
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad (UBC), Mohamed Osama Ahmed (UBC), Alim Virani (UBC), Mark Schmidt (UBC),

Jakub Konečný (University of Edinburgh), Scott Sallinen (UBC)

Motivation and Overview of Contribution

I Huge proportion of ML model fitting problem involve minimizing finite sum:

min
x∈Rd

f (x) =
1

n

n∑
i=1

fi(x).

I Least square, logistic regression, conditional random fields, deep neural network, etc.

I Classic full gradient (FG) and stochastic gradient (SG) methods:
I Have to choose between fast convergence (FG) and cheap iterations (SG).

I Stochastic average gradient (SAG):
I Fast convergence and cheap iterations, but high memory requirement.

I Stochastic variance-reduced gradient (SVRG):
I Fast convergence and cheap iterations, no memory requirement but many more gradients than SAG.
I 2m + n gradient evaluations in SVRG for every m gradient evaluations in SAG.

I Our contributions:
I Convergence of SVRG with noisy gradients.
I Reducing gradient evaluations using batches.
I Reducing gradient evaluations using support vectors.
I Analysis of regularized SVRG iteration.
I Alternative mini-batch strategies.
I Generalization error of the method.

SVRG Algorithm and Convergence Rate

I Assumptions:
I f is µ-strongly convex.
I fi is convex and f ′i is Lipschitz-continuous with constant L.

I SVRG ‘inner’ update is m variance-reduced SG iterations,

xt = xt−1 − η
(
f ′it(xt−1)− f ′it(x

s) + µs
)
.

I SVRG ’outer’ update sets µs:
I Set x s = xt or random xi since last update.
I Set µs = f ′(x s) = 1

n

∑n
i=1 f

′
i (x s) (full gradient).

I Convergence rate depends on ρ(a, b) , 1
1−2ηa

(
1

mµη + 2bη
)

I SVRG achieves linear convergence rate (faster than sublinear rate of SG),

E[f (x s+1)− f (x∗)] ≤ ρ(L, L)E[f (x s)− f (x∗)],

Convergence Rate with Noise

I Consider using µs = f ′(x s) + es, where es is an error term.

I We show that (assuming ‖xt − x∗‖ ≤ Z )

E[f (x s+1)− f (x∗)] ≤ ρ(L, L)E[f (x s)− f (x∗)] +
ZE‖es‖ + ηE‖es‖2

1− 2ηL
.

I Error does not slow down SVRG when far from the solution.
I If error converges to zero linearly, we maintain linear convergence rate.

I Sampling proportional to Lipschitz constant Li of each f ′i gives faster rate.

Batching SVRG

I We can approximate µs with fewer gradients by using a subset Bs of the f ′i .

I If variance of gradient norms is bounded

1

n − 1

n∑
i=1

[
‖f ′i (x s)‖2 − ‖f ′(x s)‖2

]
≤ S2,

then we can bound expected size of error es,

E‖es‖2 ≤ n − |Bs|
n|Bs|

S2.

I To achieve a linear rate it is sufficient to have

|Bs| ≥ nS2

S2 + nγρ̃2s
,

for some γ and ρ (increase batch size exponentially until n/2, then more slowly).

Algorithm 1 Batching SVRG

Input: initial vector x0, update frequency m, learning rate η.
for s = 0, 1, 2, . . . do
Bs = |Bs| elements sampled without replacement from {1, 2, . . . , n}.
µs = 1

|Bs|
∑

i∈Bs f
′

i (x s)
x0=x s

for t = 1, 2, . . . ,m do
Randomly pick it ∈ 1, . . . , n
xt = xt−1 − η(f

′

it
(xt−1)− f

′

it
(x s) + µs) (∗)

end for
set x s+1 = xm

end for

I Mixed SG and SVRG method: use regular SG update in (*) if it is not in Bs.
I Starts out doing regular SG and slowly adds variance reduction.
I Early iterations only require 1 gradient evaluation.

I Using α = |Bs|/n and assuming E‖f ′i (x)‖2 ≤ σ2, achieves faster rate if σ2 small,

E[f (x s+1)− f (x∗)] ≤ ρ(L, αL)E[f (x s)− f (x∗)] +
ZE‖es‖ + ηE‖es‖2 + ησ2

2 (1− α)

1− 2ηL
,

Using Support Vectors

I Consider objectives like the Huberized hinge loss,

min
x∈Rd

1

n

n∑
i=1

f (bia
T
i x), f (τ ) =


0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ )2

4ε if |1− τ | ≤ ε,

which is differentiable but many gradients are zero at solution.

I Skip evaluating gradient at exponentially-increasing interval if it remains at zero.

Algorithm 2 Heuristic for skipping evaluations of fi at x

if ski = 0 then
compute f ′i (x).
if f ′i (x) = 0 then
psi = psi + 1. {Update the number of consecutive times f ′i (x) was zero.}
ski = 2max{0,psi−2}. {Skip exponential number of future evaluations if it remains zero.}
else
psi = 0. {This could be a support vector, do not skip it next time.}
end if
return f ′i (x).
else
ski = ski − 1. {In this case, we skip the evaluation.}
return 0.
end if

Regularized and Mini-batched SVRG

I Consider optimizing simple plus sum of smooth functions,

min
x∈Rd

f (x) ≡ h(x) +
1

n

n∑
i=1

gi(x).

I Non-smooth h: we analyze proximal-SVRG method with error.

I Smooth h: we consider SVRG-like iteration that uses exact gradient of h,

xt+1 = xt − η
(
h′(xt) + g ′it(xt)− g ′it(x

s) + µs
)
,

where µs = 1
n

∑n
i=1 gi(x

s).

I Common example is h(x) = λ
2‖x‖

2 and using the update

xt+1 = (1− ηλ)xt − η
(
g ′it(xt)− g ′it(x

s) + µs
)
,

which is appealing if gradients gi are sparse.

I Using Lm = max{Lg , Lh}, this achieves a faster rate of

E[f (x s+1)− f (x∗)] ≤ ρ(Lm, Lm)E[f (x s)− f (x∗)],

I We consider mini-batch where h is fi whose gradients have largest Lipschitz constants.

I We also explored mini-batches based on function value and gradient norms.

Learning Efficiency

I Bottou & Bousquet show that we can write generalization error E using three terms

E = Eapp + Eest + Eopt.

I We analyze algorithms like SAG and SVRG under their assumptions.

I Methods like SAG and SVRG can obtain better bounds in certain settings.

Algorithm Time to reach Eopt ≤ ε Time to reach E = O(Eapp + ε) Previous with κ ∼ n

FG O
(
nκd log

(
1
ε

))
O
(
d2κ
ε1/α

log2
(

1
ε

))
O
(

d3

ε2/α
log3

(
1
ε

))
SG O

(
dνκ2

ε

)
O
(
dνκ2

ε

)
O
(
d3ν
ε log2

(
1
ε

))
SVRG O

(
(n + κ)d log

(
1
ε

))
O
(

d2

ε1/α
log2

(
1
ε

)
+ κd log

(
1
ε

))
O
(

d2

ε1/α
log2

(
1
ε

))

Experiment Results (Logistic Regression and Huberized SVM)

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t
 
E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05
Full

Grow

Mixed

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e
 
m
i
n
u
s
 
O
p
t
i
m
u
m

10-10

10-5

100

Full

Grow

SV(Full)

SV(Grow)

Effective Passes

0 5 10 15

T
e
s
t
 
E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05 Full

Grow

SV(Full)

SV(Grow)


