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@ We want to minimize the sum of a finite set of smooth functions:
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@ We are interested in cases where nis very large.
@ We will focus on strongly-convex functions g:

@ Any convex function plus L2-regularization.

@ Simplest example is ¢>-regularized least-squares,
T 2 A 2
fi(x) = (a; x = bi)" + S| x|I*.

@ Common framework in machine learning:
o logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing f(x) = 1 "7, fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

Xt+1—Xt705tf Xt = Xt — Zf/ Xt.

e Linear convergence rate: O(p').
e lteration cost is linear in n.
e Fancier methods exist, but still cost O(n)

@ Stochastic gradient method [Robbins & Monro, 1951]:
e Random selection of i; from {1,2,... N},

Xt+1 = Xt — atfi:(xt)-

e lteration cost is independent of n.
e Sublinear convergence rate: O(1/t).



Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing g(x) = %Zf; fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:



Motivation for New Methods

@ FG method has O(n) cost with O(p') rate.
@ SG method has O(1) cost with O(1/1) rate.

\

-

stochastic

deterministic

log(excess cost)

Y

time



Motivation for New Methods

@ FG method has O(n) cost with O(p') rate.
@ SG method has O(1) cost with O(1/1) rate.

—~A

stochastic

deterministic

log(excess cost

hybrid

Y

time



Stochastic Average Gradient (SAG)

@ Stochastic average gradient (SAG): [Le Roux et al., 2012]:
e Randomly select i from {1,2,..., n} and compute f; (x:),

n
o Qat t
Xt+1 —Xt—F Vi,

i=1

where y/ = f/ from last iteration s where / was selected.



Stochastic Average Gradient (SAG)

@ Stochastic average gradient (SAG): [Le Roux et al., 2012]:
e Randomly select i from {1,2,..., n} and compute f; (x:),

n
o Qat t
Xt+1 —Xt—F Vi,

i=1
where y/ = f/ from last iteration s where / was selected.
@ Achieves O(p') convergence rate with O(1) iteration cost:

@ Number of f/ evaluations to reach accuracy of e:

Stochastic gradient: O(x/e).

Deterministic gradient: O(n«x log(1/¢)).
Accelerated gradient: O(n+/k log(1/¢)).
Stochastic average gradient: O((n + «)log(1/€)).



Comparing FG and SG Methods

@ quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

Objective minus Optimum
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@ Comparison of competitive deterministic and stochastic methods.



SAG Compared to FG and SG Methods

@ quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

Objective minus Optimum

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ SAG starts fast and stays fast.
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Other Linearly-Convergent Methods

@ Other methods subsequently shown to have this property:
e SDCA [Shalev-Schwartz & Zhang, 2013].
e MISO [Mairal, 2013].
o SAGA [Defazio et al., 2014].

@ But, these all introduce memory requirements:

e Require previous gradients f/ or dual variables for each .
e Only O(n) for some objectives, but O(nd) in general.
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@ Recent methods with similar rates that avoid memory:
o Mixed Gradient [Mahdavi & Jin, 2013, Zhang et al., 2013]
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e Semi-stochastic gradient [Konecny & Richtarik, 2013]



Stochastic Variance-Reduced Gradient (SVRG)

@ Recent methods with similar rates that avoid memory:
o Mixed Gradient [Mahdavi & Jin, 2013, Zhang et al., 2013]
e Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang, 2013]
e Semi-stochastic gradient [Konecny & Richtarik, 2013]
@ Memory is O(d), but they require extra gradient calculations:
e Two gradients on each iteration.
@ Occasional calculation of all n gradients.

Extra calculations make them slower than SAG and friends.



@ Deterministic, stochastic, and finite-sum methods.
@ Wasting fewer gradients in SVRG.
© Making things go fast.
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Stochastic Variance-Reduced Gradient

SVRG algorithm (SG method with control variate):

@ Start with xg

e fors=0,1,2...
° ds= %ZL ff (xs)
o x° = x

o fort=1,2,...m
@ Randomly pick i; € {1,2,...,n}
o xl=x=1— ar(f,-;(xt_1) - f,-;(Xs) + ds)
@ X511 = x'forrandom t € {1,2,...,m}
Only need to store xs and ds.

(outer loop)
(full gradient calculation)

(inner loop)

(two gradients per iteration)

(initialize next outer loop)
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Convergence Analysis of SVRG

@ Assumptions:
@ Each f; is convex.
e Each f/ is L-Lipschitz continuous.
e Average f is p-strongly convex.

@ Johnson & Zhang [2013] show that outer loop satisfies
E[f(x**7) — f(x*)] < p(L, L)[F(x®) = F(x")],

where

1 1
,O(a, b) = 1 _2aa (2b0[+ mua) .

@ SVRG rate is very fast for appropriate o and m.

@ In practice:
e m = n (alternate between computing gradient and stochastic pass).
e o = 1/L (slightly larger than allowed by theory).
o xSt = xp, (rather than random).
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Convergence Analysis of SVRG with Error

@ We first give a result for SVRG with error:
@ Assume:
e We approximate full gradient by d° = f'(x°) + €°.
@ |[x; — x™|| < Z for some Z.
@ Then SVRG with error satisfies
oFk [||e°]°] + ZE[|e*|)

EIf(xH) — ()] < p(L IF) — 10 +

@ Implications:
e Same convergence rate if max{E||e®||, E| e°||?} = O(°) for 5 < p.
o Tolerates large error when far from solution.
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@ We can reduce the n by using a ‘batch’ B° of training examples:

’
ds = B > H(x).

ieBs

@ Special case of SVRG with error, batch size || controls error.
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Reducing Gradient Evaluations with Batching

@ SVRG requires 2m + n gradients for each m iterations.

@ We can reduce the n by using a ‘batch’ B° of training examples:
& = 310

@ Special case of SVRG with error, batch size || controls error.

@ By sampling without replacement, we maintain rate if

nS?

S > - 00
B2 s o)

@ Hard to do in practice, but w know shape of optimal batch schedule...



Batch Schedule Needed for Linear Rate

Sample size (s/m)

[Aravkin et al, 2012]
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Mixed SG and SVRG Method

@ Growing-batch reduces nin the 2m + n cost of SVRG.
@ But, does not improve the 2:

e Important in early iterations when we reduce test error the most.
@ To improve the 2, consider a mixed strategy:

e If iisin the batch B, take SVRG step (2 gradients).

e If i is not in the batch, take SG step (1 gradient).

@ Convergence rate:

E[f(x“‘)—f(x*)}g( 5%, )[f( )~ £(x)]

[Ilesll |+ ZE[[e°l], o« (1 —|B°%|/n)o?

+ 1—2al 2 (1-2al)

@ Improves rate when far from solution.

@ But dependence on variance o°.



Numerical Experiments with Batching

Training/testing loss for /»-regularized logistic on spam filtering data.
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|dentifying Support Vectors

@ Mixed strategy improves error when far from solution.
@ For certain objectives, can improve close to solution.
@ Consider Huberized hinge loss problem [Rosset & Zhu, 2006]:
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@ The solution is sparse in the £/ (has support vectors).
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Using Support Vectors

@ Non-support examples do not contribute to solution.
@ We can skip gradient evaluations where we expected/know that f/(x) = 0.

@ Approach 1 (sound pruning):
e Maintain list of support vectors at xs.
e Do not evaluate f/(xs) if it is not a support vector.
@ Can reduce number of gradients per iteration to 1.
@ Approach 2 (heuristic pruning):
e Keep track of the number of times we f/(xs) = 0 or f/(x") = 0.
e Ifit's been zero more than once consecutively, skip its next evaluation.
e fit continues to be zero, skip its next 2 evaluations.
o If it continues to be zero, skip its next 4 evaluations.
e Can reduce number of gradients per iteration to 1 or 0.

@ Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].



Numerical Experiments with Support Vectors

l>-regularized Huberized hinge on spam filtering data.
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@ Deterministic, stochastic, and finite-sum methods.
@ Wasting fewer gradients in SVRG.
© Making things go fast.
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Sparse Gradients and L2-Regularization

@ Machine learning application often have the form
A 1
min f(x) := 5lxI* + 21) 9i(x).
@ The SVRG update has the form
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Sparse Gradients and L2-Regularization

@ Machine learning application often have the form
A 1
min 1) = X1+ 7 3 a0,
@ The SVRG update has the form
xt= X1 —ap(XTT + gh (X)) = (WX + g (X)) + dis),
which approximates ), g; and uses exact regularizer gradient:

X' = (1= o)X = ag(gi(x"1) = gi(xs) + (dp)s),

@ This form is nice for sparse implementation (also used in SAG/SAGA codes).
@ We show that regularized update satisfies:

E[f(x**7) — f(x*)] < p(L™, L™)[F(x*) — F(x")],

where L™ = max{A, Lg}.
@ SVRG actually converges faster than expected.



Proximal-Gradient and ADMM

@ A common non-smooth variation is solving problems of the form

1O
argmin — ; £(X)+r(x),

XxXeRP

where the f; are smooth but r is non-smooth.
@ Examples: L1-regularization, bound constraints.
@ Proximal-gradient methods use iterations of the form

n
Xkt = prox,, [Xk - a—r:( Z f,-'(Xk)] ,
i=1

and achieve the same rates as methods for smooth optimization.
@ Proximal-gradient variants of SAG[A[/MISO/SDCA/SVRG have been developed:
e Mairal [2013], Defazio et al. [2014], Xiao & Zhang [2014].
@ There are also combinations of these methods with ADMM:
o Suzuki [2014], Zhong & Kwok [2014].



Acceleration

@ Several Nesterov-like accelerated variants have been developed:

SDCA [Shalev-Schwartz & Zhang, 2013, Shalev-Schwartz & Zhang, 2014].
SVRG [Nitanda, 2014].

Primal-Dual Coordinate Descent [Zhang & Xiao, 2014].

All methods [Lin et al., 2015].

RPDG [Lan, 2015].

Catalyst [Lin et al., 2016].

@ Reduces complexity from O((n + x)log(1/¢€)) to O(+v/nxlog(1/¢)).



Acceleration

@ Several Nesterov-like accelerated variants have been developed:

SDCA [Shalev-Schwartz & Zhang, 2013, Shalev-Schwartz & Zhang, 2014].
SVRG [Nitanda, 2014].

Primal-Dual Coordinate Descent [Zhang & Xiao, 2014].

All methods [Lin et al., 2015].

RPDG [Lan, 2015].

Catalyst [Lin et al., 2016].

@ Reduces complexity from O((n+ «)log(1/¢)) to O(+/nklog(1/¢)).
@ There also exist coordinate-wise and Newton-like variants:
o Konecny et al. [2014], Sohl-Dickstein et al. [2014].
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Non-Uniform Sampling

@ Consider case where each example has Lipschitz constant L;.

@ Non-uniform sampling proportional to L; in SVRG achieves
E[f(x**7) — f(x*)] < p(L, D)[f(x®) — f(x")],

where L= 137 L.
@ Justification: prefers gradients that change quickly.

@ In practice: combine with line-search for adaptive sampling.
(see paper/code for details)



SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Objective minus Optimum

Effective Passes Effective Passes

@ Datasets where SAG had the worst relative performance.



SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

§ 107 1 5
£ £
2 2
O ¢}
3 0 3
£10 74 <
€ €
o o
= >
© ©
2 £
810 -8
,-._. p
-20 -15
10 T T T T 10 T T T T
0 10 20 30 40 50 o] 10 20 30 40 50
Effective Passes Effective Passes

@ Lipschitz sampling helps a lot.



SAG with Non-Uniform Sampling

CRF performance for optical-character and named-entity recognition.

Objective minus Optimal
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Generalization Error

@ Consider a truly-stochastic optimization problem,
argmin E[f;(x)].
X

@ Two classic regimes:

e Empirical risk minimization (ERM): optimize exactly over set of n samples.
e Stochastic gradient: apply n stochastic gradient iterations.

@ Classic view: the above two approaches have O(1/n) error.

e So ERM and fast stochastic gradient methods don’t help generalization?
@ Classic view disagrees with practice: multiple passes usually helps.
@ Recent alternative views suggest you can improve constants using:

e Growing batch sizes [Byrd et al., 2012].
e Re-visiting examples with SVRG [Babanezhad et al., 2015].
e Streaming SVRG [Frostig et al., 2015].
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Conclusion and Discussion

@ Recent work on linearly-convergent stochastic gradient methods.
@ SVRG is the only method without a memory requirement.
@ We give SVRG variants that reduce number of gradients.
@ Speedups via regularization, acceleration, non-uniform sampling.

@ Strong-convexity can relaxed:
o Gong & Ye [2014], Garber & Hazan [2016], Karimi et al. [2016], Reddi et al. [2016]

@ Thank you for the invitation.



