

Stop Wasting My Gradients: Practical SVRG

Reza Babanezhad (UBC), Mohamed Osama Ahmed (UBC), Alim Virani (UBC), Mark Schmidt (UBC), Jakub Konečný (University of Edinburgh), Scott Sallinen (ÚBC)

Motivation and Overview of Contribution

Huge proportion of ML model fitting problem involve minimizing finite sum:

 $\min_{x\in\mathbb{R}^d}f(x)=\frac{1}{n}\sum_{i=1}^{\prime\prime}f_i(x).$

- ► Least square, logistic regression, conditional random fields, deep neural network, etc.
- Classic full gradient (FG) and stochastic gradient (SG) methods:
- ► Have to choose between fast convergence (FG) and cheap iterations (SG).
- Stochastic average gradient (SAG):
- ► Fast convergence *and* cheap iterations, but high memory requirement.
- Stochastic variance-reduced gradient (SVRG):
- ► Fast convergence *and* cheap iterations, no memory requirement but many more gradients than SAG.
- > 2m + n gradient evaluations in SVRG for every *m* gradient evaluations in SAG.
- Our contributions:
- Convergence of SVRG with noisy gradients.
- Reducing gradient evaluations using batches.
- Reducing gradient evaluations using support vectors.
- Analysis of regularized SVRG iteration.
- Alternative mini-batch strategies.

Using Support Vectors

Consider objectives like the Huberized hinge loss,

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f(b_i a_i^T x), \quad f(\tau) = \begin{cases} 0 & \text{if } \tau > 1 + \epsilon, \\ 1 - \tau & \text{if } \tau < 1 - \epsilon, \\ \frac{(1 + \epsilon - \tau)^2}{4\epsilon} & \text{if } |1 - \tau| \le \epsilon \end{cases}$$

which is differentiable but many gradients are zero at solution.

Skip evaluating gradient at exponentially-increasing interval if it remains at zero.

Algorithm 2 Heuristic for skipping evaluations of f_i at x

if $sk_i = 0$ then compute $f'_i(x)$. if $f'_i(x) = 0$ then {Update the number of consecutive times $f'_i(x)$ was zero.} $ps_i = ps_i + 1.$ $sk_i = 2^{\max\{0, ps_i - 2\}}$ {Skip exponential number of future evaluations if it remains zero.} else {This could be a support vector, do not skip it next time. $ps_i = 0.$

Generalization error of the method.

SVRG Algorithm and Convergence Rate

Assumptions:

- f is μ -strongly convex.
- f_i is convex and f'_i is Lipschitz-continuous with constant L.
- ► SVRG 'inner' update is *m* variance-reduced SG iterations,

$$x_t = x_{t-1} - \eta \left(f'_{i_t}(x_{t-1}) - f'_{i_t}(x^s) + \mu^s \right).$$

- SVRG 'outer' update sets μ^s :
- Set $x^s = x_t$ or random x_i since last update.
- ► Set $\mu^s = f'(x^s) = \frac{1}{n} \sum_{i=1}^n f'_i(x^s)$ (full gradient).
- Convergence rate depends on $\rho(a, b) \triangleq \frac{1}{1-2\eta a} \left(\frac{1}{m\mu\eta} + 2b\eta \right)$ SVRG achieves linear convergence rate (faster than sublinear rate of SG), $\mathbb{E}[f(x^{s+1}) - f(x^*)] \le \rho(L, L)\mathbb{E}[f(x^s) - f(x^*)],$

Convergence Rate with Noise

• Consider using $\mu^s = f'(x^s) + e^s$, where e^s is an error term. • We show that (assuming $||x_t - x^*|| \leq Z$) $\mathbb{E}[f(x^{s+1}) - f(x^*)] \leq \rho(L, L)\mathbb{E}[f(x^s) - f(x^*)] + \frac{Z\mathbb{E}\|e^s\| + \eta\mathbb{E}\|e^s\|^2}{1 - 2\eta L}.$

end if return $f'_i(x)$. else $sk_i = sk_i - 1.$ return 0. end if

{In this case, we skip the evaluation.}

Regularized and Mini-batched SVRG

Consider optimizing simple plus sum of smooth functions,

$$\min_{x\in\mathbb{R}^d} f(x)\equiv h(x)+rac{1}{n}\sum_{i=1}^n g_i(x).$$

► Non-smooth *h*: we analyze proximal-SVRG method with error. Smooth h: we consider SVRG-like iteration that uses exact gradient of h,

$$x_{t+1} = x_t - \eta \left(h'(x_t) + g'_{i_t}(x_t) - g'_{i_t}(x^s) + \mu^s \right),$$

where $\mu^{s} = \frac{1}{n} \sum_{i=1}^{n} g_{i}(x^{s})$.

• Common example is $h(x) = \frac{\lambda}{2} ||x||^2$ and using the update

$$x_{t+1} = (1 - \eta \lambda)x_t - \eta \left(g_{i_t}'(x_t) - g_{i_t}'(x^s) + \mu^s\right)$$

which is appealing if gradients g_i are sparse. • Using $L_m = \max\{L_g, L_h\}$, this achieves a faster rate of $\mathbb{E}[f(x^{s+1}) - f(x^*)] \leq \rho(L_m, L_m) \mathbb{E}[f(x^s) - f(x^*)],$

(*)

- Error does not slow down SVRG when far from the solution.
- ► If error converges to zero linearly, we maintain linear convergence rate.
- Sampling proportional to Lipschitz constant L_i of each f'_i gives faster rate.

Batching SVRG

• We can approximate μ^s with fewer gradients by using a subset \mathcal{B}^s of the f'_i . If variance of gradient norms is bounded

$$\frac{1}{n-1}\sum_{i=1}^{n}\left[\|f_{i}'(x^{s})\|^{2}-\|f'(x^{s})\|^{2}\right]\leq S^{2},$$

then we can bound expected size of error e^s ,

$$\mathbb{E}\|e^s\|^2 \leq \frac{n-|\mathcal{B}^s|}{n|\mathcal{B}^s|}S^2.$$

► To achieve a linear rate it is sufficient to have

$$|\mathcal{B}^{s}| \geq rac{nS^2}{S^2 + n\gamma \tilde{
ho}^{2s}},$$

for some γ and ρ (increase batch size exponentially until n/2, then more slowly).

Algorithm 1 Batching SVRG

Input: initial vector x^0 , update frequency *m*, learning rate η .

- for s = 0, 1, 2, ... do
- $\mathcal{B}^{s} = |\mathcal{B}^{s}|$ elements sampled without replacement from $\{1, 2, \ldots, n\}$.

- We consider mini-batch where h is f_i whose gradients have largest Lipschitz constants.
- ► We also explored mini-batches based on function value and gradient norms.

Learning Efficiency

• Bottou & Bousquet show that we can write generalization error \mathcal{E} using three terms

$$\mathcal{E} = \mathcal{E}_{\mathsf{app}} + \mathcal{E}_{\mathsf{est}} + \mathcal{E}_{\mathsf{opt}}.$$

► We analyze algorithms like SAG and SVRG under their assumptions. Methods like SAG and SVRG can obtain better bounds in certain settings.

Algorithm	Time to reach $\mathcal{E}_{opt} \leq \epsilon$	Time to reach $\mathcal{E} = O(\mathcal{E}_{app} + \epsilon)$	Previous with $\kappa \sim n$
FG	$\mathcal{O}\left(n\kappa d\log\left(rac{1}{\epsilon} ight) ight)$	$\mathcal{O}\left(rac{d^2\kappa}{\epsilon^{1/lpha}}\log^2\left(rac{1}{\epsilon} ight) ight)$	$\mathcal{O}\left(rac{d^3}{\epsilon^{2/lpha}}\log^3\left(rac{1}{\epsilon} ight) ight)$
SG	$\mathcal{O}\left(\frac{d\nu\kappa^2}{\epsilon}\right)$	$\mathcal{O}\left(\frac{d\nu\kappa^2}{\epsilon}\right)$	$\mathcal{O}\left(\frac{d^{3}\nu}{\epsilon}\log^{2}\left(\frac{1}{\epsilon}\right)\right)$
SVRG	$\mathcal{O}\left((n+\kappa)d\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\frac{d^2}{\epsilon^{1/lpha}}\log^2\left(\frac{1}{\epsilon}\right) + \kappa d \log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(rac{d^2}{\epsilon^{1/lpha}}\log^2\left(rac{1}{\epsilon} ight) ight)$

Experiment Results (Logistic Regression and Huberized SVM)

 $\mu^{s} = \frac{1}{|\mathcal{B}^{s}|} \sum_{i \in \mathcal{B}^{s}} f_{i}'(x^{s})$ $x_{0} = x^{s}$ for t = 1, 2, ..., m do Randomly pick $i_t \in 1, \ldots, n$ $x_{t} = x_{t-1} - \eta (f_{i_{t}}'(x_{t-1}) - f_{i_{t}}'(x^{s}) + \mu^{s})$ end for set $x^{s+1} = x_m$ end for

- Mixed SG and SVRG method: use regular SG update in (*) if i_t is not in \mathcal{B}^s . Starts out doing regular SG and slowly adds variance reduction.
- Early iterations only require 1 gradient evaluation.

▶ Using $\alpha = |\mathcal{B}^s|/n$ and assuming $\mathbb{E}||f'_i(x)||^2 \leq \sigma^2$, achieves faster rate if σ^2 small, $\mathbb{E}[f(x^{s+1}) - f(x^*)] \leq \rho(L, \alpha L) \mathbb{E}[f(x^s) - f(x^*)] + \frac{Z\mathbb{E}\|e^s\| + \eta \mathbb{E}\|e^s\|^2 + \frac{\eta \sigma^2}{2}(1-\alpha)}{1-2\eta L},$