
Advances in the Minimization of Finite Sums

Mark Schmidt
Joint work with Nicolas Le Roux, Francis Bach, Reza Babanezhad and Mohamed Ahmed

University of British Columbia

Context: Minimizing Finite Sums

We want to minimize the sum of a finite set of smooth functions:

min
x∈Rd

f (x) :=
1
n

n∑

i=1

fi (x).

We are interested in cases where n is very large.

We will focus on strongly-convex functions g:

Any convex function plus L2-regularization.

Simplest example is `2-regularized least-squares,

fi (x) := (aT
i x − bi)

2 +
λ

2
‖x‖2.

Common framework in machine learning:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.

Context: Minimizing Finite Sums

We want to minimize the sum of a finite set of smooth functions:

min
x∈Rd

f (x) :=
1
n

n∑

i=1

fi (x).

We are interested in cases where n is very large.

We will focus on strongly-convex functions g:

Any convex function plus L2-regularization.

Simplest example is `2-regularized least-squares,

fi (x) := (aT
i x − bi)

2 +
λ

2
‖x‖2.

Common framework in machine learning:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.

Context: Minimizing Finite Sums

We want to minimize the sum of a finite set of smooth functions:

min
x∈Rd

f (x) :=
1
n

n∑

i=1

fi (x).

We are interested in cases where n is very large.

We will focus on strongly-convex functions g:

Any convex function plus L2-regularization.

Simplest example is `2-regularized least-squares,

fi (x) := (aT
i x − bi)

2 +
λ

2
‖x‖2.

Common framework in machine learning:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.

Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
n

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt f ′(xt) = xt −
αt

n

n∑

i=1

f ′i (xt).

Linear convergence rate: O(ρt).
Iteration cost is linear in n.
Fancier methods exist, but still cost O(n)

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of it from {1, 2, . . . ,N},

xt+1 = xt − αt f ′it (xt).

Iteration cost is independent of n.
Sublinear convergence rate: O(1/t).

Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
n

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt f ′(xt) = xt −
αt

n

n∑

i=1

f ′i (xt).

Linear convergence rate: O(ρt).
Iteration cost is linear in n.
Fancier methods exist, but still cost O(n)

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of it from {1, 2, . . . ,N},

xt+1 = xt − αt f ′it (xt).

Iteration cost is independent of n.
Sublinear convergence rate: O(1/t).

Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
n

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt f ′(xt) = xt −
αt

n

n∑

i=1

f ′i (xt).

Linear convergence rate: O(ρt).
Iteration cost is linear in n.
Fancier methods exist, but still cost O(n)

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of it from {1, 2, . . . ,N},

xt+1 = xt − αt f ′it (xt).

Iteration cost is independent of n.
Sublinear convergence rate: O(1/t).

Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑N
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Motivation for New Methods

FG method has O(n) cost with O(ρt) rate.
SG method has O(1) cost with O(1/t) rate.

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

It is possible to have linear rate with O(1) cost?

Motivation for New Methods

FG method has O(n) cost with O(ρt) rate.
SG method has O(1) cost with O(1/t) rate.

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time
It is possible to have linear rate with O(1) cost?

Stochastic Average Gradient (SAG)

Stochastic average gradient (SAG): [Le Roux et al., 2012]:

Randomly select it from {1, 2, . . . , n} and compute f ′it (xt),

xt+1 = xt −
αt

n

n∑
i=1

y t
i ,

where y t
i = f ′is from last iteration s where i was selected.

Achieves O(ρt) convergence rate with O(1) iteration cost:

Number of f ′i evaluations to reach accuracy of ε:

Stochastic gradient: O(κ/ε).
Deterministic gradient: O(nκ log(1/ε)).
Accelerated gradient: O(n

√
κ log(1/ε)).

Stochastic average gradient: O((n + κ) log(1/ε)).

Stochastic Average Gradient (SAG)

Stochastic average gradient (SAG): [Le Roux et al., 2012]:

Randomly select it from {1, 2, . . . , n} and compute f ′it (xt),

xt+1 = xt −
αt

n

n∑
i=1

y t
i ,

where y t
i = f ′is from last iteration s where i was selected.

Achieves O(ρt) convergence rate with O(1) iteration cost:

Number of f ′i evaluations to reach accuracy of ε:

Stochastic gradient: O(κ/ε).
Deterministic gradient: O(nκ log(1/ε)).
Accelerated gradient: O(n

√
κ log(1/ε)).

Stochastic average gradient: O((n + κ) log(1/ε)).

Comparing FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

Comparison of competitive deterministic and stochastic methods.

SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

SAG starts fast and stays fast.

Other Linearly-Convergent Methods

Other methods subsequently shown to have this property:

SDCA [Shalev-Schwartz & Zhang, 2013].
MISO [Mairal, 2013].
SAGA [Defazio et al., 2014].

But, these all introduce memory requirements:

Require previous gradients f ′i or dual variables for each i .
Only O(n) for some objectives, but O(nd) in general.

Other Linearly-Convergent Methods

Other methods subsequently shown to have this property:

SDCA [Shalev-Schwartz & Zhang, 2013].
MISO [Mairal, 2013].
SAGA [Defazio et al., 2014].

But, these all introduce memory requirements:

Require previous gradients f ′i or dual variables for each i .
Only O(n) for some objectives, but O(nd) in general.

Stochastic Variance-Reduced Gradient (SVRG)

Recent methods with similar rates that avoid memory:

Mixed Gradient [Mahdavi & Jin, 2013, Zhang et al., 2013]
Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang, 2013]
Semi-stochastic gradient [Konecny & Richtarik, 2013]

Memory is O(d), but they require extra gradient calculations:

Two gradients on each iteration.
Occasional calculation of all n gradients.

Extra calculations make them slower than SAG and friends.

Stochastic Variance-Reduced Gradient (SVRG)

Recent methods with similar rates that avoid memory:

Mixed Gradient [Mahdavi & Jin, 2013, Zhang et al., 2013]
Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang, 2013]
Semi-stochastic gradient [Konecny & Richtarik, 2013]

Memory is O(d), but they require extra gradient calculations:

Two gradients on each iteration.
Occasional calculation of all n gradients.

Extra calculations make them slower than SAG and friends.

Outline

1 Deterministic, stochastic, and finite-sum methods.

2 Wasting fewer gradients in SVRG.

3 Making things go fast.

Stochastic Variance-Reduced Gradient

SVRG algorithm (SG method with control variate):

Start with x0

for s = 0,1,2 . . . (outer loop)

ds = 1
N

∑N
i=1 f ′i (xs) (full gradient calculation)

x0 = xs

for t = 1, 2, . . .m (inner loop)
Randomly pick it ∈ {1, 2, . . . , n}
x t = x t−1 − αt (f ′it (x

t−1)− f ′it (xs) + ds) (two gradients per iteration)

xs+1 = x t for random t ∈ {1, 2, . . . ,m} (initialize next outer loop)

Only need to store xs and ds.

Stochastic Variance-Reduced Gradient

SVRG algorithm (SG method with control variate):

Start with x0

for s = 0,1,2 . . . (outer loop)

ds = 1
N

∑N
i=1 f ′i (xs) (full gradient calculation)

x0 = xs

for t = 1, 2, . . .m (inner loop)
Randomly pick it ∈ {1, 2, . . . , n}
x t = x t−1 − αt (f ′it (x

t−1)− f ′it (xs) + ds) (two gradients per iteration)

xs+1 = x t for random t ∈ {1, 2, . . . ,m} (initialize next outer loop)

Only need to store xs and ds.

Stochastic Variance-Reduced Gradient

SVRG algorithm (SG method with control variate):

Start with x0

for s = 0,1,2 . . . (outer loop)

ds = 1
N

∑N
i=1 f ′i (xs) (full gradient calculation)

x0 = xs

for t = 1, 2, . . .m (inner loop)
Randomly pick it ∈ {1, 2, . . . , n}
x t = x t−1 − αt (f ′it (x

t−1)− f ′it (xs) + ds) (two gradients per iteration)

xs+1 = x t for random t ∈ {1, 2, . . . ,m} (initialize next outer loop)

Only need to store xs and ds.

Convergence Analysis of SVRG

Assumptions:
Each fi is convex.
Each f ′i is L-Lipschitz continuous.
Average f is µ-strongly convex.

Johnson & Zhang [2013] show that outer loop satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)],

where
ρ(a,b) =

1
1− 2αa

(
2bα +

1
mµα

)
.

SVRG rate is very fast for appropriate α and m.
In practice:

m = n (alternate between computing gradient and stochastic pass).
α = 1/L (slightly larger than allowed by theory).
xs+1 = xm (rather than random).

Convergence Analysis of SVRG

Assumptions:
Each fi is convex.
Each f ′i is L-Lipschitz continuous.
Average f is µ-strongly convex.

Johnson & Zhang [2013] show that outer loop satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)],

where
ρ(a,b) =

1
1− 2αa

(
2bα +

1
mµα

)
.

SVRG rate is very fast for appropriate α and m.

In practice:
m = n (alternate between computing gradient and stochastic pass).
α = 1/L (slightly larger than allowed by theory).
xs+1 = xm (rather than random).

Convergence Analysis of SVRG

Assumptions:
Each fi is convex.
Each f ′i is L-Lipschitz continuous.
Average f is µ-strongly convex.

Johnson & Zhang [2013] show that outer loop satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)],

where
ρ(a,b) =

1
1− 2αa

(
2bα +

1
mµα

)
.

SVRG rate is very fast for appropriate α and m.
In practice:

m = n (alternate between computing gradient and stochastic pass).
α = 1/L (slightly larger than allowed by theory).
xs+1 = xm (rather than random).

Convergence Analysis of SVRG with Error

We first give a result for SVRG with error:

Assume:

We approximate full gradient by ds = f ′(xs) + es.
‖xt − x∗‖ ≤ Z for some Z .

Then SVRG with error satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)] +
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
.

Implications:

Same convergence rate if max{E‖es‖,E‖es‖2} = O(ρ̃s) for ρ̃ < ρ.
Tolerates large error when far from solution.

Convergence Analysis of SVRG with Error

We first give a result for SVRG with error:

Assume:

We approximate full gradient by ds = f ′(xs) + es.
‖xt − x∗‖ ≤ Z for some Z .

Then SVRG with error satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)] +
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
.

Implications:

Same convergence rate if max{E‖es‖,E‖es‖2} = O(ρ̃s) for ρ̃ < ρ.
Tolerates large error when far from solution.

Convergence Analysis of SVRG with Error

We first give a result for SVRG with error:

Assume:

We approximate full gradient by ds = f ′(xs) + es.
‖xt − x∗‖ ≤ Z for some Z .

Then SVRG with error satisfies

E[f (xs+1)− f (x∗)] ≤ ρ(L,L)[f (xs)− f (x∗)] +
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
.

Implications:

Same convergence rate if max{E‖es‖,E‖es‖2} = O(ρ̃s) for ρ̃ < ρ.
Tolerates large error when far from solution.

Reducing Gradient Evaluations with Batching

SVRG requires 2m + n gradients for each m iterations.

We can reduce the n by using a ‘batch’ Bs of training examples:

ds =
1
|Bs|

∑

i∈Bs

f ′i (xs).

Special case of SVRG with error, batch size |Bs| controls error.

By sampling without replacement, we maintain rate if

|Bs| ≥ nS2

S2 + nO(ρ̃2s)
.

Hard to do in practice, but w know shape of optimal batch schedule...

Reducing Gradient Evaluations with Batching

SVRG requires 2m + n gradients for each m iterations.

We can reduce the n by using a ‘batch’ Bs of training examples:

ds =
1
|Bs|

∑

i∈Bs

f ′i (xs).

Special case of SVRG with error, batch size |Bs| controls error.

By sampling without replacement, we maintain rate if

|Bs| ≥ nS2

S2 + nO(ρ̃2s)
.

Hard to do in practice, but w know shape of optimal batch schedule...

Reducing Gradient Evaluations with Batching

SVRG requires 2m + n gradients for each m iterations.

We can reduce the n by using a ‘batch’ Bs of training examples:

ds =
1
|Bs|

∑

i∈Bs

f ′i (xs).

Special case of SVRG with error, batch size |Bs| controls error.

By sampling without replacement, we maintain rate if

|Bs| ≥ nS2

S2 + nO(ρ̃2s)
.

Hard to do in practice, but w know shape of optimal batch schedule...

Reducing Gradient Evaluations with Batching

SVRG requires 2m + n gradients for each m iterations.

We can reduce the n by using a ‘batch’ Bs of training examples:

ds =
1
|Bs|

∑

i∈Bs

f ′i (xs).

Special case of SVRG with error, batch size |Bs| controls error.

By sampling without replacement, we maintain rate if

|Bs| ≥ nS2

S2 + nO(ρ̃2s)
.

Hard to do in practice, but w know shape of optimal batch schedule...

Batch Schedule Needed for Linear Rate

[Aravkin et al, 2012]

Mixed SG and SVRG Method

Growing-batch reduces n in the 2m + n cost of SVRG.

But, does not improve the 2:

Important in early iterations when we reduce test error the most.

To improve the 2, consider a mixed strategy:

If i is in the batch Bs, take SVRG step (2 gradients).
If i is not in the batch, take SG step (1 gradient).

Convergence rate:

E[f (xs+1)− f (x∗)] ≤ ρ
(

L,
|Bs|
n

L
)

[f (xs)− f (x∗)]

+
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
+
α

2
(1− |Bs|/n)σ2

(1− 2αL)
.

Improves rate when far from solution.

But dependence on variance σ2.

Mixed SG and SVRG Method

Growing-batch reduces n in the 2m + n cost of SVRG.

But, does not improve the 2:

Important in early iterations when we reduce test error the most.

To improve the 2, consider a mixed strategy:

If i is in the batch Bs, take SVRG step (2 gradients).
If i is not in the batch, take SG step (1 gradient).

Convergence rate:

E[f (xs+1)− f (x∗)] ≤ ρ
(

L,
|Bs|
n

L
)

[f (xs)− f (x∗)]

+
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
+
α

2
(1− |Bs|/n)σ2

(1− 2αL)
.

Improves rate when far from solution.

But dependence on variance σ2.

Mixed SG and SVRG Method

Growing-batch reduces n in the 2m + n cost of SVRG.

But, does not improve the 2:

Important in early iterations when we reduce test error the most.

To improve the 2, consider a mixed strategy:

If i is in the batch Bs, take SVRG step (2 gradients).
If i is not in the batch, take SG step (1 gradient).

Convergence rate:

E[f (xs+1)− f (x∗)] ≤ ρ
(

L,
|Bs|
n

L
)

[f (xs)− f (x∗)]

+
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
+
α

2
(1− |Bs|/n)σ2

(1− 2αL)
.

Improves rate when far from solution.

But dependence on variance σ2.

Mixed SG and SVRG Method

Growing-batch reduces n in the 2m + n cost of SVRG.

But, does not improve the 2:

Important in early iterations when we reduce test error the most.

To improve the 2, consider a mixed strategy:

If i is in the batch Bs, take SVRG step (2 gradients).
If i is not in the batch, take SG step (1 gradient).

Convergence rate:

E[f (xs+1)− f (x∗)] ≤ ρ
(

L,
|Bs|
n

L
)

[f (xs)− f (x∗)]

+
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL
+
α

2
(1− |Bs|/n)σ2

(1− 2αL)
.

Improves rate when far from solution.

But dependence on variance σ2.

Numerical Experiments with Batching

Training/testing loss for `2-regularized logistic on spam filtering data.

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-8

10-6

10-4

10-2

100

Full

Grow

Mixed

Effective Passes

0 5 10 15

T
e
s
t

E
r
r
o
r

0

0.01

0.02

0.03

0.04

0.05
Full

Grow

Mixed

Identifying Support Vectors

Mixed strategy improves error when far from solution.

For certain objectives, can improve close to solution.

Consider Huberized hinge loss problem [Rosset & Zhu, 2006]:

min
x∈Rd

1
n

n∑

i=1

f (biaT
i x), f (τ) =

0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε.

The solution is sparse in the f ′i (has support vectors).

Identifying Support Vectors

Mixed strategy improves error when far from solution.

For certain objectives, can improve close to solution.

Consider Huberized hinge loss problem [Rosset & Zhu, 2006]:

min
x∈Rd

1
n

n∑

i=1

f (biaT
i x), f (τ) =

0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε.

The solution is sparse in the f ′i (has support vectors).

Identifying Support Vectors

Mixed strategy improves error when far from solution.

For certain objectives, can improve close to solution.

Consider Huberized hinge loss problem [Rosset & Zhu, 2006]:

min
x∈Rd

1
n

n∑

i=1

f (biaT
i x), f (τ) =

0 if τ > 1 + ε,

1− τ if τ < 1− ε,
(1+ε−τ)2

4ε if |1− τ | ≤ ε.

The solution is sparse in the f ′i (has support vectors).

Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.
Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.
f it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].

Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.

Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.
f it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].

Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.
Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.
f it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].

Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.
Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.
f it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].

Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.
Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.

f it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].

Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.
Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.
f it continues to be zero, skip its next 2 evaluations.

If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].

Using Support Vectors

Non-support examples do not contribute to solution.

We can skip gradient evaluations where we expected/know that f ′i (x) = 0.

Approach 1 (sound pruning):

Maintain list of support vectors at xs.
Do not evaluate f ′i (xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.

Approach 2 (heuristic pruning):

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it’s been zero more than once consecutively, skip its next evaluation.
f it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
Can reduce number of gradients per iteration to 1 or 0.

Related to shrinking heuristic in SVM solvers [Joachims, 1999, Usunier et al., 2010].

Numerical Experiments with Support Vectors

`2-regularized Huberized hinge on spam filtering data.

Effective Passes

0 5 10 15

O
b
j
e
c
t
i
v
e

m
i
n
u
s

O
p
t
i
m
u
m

10-10

10-5

100

Full

Grow

SV(Full)

SV(Grow)

Outline

1 Deterministic, stochastic, and finite-sum methods.

2 Wasting fewer gradients in SVRG.

3 Making things go fast.

Sparse Gradients and L2-Regularization

Machine learning application often have the form

min
x∈Rd

f (x) :=
λ

2
‖x‖2 +

1
n

N∑

i=1

gi (x).

The SVRG update has the form

x t = x t−1 − αt ((λx t−1 + g′it (x
t−1))− (λxs + g′it (xs)) + ds),

which approximates
∑

i gi and uses exact regularizer gradient:

x t = (1− αtλ)x t−1 − αt (g′it (x
t−1)− g′it (xs) + (dg)s),

This form is nice for sparse implementation (also used in SAG/SAGA codes).
We show that regularized update satisfies:

E[f (xs+1)− f (x∗)] ≤ ρ(Lm,Lm)[f (xs)− f (x∗)],

where Lm = max{λ,Lg}.
SVRG actually converges faster than expected.

Sparse Gradients and L2-Regularization

Machine learning application often have the form

min
x∈Rd

f (x) :=
λ

2
‖x‖2 +

1
n

N∑

i=1

gi (x).

The SVRG update has the form

x t = x t−1 − αt ((λx t−1 + g′it (x
t−1))− (λxs + g′it (xs)) + ds),

which approximates
∑

i gi and uses exact regularizer gradient:

x t = (1− αtλ)x t−1 − αt (g′it (x
t−1)− g′it (xs) + (dg)s),

This form is nice for sparse implementation (also used in SAG/SAGA codes).

We show that regularized update satisfies:

E[f (xs+1)− f (x∗)] ≤ ρ(Lm,Lm)[f (xs)− f (x∗)],

where Lm = max{λ,Lg}.
SVRG actually converges faster than expected.

Sparse Gradients and L2-Regularization

Machine learning application often have the form

min
x∈Rd

f (x) :=
λ

2
‖x‖2 +

1
n

N∑

i=1

gi (x).

The SVRG update has the form

x t = x t−1 − αt ((λx t−1 + g′it (x
t−1))− (λxs + g′it (xs)) + ds),

which approximates
∑

i gi and uses exact regularizer gradient:

x t = (1− αtλ)x t−1 − αt (g′it (x
t−1)− g′it (xs) + (dg)s),

This form is nice for sparse implementation (also used in SAG/SAGA codes).
We show that regularized update satisfies:

E[f (xs+1)− f (x∗)] ≤ ρ(Lm,Lm)[f (xs)− f (x∗)],

where Lm = max{λ,Lg}.
SVRG actually converges faster than expected.

Proximal-Gradient and ADMM

A common non-smooth variation is solving problems of the form

argmin
x∈Rp

1
n

n∑

i=1

fi (x)+r(x),

where the fi are smooth but r is non-smooth.

Examples: L1-regularization, bound constraints.

Proximal-gradient methods use iterations of the form

xk+1 = proxαk

[
xk − αk

n

n∑

i=1

f ′i (xk)

]
,

and achieve the same rates as methods for smooth optimization.
Proximal-gradient variants of SAG[A]/MISO/SDCA/SVRG have been developed:

Mairal [2013], Defazio et al. [2014], Xiao & Zhang [2014].

There are also combinations of these methods with ADMM:
Suzuki [2014], Zhong & Kwok [2014].

Acceleration

Several Nesterov-like accelerated variants have been developed:

SDCA [Shalev-Schwartz & Zhang, 2013, Shalev-Schwartz & Zhang, 2014].
SVRG [Nitanda, 2014].
Primal-Dual Coordinate Descent [Zhang & Xiao, 2014].
All methods [Lin et al., 2015].
RPDG [Lan, 2015].
Catalyst [Lin et al., 2016].

Reduces complexity from O((n + κ) log(1/ε)) to O(
√

nκ log(1/ε)).

There also exist coordinate-wise and Newton-like variants:

Konečnỳ et al. [2014], Sohl-Dickstein et al. [2014].

Acceleration

Several Nesterov-like accelerated variants have been developed:

SDCA [Shalev-Schwartz & Zhang, 2013, Shalev-Schwartz & Zhang, 2014].
SVRG [Nitanda, 2014].
Primal-Dual Coordinate Descent [Zhang & Xiao, 2014].
All methods [Lin et al., 2015].
RPDG [Lan, 2015].
Catalyst [Lin et al., 2016].

Reduces complexity from O((n + κ) log(1/ε)) to O(
√

nκ log(1/ε)).

There also exist coordinate-wise and Newton-like variants:

Konečnỳ et al. [2014], Sohl-Dickstein et al. [2014].

Non-Uniform Sampling

Consider case where each example has Lipschitz constant Li .

Non-uniform sampling proportional to Li in SVRG achieves

E[f (xs+1)− f (x∗)] ≤ ρ(L̄, L̄)[f (xs)− f (x∗)],

where L̄ = 1
n

∑n
i=1 Li .

Justification: prefers gradients that change quickly.

In practice: combine with line-search for adaptive sampling.
(see paper/code for details)

Non-Uniform Sampling

Consider case where each example has Lipschitz constant Li .

Non-uniform sampling proportional to Li in SVRG achieves

E[f (xs+1)− f (x∗)] ≤ ρ(L̄, L̄)[f (xs)− f (x∗)],

where L̄ = 1
n

∑n
i=1 Li .

Justification: prefers gradients that change quickly.

In practice: combine with line-search for adaptive sampling.
(see paper/code for details)

Non-Uniform Sampling

Consider case where each example has Lipschitz constant Li .

Non-uniform sampling proportional to Li in SVRG achieves

E[f (xs+1)− f (x∗)] ≤ ρ(L̄, L̄)[f (xs)− f (x∗)],

where L̄ = 1
n

∑n
i=1 Li .

Justification: prefers gradients that change quickly.

In practice: combine with line-search for adaptive sampling.
(see paper/code for details)

SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG

AG
D

L−B
FG

S

SG−C

ASG−C

PCD−L

DCA

SAG

0 10 20 30 40 50

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG

AGD

L−BFGS

SG−C
ASG−C

PCD−L

DCA

SAG

Datasets where SAG had the worst relative performance.

SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

0 10 20 30 40 50

10
−20

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

IAG

AGDL−BFGS SG−C
ASG−C

PCD−L

D
C

A

SAG

SAG−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

IAG AGD L−BFGS

SG−C ASG−CPCD−L

DCA

SAG

SAG−LS (Lipschitz)

Lipschitz sampling helps a lot.

SAG with Non-Uniform Sampling

CRF performance for optical-character and named-entity recognition.

0 20 40 60 80 100

10
−4

10
−2

10
0

10
2

10
4

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG
SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

10
−5

10
0

10
5

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

a
l

L−BFGS

Pegasos

SGAdaGradASG

Hybrid SAG

SAG−NUSSAG−NUS*

OEG

SMD

Generalization Error

Consider a truly-stochastic optimization problem,

argmin
x

E[fi (x)].

Two classic regimes:

Empirical risk minimization (ERM): optimize exactly over set of n samples.
Stochastic gradient: apply n stochastic gradient iterations.

Classic view: the above two approaches have O(1/n) error.

So ERM and fast stochastic gradient methods don’t help generalization?

Classic view disagrees with practice: multiple passes usually helps.

Recent alternative views suggest you can improve constants using:

Growing batch sizes [Byrd et al., 2012].
Re-visiting examples with SVRG [Babanezhad et al., 2015].
Streaming SVRG [Frostig et al., 2015].

Generalization Error

Consider a truly-stochastic optimization problem,

argmin
x

E[fi (x)].

Two classic regimes:

Empirical risk minimization (ERM): optimize exactly over set of n samples.
Stochastic gradient: apply n stochastic gradient iterations.

Classic view: the above two approaches have O(1/n) error.

So ERM and fast stochastic gradient methods don’t help generalization?

Classic view disagrees with practice: multiple passes usually helps.

Recent alternative views suggest you can improve constants using:

Growing batch sizes [Byrd et al., 2012].
Re-visiting examples with SVRG [Babanezhad et al., 2015].
Streaming SVRG [Frostig et al., 2015].

Generalization Error

Consider a truly-stochastic optimization problem,

argmin
x

E[fi (x)].

Two classic regimes:

Empirical risk minimization (ERM): optimize exactly over set of n samples.
Stochastic gradient: apply n stochastic gradient iterations.

Classic view: the above two approaches have O(1/n) error.

So ERM and fast stochastic gradient methods don’t help generalization?

Classic view disagrees with practice: multiple passes usually helps.

Recent alternative views suggest you can improve constants using:

Growing batch sizes [Byrd et al., 2012].
Re-visiting examples with SVRG [Babanezhad et al., 2015].
Streaming SVRG [Frostig et al., 2015].

Generalization Error

Consider a truly-stochastic optimization problem,

argmin
x

E[fi (x)].

Two classic regimes:

Empirical risk minimization (ERM): optimize exactly over set of n samples.
Stochastic gradient: apply n stochastic gradient iterations.

Classic view: the above two approaches have O(1/n) error.

So ERM and fast stochastic gradient methods don’t help generalization?

Classic view disagrees with practice: multiple passes usually helps.

Recent alternative views suggest you can improve constants using:

Growing batch sizes [Byrd et al., 2012].
Re-visiting examples with SVRG [Babanezhad et al., 2015].
Streaming SVRG [Frostig et al., 2015].

Generalization Error

Consider a truly-stochastic optimization problem,

argmin
x

E[fi (x)].

Two classic regimes:

Empirical risk minimization (ERM): optimize exactly over set of n samples.
Stochastic gradient: apply n stochastic gradient iterations.

Classic view: the above two approaches have O(1/n) error.

So ERM and fast stochastic gradient methods don’t help generalization?

Classic view disagrees with practice: multiple passes usually helps.

Recent alternative views suggest you can improve constants using:

Growing batch sizes [Byrd et al., 2012].
Re-visiting examples with SVRG [Babanezhad et al., 2015].
Streaming SVRG [Frostig et al., 2015].

Conclusion and Discussion

Recent work on linearly-convergent stochastic gradient methods.

SVRG is the only method without a memory requirement.

We give SVRG variants that reduce number of gradients.

Speedups via regularization, acceleration, non-uniform sampling.

Strong-convexity can relaxed:

Gong & Ye [2014], Garber & Hazan [2016], Karimi et al. [2016], Reddi et al. [2016]

Thank you for the invitation.

Conclusion and Discussion

Recent work on linearly-convergent stochastic gradient methods.

SVRG is the only method without a memory requirement.

We give SVRG variants that reduce number of gradients.

Speedups via regularization, acceleration, non-uniform sampling.

Strong-convexity can relaxed:

Gong & Ye [2014], Garber & Hazan [2016], Karimi et al. [2016], Reddi et al. [2016]

Thank you for the invitation.

Conclusion and Discussion

Recent work on linearly-convergent stochastic gradient methods.

SVRG is the only method without a memory requirement.

We give SVRG variants that reduce number of gradients.

Speedups via regularization, acceleration, non-uniform sampling.

Strong-convexity can relaxed:

Gong & Ye [2014], Garber & Hazan [2016], Karimi et al. [2016], Reddi et al. [2016]

Thank you for the invitation.

Conclusion and Discussion

Recent work on linearly-convergent stochastic gradient methods.

SVRG is the only method without a memory requirement.

We give SVRG variants that reduce number of gradients.

Speedups via regularization, acceleration, non-uniform sampling.

Strong-convexity can relaxed:

Gong & Ye [2014], Garber & Hazan [2016], Karimi et al. [2016], Reddi et al. [2016]

Thank you for the invitation.

Conclusion and Discussion

Recent work on linearly-convergent stochastic gradient methods.

SVRG is the only method without a memory requirement.

We give SVRG variants that reduce number of gradients.

Speedups via regularization, acceleration, non-uniform sampling.

Strong-convexity can relaxed:

Gong & Ye [2014], Garber & Hazan [2016], Karimi et al. [2016], Reddi et al. [2016]

Thank you for the invitation.

