Stop Wasting My Gradients: Practical SVRG

Reza Babanezhad (UBC), Mohamed Osama Ahmed (UBC), Alim Virani (UBC), Mark Schmidt (UBC),
Jakub Kone¢ny (University of Edinburgh), Scott Sallinen (UBC)

Motivation and Overview of Contribution Using Support Vectors

» Huge proportion of ML model fitting problem involve minimizing finite sum: » Consider objectives like the Huberized hinge loss,

1 o .
min f(x) :_Zfi(x), [0 if 7>1+¢,
x€R n 1 min — Z f(b,-a,-Tx), f(T) =< 1—7 if 7 <1—c¢,

xeR9 N 2
. . . P . .: 1_|_ - -
» Least square, logistic regression, conditional random fields, deep neural network, etc. i=1 (ZE) if ‘1 — 7‘| < €,

» Classic full gradient (FG) and stochastic gradient (SG) methods:

» Have to choose between fast convergence (FG) and cheap iterations (SG). o o _
» Stochastic average gradient (SAG): » Skip evaluating gradient at exponentially-increasing interval if it remains at zero.

which is differentiable but many gradients are zero at solution.

» Fast convergence and cheap iterations, but high memory requirement. Algorithm 2 Heuristic for skipping evaluations of f; at x
» Stochastic variance-reduced gradient (SVRG): £ 0 then

» Fast convergence and cheap iterations, no memory requirement but many more gradients than SAG. L ,

» 2m + n gradient evaluations in SVRG for every m gradient evaluations in SAG. compute f; ()

» Our contributions: if 7/(x) =0 then
» Convergence of SVRG with noisy gradients. ps; = ps; + 1. {Update the number of consecutive times f/(x) was zero.}

» Reducing gradient evaluations using batches. skj = 2m>10.psi—2} fSkip exponential number of future evaluations if it remains zero.}
» Reducing gradient evaluations using support vectors. else

» Analysis of regularized SVRG iteration.
» Alternative mini-batch strategies.
» Generalization error of the method.

ps; = 0. {This could be a support vector, do not skip it next time.}

end if

return f/(x).

else

SVRG Algorithm and Convergence Rate ski = sk; — 1. {In this case, we skip the evaluation.}

return O.
» Assumptions: end if

» f is p-strongly convex.
> f; is convex and f is Lipschitz-continuous with constant L.

» SVRG ‘inner’ update is m variance-reduced SG iterations, Regularized and Mini-batched SVRG
Xt = Xt—1— 1] (fi:(xt—l) - f::(xs) + MS) :
» SVRG 'outer’ update sets p°:

» Set x* = x; or random Xx; since last update.

»Set p° = f/(x°) = 130 f/(x°) (full gradient). Se]IiR?d f(x) =

» Consider optimizing simple plus sum of smooth functions,

» Convergence rate depends on p(a, b) = 1_12773 (mim | 2b77>

» SVRG achieves linear convergence rate (faster than sublinear rate of SG),

» Non-smooth h: we analyze proximal-SVRG method with error.
» Smooth h: we consider SVRG-like iteration that uses exact gradient of h,

E[f(x*") — f(x")] < p(L, L)E[f(x*) — f(x")], xer1 = xe — 1 (H(x) + gl(x) — g.(x*) + 1°) |

where pf = 23" gi(x®).
Convergence Rate with Noise »~ Common example is h(x) = 3||x||*> and using the update
Xt4+1 = (1 - 77>\)Xt — 7 (gli(xt) o gi/t(XS) + :us))

- - S _ fI{sS s s
» Consider using 11° = f'(x°) + e°, where €® is an error term. which is appealing if gradients g; are sparse.

> We show that (assuming ||x; — x*|| < Z) » Using L, = max{L,, L}, this achieves a faster rate of

E[f(x*) = £(x")] < p(Lm, Ln)E[f(x*) = £(x")],

» We consider mini-batch where h is f; whose gradients have largest Lipschitz constants.

ZE|ef| + e

E[f(x"") = F(<)] < p(L, DEIF(C) = FON + =

» Error does not slow down SVRG when far from the solution.

_ TR » We also explored mini-batches based on function value and gradient norms.
» If error converges to zero linearly, we maintain linear convergence rate.

» Sampling proportional to Lipschitz constant L; of each f/ gives faster rate.
Learning Efficiency

Batching SVRG

» Bottou & Bousquet show that we can write generalization error £ using three terms

» We can approximate p° with fewer gradients by using a subset B° of the f/. & = Eapp 1 Cest T Eopt-
» If variance of gradient norms is bounded » We analyze algorithms like SAG and SVRG under their assumptions.

T » Methods like SAG and SVRG can obtain better bounds in certain settings.

n—1 ,S:; [Hf’l(XS)HQ N Hf/(XS)HQ} < S Algorithm Time to reach &, < € Time to reach £ = O(&,,, + €) Previous with Kk ~ n

then we can bound expected size of error e°, FG O (nkdlog (7)) O (gl% log” (%)) O 5_/2
n— |B°] SG O () O () O (¢
|5 SVRG O ((n+r)dlog (1) O (ilog? (1) +rdlog (1)) O (£

€

EHeSH2 < S°.

» To achieve a linear rate it is sufficient to have

nS?

+ e

for some v and p (increase batch size exponentially until n/2, then more slowly).

Algorithm 1 Batching SVRG

Input: initial vector x¥, update frequency m, learning rate 7.
fors=0,1,2,... do

B* = |B°| elements sampled without replacement from {1,2,..., n}.
e = ﬁ 2_ieps f: (x°)
Xo=Xx"

fort=1,2,...,mdo

Randomly pick i € 1,...,n

Xt = Xt—1 — U(ﬁ:(xt—l) o f;:(XS) + :us) | 1|o 1|o

end for Ef f ecti ve Passes Ef fecti ve Passes

set x°T1 = x, '

end fOI‘ « A E:IO:N : %E:LIN
NOS(E SV(Ful 1) SV(Ful 1)
| ' T=svaow| | V(G ow)
» Mixed SG and SVRG method: use regular SG update in (*) if /; is not in B°. g ‘

» Starts out doing regular SG and slowly adds variance reduction.
» Early iterations only require 1 gradient evaluation.

B>

=
(@)
o

[EEN

o
N
l

[EEY

S,
I
I

Qbj ective m nus Optinmum

[EEN

o
o
l

Test Error

' \ 00"“

» Using « = |B%|/n and assuming E||f/(x)||> < 02, achieves faster rate if 0% small, <

B — £ < plL ab)BLF) —)] + S ELE) | .

10
Ef fecti ve Passes Ef fecti ve Passes

(bj ective mnus Optinmum

