Coordinate descent converges faster with the Gauss-Southwell rule than random selection
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OVERVIEW: Revisiting the Gauss-Southwell Rule Convergence Analysis Randomized Coordinate Descent B Gauss-Southwell with Exact Coordinate Optimization Proximal Gauss-Southwell

» Nesterov [2012] shows random selection has same rate as Expectation of (1) when choosing 7 with uniform sampling gives Rates for randomized and GS still hold with exact optimization as | An important application of coordinate descent is for problems
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is a graph, A is a matrix. . . . L. . . . . » GS-r: Maximize how far we move,
. - . Avoid using (4) by measuring strong-convexity in £;-norm, i.e., Nesterov showed that sampling proportional to L; yields:
» hy includes least squares, logistic regression, lasso, and SVMs.
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Minimizing both sides with respect to y we get
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We propose a Gauss-Southwell-Lipschitz (GSL) rule using the L;:

» ho includes graph-based label propagation and graphical models. — Effective for bound constraints, but ignores g;(z"") — g;(x}).
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» GS-¢: Maximize progress under quadratic approximation of f.

— GS efficient if maximum degree similar to average degree. y ’v_ (:I:‘k)’
— E.g., lattice-structured graphs and complete graphs. -
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We consider coordinate descent with a constant step-size,
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For the GS-q rule, we show a rate of

GS chooses the coordinate with largest directional derivative: Consider a quadratic f with diagonal Hessign: . If hy has no g; functions, GS rule has the form: argmax; |a!r(z")].
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