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Context: Minimizing Finite Sums

We want to minimize the sum of a finite set of smooth functions:

min
x∈Rd

f (x) :=
1
n

n∑

i=1

fi (x).

We are interested in cases where n is very large.

We will focus on strongly-convex functions g:

Any convex function plus L2-regularization.

Simplest example is `2-regularized least-squares,

fi (x) := (aT
i x − bi )

2 +
λ

2
‖x‖2.

Common framework in machine learning:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
n

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt f ′(xt ) = xt −
αt

n

n∑

i=1

f ′i (xt ).

Linear convergence rate: O(ρt).
Iteration cost is linear in n.
Fancier methods exist, but still cost O(n)

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of it from {1, 2, . . . ,N},

xt+1 = xt − αt f ′it (xt).

Iteration cost is independent of n.
Sublinear convergence rate: O(1/t).
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑N
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:
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Motivation for New Methods

FG method has O(n) cost with O(ρt ) rate.
SG method has O(1) cost with O(1/t) rate.

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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It is possible to have linear rate with O(1) cost?
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Stochastic Average Gradient (SAG)

Stochastic average gradient (SAG): [Le Roux et al., 2012]:

Randomly select it from {1, 2, . . . , n} and compute f ′it (xt),

xt+1 = xt −
αt

n

n∑
i=1

y t
i ,

where y t
i = f ′is from last iteration s where i was selected.

Achieves O(ρt ) convergence rate with O(1) iteration cost:

Number of f ′i evaluations to reach accuracy of ε:

Stochastic gradient: O(κ/ε).
Deterministic gradient: O(nκ log(1/ε)).
Accelerated gradient: O(n

√
κ log(1/ε)).

Stochastic average gradient: O((n + κ) log(1/ε)).
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Comparing FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s 

O
p

ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s 

O
p

ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

SAG starts fast and stays fast.



Other Linearly-Convergent Methods

Other methods subsequently shown to have this property:

SDCA [Shalev-Schwartz & Zhang, 2013].
MISO [Mairal, 2013].
SAGA [Defazio et al., 2014].

But, these all introduce memory requirements:

Require previous gradients f ′i or dual variables for each i .
Only O(n) for some objectives, but O(nd) in general.
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Stochastic Variance-Reduced Gradient (SVRG)

Recent methods with similar rates that avoid memory:

Mixed Gradient [Mahdavi & Jin, 2013, Zhang et al., 2013]
Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang, 2013]
Semi-stochastic gradient [Konecny & Richtarik, 2013]

Memory is O(d), but they require extra gradient calculations:

Two gradients on each iteration.
Occasional calculation of all n gradients.

Extra calculations make them slower than SAG and friends.
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Outline

1 Deterministic, stochastic, and finite-sum methods.

2 Wasting fewer gradients in SVRG.

3 Making things go fast.



Stochastic Variance-Reduced Gradient

SVRG algorithm (SG method with control variate):

Start with x0

for s = 0,1,2 . . . (outer loop)

ds = 1
N

∑N
i=1 f ′i (xs) (full gradient calculation)

x0 = xs

for t = 1, 2, . . .m (inner loop)
Randomly pick it ∈ {1, 2, . . . , n}
x t = x t−1 − αt (f ′it (x

t−1)− f ′it (xs) + ds) (two gradients per iteration)

xs+1 = x t for random t ∈ {1, 2, . . . ,m} (initialize next outer loop)

Only need to store xs and ds.
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Convergence Analysis of SVRG

Assumptions:
Each fi is convex.
Each f ′i is L-Lipschitz continuous.
Average f is µ-strongly convex.

Johnson & Zhang [2013] show that outer loop satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)],

where
ρ(a,b) =

1
1− 2αa

(
2bα +

1
mµα

)
.

SVRG rate is very fast for appropriate α and m.
In practice:

m = n (alternate between computing gradient and stochastic pass).
α = 1/L (slightly larger than allowed by theory).
xs+1 = xm (rather than random).
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Convergence Analysis of SVRG with Error

We first give a result for SVRG with error:

Assume:

We approximate full gradient by ds = f ′(xs) + es.
‖xt − x∗‖ ≤ Z for some Z .

Then SVRG with error satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)] +
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
.

Implications:

Same convergence rate if max{E‖es‖,E‖es‖2} = O(ρ̃s) for ρ̃ < ρ.
Tolerates large error when far from solution.
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Reducing Gradient Evaluations with Batching

SVRG requires 2m + n gradients for each m iterations.

We can reduce the n by using a ‘batch’ Bs of training examples:

ds =
1
|Bs|

∑

i∈Bs

f ′i (xs).

Special case of SVRG with error, batch size |Bs| controls error.

By sampling without replacement, we maintain rate if

|Bs| ≥ nS2

S2 + nO(ρ̃2s)
.

Hard to do in practice, but w know shape of optimal batch schedule...
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Batch Schedule Needed for Linear Rate

[Aravkin et al, 2012]



Mixed SG and SVRG Method

Growing-batch reduces n in the 2m + n cost of SVRG.

But, does not improve the 2:

Important in early iterations when we reduce test error the most.

To improve the 2, consider a mixed strategy:

If i is in the batch Bs, take SVRG step (2 gradients).
If i is not in the batch, take SG step (1 gradient).

Convergence rate:

E[f (xs+1)− f (x∗)] ≤ ρ
(

L,
|Bs|
n

L
)

[f (xs)− f (x∗)]

+
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
+
α

2
(1− |Bs|/n)σ2

(1− 2αL)
.

Improves rate when far from solution.

But dependence on variance σ2.
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Numerical Experiments with Batching

Training/testing loss for `2-regularized logistic on spam filtering data.
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Identifying Support Vectors

Mixed strategy improves error when far from solution.

For certain objectives, can improve close to solution.

Consider Huberized hinge loss problem [Rosset & Zhu, 2006]:

min
x∈Rd

1
n

n∑

i=1

f (biaT
i x), f (τ) =





0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε.

The solution is sparse in the f ′i (has support vectors).



Identifying Support Vectors

Mixed strategy improves error when far from solution.

For certain objectives, can improve close to solution.

Consider Huberized hinge loss problem [Rosset & Zhu, 2006]:

min
x∈Rd

1
n

n∑

i=1

f (biaT
i x), f (τ) =





0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε.

The solution is sparse in the f ′i (has support vectors).



Identifying Support Vectors

Mixed strategy improves error when far from solution.

For certain objectives, can improve close to solution.

Consider Huberized hinge loss problem [Rosset & Zhu, 2006]:

min
x∈Rd

1
n

n∑

i=1

f (biaT
i x), f (τ) =





0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε.

The solution is sparse in the f ′i (has support vectors).



Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.
Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.
f it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].
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Numerical Experiments with Support Vectors

`2-regularized Huberized hinge on spam filtering data.
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Outline

1 Deterministic, stochastic, and finite-sum methods.

2 Wasting fewer gradients in SVRG.

3 Making things go fast.



Sparse Gradients and L2-Regularization

Machine learning application often have the form

min
x∈Rd

f (x) :=
λ

2
‖x‖2 +

1
n

N∑

i=1

gi (x).

The SVRG update has the form

x t = x t−1 − αt ((λx t−1 + g′it (x
t−1))− (λxs + g′it (xs)) + ds),

which approximates
∑

i gi and uses exact regularizer gradient:

x t = (1− αtλ)x t−1 − αt (g′it (x
t−1)− g′it (xs) + (dg)s),

This form is nice for sparse implementation (also used in SAG/SAGA codes).
We show that regularized update satisfies:

E[f (xs+1)− f (x∗)] ≤ ρ(Lm,Lm)[f (xs)− f (x∗)],

where Lm = max{λ,Lg}.
SVRG actually converges faster than expected.
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Proximal-Gradient and ADMM

A common non-smooth variation is solving problems of the form

argmin
x∈Rp

1
n

n∑

i=1

fi (x)+r(x),

where the fi are smooth but r is non-smooth.

Examples: L1-regularization, bound constraints.

Proximal-gradient methods use iterations of the form

xk+1 = proxαk

[
xk − αk

n

n∑

i=1

f ′i (xk )

]
,

and achieve the same rates as methods for smooth optimization.
Proximal-gradient variants of SAG[A]/MISO/SDCA/SVRG have been developed:

Mairal [2013], Defazio et al. [2014], Xiao & Zhang [2014].

There are also combinations of these methods with ADMM:
Suzuki [2014], Zhong & Kwok [2014].



Acceleration

Several Nesterov-like accelerated variants have been developed:

SDCA [Shalev-Schwartz & Zhang, 2013, Shalev-Schwartz & Zhang, 2014].
SVRG [Nitanda, 2014].
Primal-Dual Coordinate Descent [Zhang & Xiao, 2014].
All methods [Lin et al., 2015].
RPDG [Lan, 2015].
Catalyst [Lin et al., 2016].

Reduces complexity from O((n + κ) log(1/ε)) to O(
√

nκ log(1/ε)).

There also exist coordinate-wise and Newton-like variants:

Konečnỳ et al. [2014], Sohl-Dickstein et al. [2014].
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Non-Uniform Sampling

Consider case where each example has Lipschitz constant Li .

Non-uniform sampling proportional to Li in SVRG achieves

E[f (xs+1)− f (x∗)] ≤ ρ(L̄, L̄)[f (xs)− f (x∗)],

where L̄ = 1
n

∑n
i=1 Li .

Justification: prefers gradients that change quickly.

In practice: combine with line-search for adaptive sampling.
(see paper/code for details)
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SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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Datasets where SAG had the worst relative performance.



SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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SAG with Non-Uniform Sampling

CRF performance for optical-character and named-entity recognition.
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Generalization Error

Consider a truly-stochastic optimization problem,

argmin
x

E[fi (x)].

Two classic regimes:

Empirical risk minimization (ERM): optimize exactly over set of n samples.
Stochastic gradient: apply n stochastic gradient iterations.

Classic view: the above two approaches have O(1/n) error.

So ERM and fast stochastic gradient methods don’t help generalization?

Classic view disagrees with practice: multiple passes usually helps.

Recent alternative views suggest you can improve constants using:

Growing batch sizes [Byrd et al., 2012].
Re-visiting examples with SVRG [Babanezhad et al., 2015].
Streaming SVRG [Frostig et al., 2015].
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Conclusion and Discussion

Recent work on linearly-convergent stochastic gradient methods.

SVRG is the only method without a memory requirement.

We give SVRG variants that reduce number of gradients.

Speedups via regularization, acceleration, non-uniform sampling.

Strong-convexity can relaxed:

Gong & Ye [2014], Garber & Hazan [2016], Karimi et al. [2016], Reddi et al. [2016]

Thank you for the invitation.
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