterov [2010] shows that sampling proportional to L; yields

E[f (") = fa*) < (1= 22) [F*) = 1),

where L= 15" L,
@ Faster than uniform sampling when the L; are distinct.
@ If we know gradients and L; then should we use GS or Lipschitz sampling?

Gauss-Southwell-Lipschitz Rule

@ We obtain a faster rate than both by using L; in the GS rule,

. k
in € argrinax Vz\%i)l

which we call the Gauss-Southwell-Lipschitz (GSL) rule.
@ Intuition: if gradients are similar, more progress if L; is small.

Gauss-Southwell-Lipschitz Rule

@ The GSL rule obtains a rate of

F@) = f(a) < (1= po)[f(=") = f2*)).

where 17, satisfies the inequality

max i 1 <up < _m
nL’ L [="" 7 min{L;}’
~— ~~

L; GS

so GSL is at least as fast as GS and Lipschitz sampling.

@ GSL using 7= is unimprovable for quadratics,
ik
() = min{ f(z* + ae;)}.

@ Gives tighter bound on maximum improvement rule.

GS vs. GSL Rule

0y -regularized sparse least squares
= \ \ \ \

Objective
o o o
S o o

o
w

! ! l l |
0 10 20 30 40 50 60 70 80 90 100
Epochs

02 L \ L L

@ GSL rule gives modest but consistent improvements.

e Improvement is large if we update multiple variables.

Gauss-Southwell-Lipschitz as Nearest Neighbour

@ An important problem class in machine learning is objectives of the form
min Z f(af@),
=1
where GS rule has the form
ji € argmax |V, f(z*)| = argmax |r(z*)"a’ .
J J
@ Dhillon et al. [2011] approximate GS as nearest neighbour,
e

A
! .
i s v ai
-

Gauss-Southwell-Lipschitz as Nearest Neighbour

@ An important problem class in machine learning is objectives of the form

min Y f(af x),
=1
where GS rule has the form
jx € argmax |V, f(z*)| = argmax |r(z*)Ta’|.
j j
@ Dhillon et al. [2011] approximate GS as nearest neighbour,

argmin ||r(z*) — a7||? = argmax {|ij(x"”‘) — ;Ha-jQ} .
j j

e Exactif all ||a?|| are equal, otherwise it’s biased toward large ||a’||.
@ Usually L; = v||la’||?, and exact GSL is normalized nearest neighbours,

= argmax {W\/%k)l} .

al

[la?]l

r(z®) —

argmin
J

Random vs. Approximate GS and GSL

Over-determined dense least squares

Objective

App roximated-Gg;
| I

1 t
0 10 20 30 40 50 60 70 80 90 100
Epochs

Approximate GS can still be faster than random sampling.
@ And GSL rule is computed exactly via the nearest neighbour “approximation”.

Proximal Coordinate Descent

@ Coordinate descent is popular for bound-constrained and L1-regularized problems,

argmin || Az — b||%, argmin || Az — b||® + \|z|:.
x>0 T

Proximal Coordinate Descent

@ Let’s consider the general problem

F(x
min F()+ 2 i),

where f is smooth and g; might be non-smooth or enforce constraints.

@ Here we can apply exact coordinate optimization or proximal-gradient update,

. 1
2*t = argmin F (2% + ae;,), or zFtl = prox. . |:37k - Evikf(xk)eik ,

(e

@ Richtarik and Takac [2014] show that

E[F@) = Fb) < (1= L) [F*) - F@"))

the same rate as if non-smooth g; was not there.

Proximal Gauss-Southwell

In the literature there are multiple generalizations of GS to these problems:
@ GS-s: Minimize directional derivative,
ix = argmax { min |V, f(z*) + s} :
i s€dg;

e Used for ¢,-regularization, but f(z**') — f(2*) could be tiny.

@ GS-r: Maximize how far we move,

xf - prox%gik [mf a iv%f(mk)} ’} .

e Effective for bound constraints, but ignores g;(z¥*") — g; («F).

7

1, = argmax {

?

@ GS-¢: Maximize progress under quadratic approximation of f.
d2 k k
- + gi(z7 +d) — gi(z7) ¢ -

o Least intuitive, but has the best theoretical properties.
o Generalizes GSL if you use L; instead of L.

i, = argmin {mdin f@®) + Vif(a¥)d +

Proximal Gauss-Southwell Convergence Rate

@ For the GS-q rule, we show that
F(a**!) = Fa*) < (1- 45 [F@a*) - F(a")],

the same rate as random selection.

@ This rate does not hold for GS-s or GS-r: they can be slower than random.

e But again theory disagrees with practice (work similarly in practice).

@ For piecewise-linear g; we can get an asymptotic rate depending on 4,

F(z") — F(a*) < (1 - %) [F(2F) — F(z*)],

for the GS-¢ rule (under a non-degeneracy condition on subdifferential at solution).

Comparison of Proximal Gauss-Southwell Rules

¢ -regularized underdetermined sparse least squares

= Qando T T T T T
m

ipschity 3

Objective
o
o
T
1

o
o
T
Il

Gs3

0.3 63
L
Y/

0. | | 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Epochs

@ All three rules seem to work pretty well.
e But you can make GS-s work badly with poor initialization.
o And GS-r works badly if you use the L,.

@ GS is not always practical.

o But it is efficient for certain problems.
@ And even approximations to it tend to converge faster than random.

@ We've given a justification for line-search in certain scenarios.
@ We proposed GSL rule, and approximate/proximal variants.
@ Analysis extends to block updates.

@ Could be used for accelerated/parallel methods [Fercocq & Richtarik, 2013],
primal-dual methods [Shalev-Schwartz & Zhang, 2013], and without strong-convexity
[Luo & Tseng, 1993].

