
Optimization for Machine Learning
CS 406

Mark Schmidt

UBC Computer Science

Term 2, 2014-15

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 1 / 40

Goals of this Lecture

1 Give an overview and motivation for the machine learning technique
of supervised learning.

2 Generalize convergence rates of gradient methods for solving linear
systems to general smooth convex optimization problems.

3 Introduce the proximal-gradient algorithm, one of the most efficient
algorithms for solving special classes of non-smooth convex
optimization problems.

4 Introduce the stochastic-gradient algorithm, for solving data-fitting
problems when the size of the data is very large.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 2 / 40

Machine Learning

Machine Learning

Study of using computers to automatically detect patterns in data,
and use these to make predictions or decisions.

One of the fastest-growing areas of science/engineering.

Recent successes: Kinect, book/movie recommendation, spam
detection, credit card fraud detection, face recognition, speech
recognition, object recognition, self-driving cars.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 3 / 40

Machine Learning

Machine Learning

Study of using computers to automatically detect patterns in data,
and use these to make predictions or decisions.

One of the fastest-growing areas of science/engineering.

Recent successes: Kinect, book/movie recommendation, spam
detection, credit card fraud detection, face recognition, speech
recognition, object recognition, self-driving cars.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 3 / 40

Machine Learning Supervised Learning

Supervised learning

Supervised learning:
Given input and output examples.
Build a model that predicts the output from the inputs.
You can use the model to predict the output on new inputs.

Canonical example: hand-written digit recognition:

1.2. Supervised learning 7

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(a)

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(b)

Figure 1.5 (a) First 9 test MNIST gray-scale images. (b) Same as (a), but with the features permuted
randomly. Classification performance is identical on both versions of the data (assuming the training data
is permuted in an identical way). Figure generated by shuffledDigitsDemo.

or width is below some threshold. However, distinguishing versicolor from virginica is slightly
harder; any decision will need to be based on at least two features. (It is always a good idea
to perform exploratory data analysis, such as plotting the data, before applying a machine
learning method.)

Image classification and handwriting recognition

Now consider the harder problem of classifying images directly, where a human has not pre-
processed the data. We might want to classify the image as a whole, e.g., is it an indoors or
outdoors scene? is it a horizontal or vertical photo? does it contain a dog or not? This is called
image classification.

In the special case that the images consist of isolated handwritten letters and digits, for
example, in a postal or ZIP code on a letter, we can use classification to perform handwriting
recognition. A standard dataset used in this area is known as MNIST, which stands for “Modified
National Institute of Standards”5. (The term “modified” is used because the images have been
preprocessed to ensure the digits are mostly in the center of the image.) This dataset contains
60,000 training images and 10,000 test images of the digits 0 to 9, as written by various people.
The images are size 28× 28 and have grayscale values in the range 0 : 255. See Figure 1.5(a) for
some example images.

Many generic classification methods ignore any structure in the input features, such as spatial
layout. Consequently, they can also just as easily handle data that looks like Figure 1.5(b), which
is the same data except we have randomly permuted the order of all the features. (You will
verify this in Exercise 1.1.) This flexibility is both a blessing (since the methods are general
purpose) and a curse (since the methods ignore an obviously useful source of information). We
will discuss methods for exploiting structure in the input features later in the book.

5. Available from http://yann.lecun.com/exdb/mnist/.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 4 / 40

Machine Learning Supervised Learning

Supervised learning

Supervised learning:
Given input and output examples.
Build a model that predicts the output from the inputs.
You can use the model to predict the output on new inputs.

Canonical example: hand-written digit recognition:

1.2. Supervised learning 7

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(a)

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(b)

Figure 1.5 (a) First 9 test MNIST gray-scale images. (b) Same as (a), but with the features permuted
randomly. Classification performance is identical on both versions of the data (assuming the training data
is permuted in an identical way). Figure generated by shuffledDigitsDemo.

or width is below some threshold. However, distinguishing versicolor from virginica is slightly
harder; any decision will need to be based on at least two features. (It is always a good idea
to perform exploratory data analysis, such as plotting the data, before applying a machine
learning method.)

Image classification and handwriting recognition

Now consider the harder problem of classifying images directly, where a human has not pre-
processed the data. We might want to classify the image as a whole, e.g., is it an indoors or
outdoors scene? is it a horizontal or vertical photo? does it contain a dog or not? This is called
image classification.

In the special case that the images consist of isolated handwritten letters and digits, for
example, in a postal or ZIP code on a letter, we can use classification to perform handwriting
recognition. A standard dataset used in this area is known as MNIST, which stands for “Modified
National Institute of Standards”5. (The term “modified” is used because the images have been
preprocessed to ensure the digits are mostly in the center of the image.) This dataset contains
60,000 training images and 10,000 test images of the digits 0 to 9, as written by various people.
The images are size 28× 28 and have grayscale values in the range 0 : 255. See Figure 1.5(a) for
some example images.

Many generic classification methods ignore any structure in the input features, such as spatial
layout. Consequently, they can also just as easily handle data that looks like Figure 1.5(b), which
is the same data except we have randomly permuted the order of all the features. (You will
verify this in Exercise 1.1.) This flexibility is both a blessing (since the methods are general
purpose) and a curse (since the methods ignore an obviously useful source of information). We
will discuss methods for exploiting structure in the input features later in the book.

5. Available from http://yann.lecun.com/exdb/mnist/.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 4 / 40

Machine Learning Supervised Learning

Supervised Learning

You have a well-defined pattern recognition problem.

But don’t know how to write a program to solve it.

And you have lots of labeled data.

Key reason for machine learning’s popularity and success.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 5 / 40

Machine Learning Supervised Learning

Supervised Learning

You have a well-defined pattern recognition problem.

But don’t know how to write a program to solve it.

And you have lots of labeled data.

Key reason for machine learning’s popularity and success.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 5 / 40

Machine Learning Supervised Learning

Supervised Learning

You have a well-defined pattern recognition problem.

But don’t know how to write a program to solve it.

And you have lots of labeled data.

Key reason for machine learning’s popularity and success.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 5 / 40

Machine Learning Supervised Learning

Training and Testing

Steps for supervised learning:
1 Training phase: build model that maps from input features to labels.

(based on many examples of the correct behaviour)
2 Testing phase: model is used to label new inputs.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 6 / 40

Machine Learning Problem Formulation

Connection to Numerical Optimization

Typically, the training phase is formulated as an optimization problem,

min
x

m∑

i=1

fi (x) + λr(x).

data fitting term + regularizer

Data-fitting term: how well does x fit data sample i?

Regularizer: how simple is x?
(simple models are more likely to do well at test time)

Example is least squares,

fi (x) =
1

2
(bi −

n∑

j=1

aijxj)
2.

Squared `2-norm regularization:

r(x) = ‖x‖2.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 7 / 40

Machine Learning Problem Formulation

Connection to Numerical Optimization

Typically, the training phase is formulated as an optimization problem,

min
x

m∑

i=1

fi (x) + λr(x).

data fitting term + regularizer

Data-fitting term: how well does x fit data sample i?

Regularizer: how simple is x?
(simple models are more likely to do well at test time)

Example is least squares,

fi (x) =
1

2
(bi −

n∑

j=1

aijxj)
2.

Squared `2-norm regularization:

r(x) = ‖x‖2.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 7 / 40

Machine Learning Problem Formulation

Connection to Numerical Optimization

Typically, the training phase is formulated as an optimization problem,

min
x

m∑

i=1

fi (x) + λr(x).

data fitting term + regularizer

Data-fitting term: how well does x fit data sample i?

Regularizer: how simple is x?
(simple models are more likely to do well at test time)

Example is least squares,

fi (x) =
1

2
(bi −

n∑

j=1

aijxj)
2.

Squared `2-norm regularization:

r(x) = ‖x‖2.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 7 / 40

Machine Learning Problem Formulation

Connection to Numerical Optimization

Typically, the training phase is formulated as an optimization problem,

min
x

m∑

i=1

fi (x) + λr(x).

data fitting term + regularizer

Data-fitting term: how well does x fit data sample i?

Regularizer: how simple is x?
(simple models are more likely to do well at test time)

Example is least squares,

fi (x) =
1

2
(bi −

n∑

j=1

aijxj)
2.

Squared `2-norm regularization:

r(x) = ‖x‖2.
Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 7 / 40

Convergence Rates of First-Order Algorithms

Outline

1 Machine Learning

2 Convergence Rates of First-Order Algorithms
Motivation and Notation
Convergence Rate

3 Proximal-Gradient Methods

4 Stochastic Gradient Methods

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 8 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Motivation for First-Order Methods

We first consider the unconstrained optimization problem,

min
x

f (x).

In typical ML models the dimension, dimension n is very large.

We will focus on matrix-free methods, as in the previous lecture:

Allows n to be in the billions or more.
We can show dimension-independent convergence rates.

As before, the simplest case is gradient descent,

xk+1 = xk − αk∇f (xk).

How many iterations are needed?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 9 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Motivation for First-Order Methods

We first consider the unconstrained optimization problem,

min
x

f (x).

In typical ML models the dimension, dimension n is very large.

We will focus on matrix-free methods, as in the previous lecture:

Allows n to be in the billions or more.
We can show dimension-independent convergence rates.

As before, the simplest case is gradient descent,

xk+1 = xk − αk∇f (xk).

How many iterations are needed?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 9 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Strongly-Convex and Strongly-Smooth

Consider special case of least squares:

min
x

f (x) =
1

2
‖b− Ax‖2.

Recall that
∇2f (x) = ATA,

so the eigenvalues of ∇2f (x) are between λ1 and λn for all x.

Functions f with eigenvalues of Hessian bounded between positive
constants for all f are called ‘strongly smooth’ and ‘strongly convex’.

These assumptions are sufficient to show a linear convergence rate.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 10 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Strongly-Convex and Strongly-Smooth

Consider special case of least squares:

min
x

f (x) =
1

2
‖b− Ax‖2.

Recall that
∇2f (x) = ATA,

so the eigenvalues of ∇2f (x) are between λ1 and λn for all x.

Functions f with eigenvalues of Hessian bounded between positive
constants for all f are called ‘strongly smooth’ and ‘strongly convex’.

These assumptions are sufficient to show a linear convergence rate.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 10 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≤ λ1vTv = λ1‖v‖2 for any v and z.

f (y) ≤ f (x) +∇f (x)T (y − x) +
λ1
2
‖y − x‖2

Global quadratic upper bound on function value.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≤ λ1vTv = λ1‖v‖2 for any v and z.

f (y) ≤ f (x) +∇f (x)T (y − x) +
λ1
2
‖y − x‖2

Global quadratic upper bound on function value.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≤ λ1vTv = λ1‖v‖2 for any v and z.

f (y) ≤ f (x) +∇f (x)T (y − x) +
λ1
2
‖y − x‖2

Global quadratic upper bound on function value.

f(x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≤ λ1vTv = λ1‖v‖2 for any v and z.

f (y) ≤ f (x) +∇f (x)T (y − x) +
λ1
2
‖y − x‖2

Global quadratic upper bound on function value.

f(x)

f(x) + ∇f(x)T(y-x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≤ λ1vTv = λ1‖v‖2 for any v and z.

f (y) ≤ f (x) +∇f (x)T (y − x) +
λ1
2
‖y − x‖2

Global quadratic upper bound on function value.

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (L/2)||y-x||2

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≥ λn‖v‖2 for any v and z.

f (y) ≥ f (x) +∇f (x)T (y − x) +
λn
2
‖y − x‖2

Global quadratic lower bound on function value.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≥ λn‖v‖2 for any v and z.

f (y) ≥ f (x) +∇f (x)T (y − x) +
λn
2
‖y − x‖2

Global quadratic lower bound on function value.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≥ λn‖v‖2 for any v and z.

f (y) ≥ f (x) +∇f (x)T (y − x) +
λn
2
‖y − x‖2

Global quadratic lower bound on function value.

f(x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≥ λn‖v‖2 for any v and z.

f (y) ≥ f (x) +∇f (x)T (y − x) +
λn
2
‖y − x‖2

Global quadratic lower bound on function value.

f(x)

f(x) + ∇f(x)T(y-x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that vT∇2f (z)v ≥ λn‖v‖2 for any v and z.

f (y) ≥ f (x) +∇f (x)T (y − x) +
λn
2
‖y − x‖2

Global quadratic lower bound on function value.

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (μ/2)||y-x||2

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Bounds on Progress and Sub-Optimality

We have the upper bound

f (xk+1) ≤ f (xk) +∇f (xk)T (xk+1 − xk) +
λ1
2
‖xk+1 − xk‖2,

treating xk+1 as a variable and minimizing the right side gives

xk+1 = xk −
1

λ1
∇f (xk), f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2,

which is gradient descent with a particular step-size.

We have the lower bound

f (y) ≥ f (xk) +∇f (xk)T (y − xk) +
λn
2
‖y − xk‖2,

and minimizing both sides in terms of y gives

f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2,

which bounds how far xk is from the solution x∗.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Bounds on Progress and Sub-Optimality

We have the upper bound

f (xk+1) ≤ f (xk) +∇f (xk)T (xk+1 − xk) +
λ1
2
‖xk+1 − xk‖2,

treating xk+1 as a variable and minimizing the right side gives

xk+1 = xk −
1

λ1
∇f (xk), f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2,

which is gradient descent with a particular step-size.

We have the lower bound

f (y) ≥ f (xk) +∇f (xk)T (y − xk) +
λn
2
‖y − xk‖2,

and minimizing both sides in terms of y gives

f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2,

which bounds how far xk is from the solution x∗.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Bounds on Progress and Sub-Optimality

We have the upper bound

f (xk+1) ≤ f (xk) +∇f (xk)T (xk+1 − xk) +
λ1
2
‖xk+1 − xk‖2,

treating xk+1 as a variable and minimizing the right side gives

xk+1 = xk −
1

λ1
∇f (xk), f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2,

which is gradient descent with a particular step-size.

We have the lower bound

f (y) ≥ f (xk) +∇f (xk)T (y − xk) +
λn
2
‖y − xk‖2,

and minimizing both sides in terms of y gives

f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2,

which bounds how far xk is from the solution x∗.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Bounds on Progress and Sub-Optimality

We have the upper bound

f (xk+1) ≤ f (xk) +∇f (xk)T (xk+1 − xk) +
λ1
2
‖xk+1 − xk‖2,

treating xk+1 as a variable and minimizing the right side gives

xk+1 = xk −
1

λ1
∇f (xk), f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2,

which is gradient descent with a particular step-size.

We have the lower bound

f (y) ≥ f (xk) +∇f (xk)T (y − xk) +
λn
2
‖y − xk‖2,

and minimizing both sides in terms of y gives

f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2,

which bounds how far xk is from the solution x∗.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Bounds on Progress and Sub-Optimality

We have the upper bound

f (xk+1) ≤ f (xk) +∇f (xk)T (xk+1 − xk) +
λ1
2
‖xk+1 − xk‖2,

treating xk+1 as a variable and minimizing the right side gives

xk+1 = xk −
1

λ1
∇f (xk), f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2,

which is gradient descent with a particular step-size.

We have the lower bound

f (y) ≥ f (xk) +∇f (xk)T (y − xk) +
λn
2
‖y − xk‖2,

and minimizing both sides in terms of y gives

f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2,

which bounds how far xk is from the solution x∗.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

The bound guaranteed progress and maximum sub-optimality.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

The bound guaranteed progress and maximum sub-optimality.

f(x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

The bound guaranteed progress and maximum sub-optimality.

f(x) Guaranteed
Progress

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

The bound guaranteed progress and maximum sub-optimality.

f(x) Guaranteed
Progress

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

The bound guaranteed progress and maximum sub-optimality.

f(x) Guaranteed
Progress

Maximum
Suboptimality

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

The bound guaranteed progress and maximum sub-optimality.

f(x) Guaranteed
Progress

Maximum
Suboptimality

f(x+)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

combine them to get

f (xk+1)− f (x∗) ≤
(

1− λn
λ1

)
[f (xk)− f (x∗)]

Applying recursively gives a linear convergence rate:

f (xk)− f (x∗) ≤
(

1− λn
λ1

)k

[f (x0)− f (x∗)]

We say that the condition number for f is given by κf = λ1
λn

.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 15 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

We have bounds on xk+1 and x∗:

f (xk+1) ≤ f (xk)− 1

2λ1
‖∇f (xk)‖2, f (x∗) ≥ f (xk)− 1

2λn
‖∇f (xk)‖2.

combine them to get

f (xk+1)− f (x∗) ≤
(

1− λn
λ1

)
[f (xk)− f (x∗)]

Applying recursively gives a linear convergence rate:

f (xk)− f (x∗) ≤
(

1− λn
λ1

)k

[f (x0)− f (x∗)]

We say that the condition number for f is given by κf = λ1
λn

.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 15 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Convergence Rate of Gradient Descent

What about line-search?

Exact line-search has the same rate (using αk = 1/λ1 is a special case).
Backtracking line-search has a slightly slower rate (but don’t need λ1).

It’s also possible to show that a different step-size gives

‖xk − x∗‖ ≤
(
κf − 1

κf + 1

)k

‖x0 − x∗‖.

Similar to the rate for solving linear systems (last lecture).

Can we derive a method with the faster rate of conjugate gradient?
(‘Non-linear’ conjugate gradient methods don’t actually have a faster rate.)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 16 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Convergence Rate of Gradient Descent

What about line-search?

Exact line-search has the same rate (using αk = 1/λ1 is a special case).
Backtracking line-search has a slightly slower rate (but don’t need λ1).

It’s also possible to show that a different step-size gives

‖xk − x∗‖ ≤
(
κf − 1

κf + 1

)k

‖x0 − x∗‖.

Similar to the rate for solving linear systems (last lecture).

Can we derive a method with the faster rate of conjugate gradient?
(‘Non-linear’ conjugate gradient methods don’t actually have a faster rate.)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 16 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Convergence Rate of Gradient Descent

What about line-search?

Exact line-search has the same rate (using αk = 1/λ1 is a special case).
Backtracking line-search has a slightly slower rate (but don’t need λ1).

It’s also possible to show that a different step-size gives

‖xk − x∗‖ ≤
(
κf − 1

κf + 1

)k

‖x0 − x∗‖.

Similar to the rate for solving linear systems (last lecture).

Can we derive a method with the faster rate of conjugate gradient?
(‘Non-linear’ conjugate gradient methods don’t actually have a faster rate.)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 16 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Nesterov’s accelerated gradient method

There is a method similar to conjugate gradient,

xk+1 = yk − αk∇f (yk),

yk+1 = xk + βk(xk+1 − xk),

called Nesterov’s accelerated gradient method.

It has a faster rate of

f (xk)− f (x∗) ≤
(

1− 1√
κf

)t

[f (x0)− f (x∗)].

Slower in practice than non-linear conjugate gradient and
quasi-Newton methods, but does not depend on dimension and
generalizes to non-smooth problems...

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 17 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Nesterov’s accelerated gradient method

There is a method similar to conjugate gradient,

xk+1 = yk − αk∇f (yk),

yk+1 = xk + βk(xk+1 − xk),

called Nesterov’s accelerated gradient method.

It has a faster rate of

f (xk)− f (x∗) ≤
(

1− 1√
κf

)t

[f (x0)− f (x∗)].

Slower in practice than non-linear conjugate gradient and
quasi-Newton methods, but does not depend on dimension and
generalizes to non-smooth problems...

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 17 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Nesterov’s accelerated gradient method

There is a method similar to conjugate gradient,

xk+1 = yk − αk∇f (yk),

yk+1 = xk + βk(xk+1 − xk),

called Nesterov’s accelerated gradient method.

It has a faster rate of

f (xk)− f (x∗) ≤
(

1− 1√
κf

)t

[f (x0)− f (x∗)].

Slower in practice than non-linear conjugate gradient and
quasi-Newton methods, but does not depend on dimension and
generalizes to non-smooth problems...

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 17 / 40

Proximal-Gradient Methods

Outline

1 Machine Learning

2 Convergence Rates of First-Order Algorithms

3 Proximal-Gradient Methods
Motivation: LASSO
Projected Gradient
Proximal-Gradient

4 Stochastic Gradient Methods

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 18 / 40

Proximal-Gradient Methods Motivation: LASSO

Motivation: Spam Filtering

We want to recognize e-mail spam.

We will look at phrases in the e-mail messages:

“CPSC 406”.
“Meet singles in your area now’

There are too many possible phrases (model would be huge).

But some are more helpful than others: feature selection.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 19 / 40

Proximal-Gradient Methods Motivation: LASSO

Motivation: Spam Filtering

We want to recognize e-mail spam.

We will look at phrases in the e-mail messages:

“CPSC 406”.
“Meet singles in your area now’

There are too many possible phrases (model would be huge).

But some are more helpful than others: feature selection.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 19 / 40

Proximal-Gradient Methods Motivation: LASSO

Motivation: Spam Filtering

We want to recognize e-mail spam.

We will look at phrases in the e-mail messages:

“CPSC 406”.
“Meet singles in your area now’

There are too many possible phrases (model would be huge).

But some are more helpful than others: feature selection.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 19 / 40

Proximal-Gradient Methods Motivation: LASSO

LASSO: Sparse Regularization

Consider the `1-regularized least squares problem (LASSO),

min
x

1

2
‖b− Ax‖2 + λ‖x‖1.

Recall the definition of the `1-norm,

‖x‖1 =
∑

j

|xj |.

The `1-norm shrinks x, and encourages xj to be exactly zero:

Weight xj for “meet singles” now should be hi (relevant).
Weight xj for “Hello” should be 0 (not relevant).

Each column of A contains the values of one feature, so setting
xj = 0 means we ignore the feature.

The challenge is that |xj | is non-differentiable.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 20 / 40

Proximal-Gradient Methods Motivation: LASSO

LASSO: Sparse Regularization

Consider the `1-regularized least squares problem (LASSO),

min
x

1

2
‖b− Ax‖2 + λ‖x‖1.

Recall the definition of the `1-norm,

‖x‖1 =
∑

j

|xj |.

The `1-norm shrinks x, and encourages xj to be exactly zero:

Weight xj for “meet singles” now should be hi (relevant).
Weight xj for “Hello” should be 0 (not relevant).

Each column of A contains the values of one feature, so setting
xj = 0 means we ignore the feature.

The challenge is that |xj | is non-differentiable.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 20 / 40

Proximal-Gradient Methods Motivation: LASSO

LASSO: Sparse Regularization

Consider the `1-regularized least squares problem (LASSO),

min
x

1

2
‖b− Ax‖2 + λ‖x‖1.

Recall the definition of the `1-norm,

‖x‖1 =
∑

j

|xj |.

The `1-norm shrinks x, and encourages xj to be exactly zero:

Weight xj for “meet singles” now should be hi (relevant).
Weight xj for “Hello” should be 0 (not relevant).

Each column of A contains the values of one feature, so setting
xj = 0 means we ignore the feature.

The challenge is that |xj | is non-differentiable.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 20 / 40

Proximal-Gradient Methods Motivation: LASSO

LASSO: Sparse Regularization

How can we solve non-differentiable problems like the LASSO?

Try to convert it into a smooth problem?

We can write the LASSO as a quadratic program (QP).
But can’t solve general huge-dimensional QPs.

Use an off-the-shelf non-smooth solver?

These methods have sub-linear convergence rates.
They are very slow!

Use a special class of methods called proximal-gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 21 / 40

Proximal-Gradient Methods Motivation: LASSO

LASSO: Sparse Regularization

How can we solve non-differentiable problems like the LASSO?

Try to convert it into a smooth problem?

We can write the LASSO as a quadratic program (QP).
But can’t solve general huge-dimensional QPs.

Use an off-the-shelf non-smooth solver?

These methods have sub-linear convergence rates.
They are very slow!

Use a special class of methods called proximal-gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 21 / 40

Proximal-Gradient Methods Motivation: LASSO

LASSO: Sparse Regularization

How can we solve non-differentiable problems like the LASSO?

Try to convert it into a smooth problem?

We can write the LASSO as a quadratic program (QP).
But can’t solve general huge-dimensional QPs.

Use an off-the-shelf non-smooth solver?

These methods have sub-linear convergence rates.
They are very slow!

Use a special class of methods called proximal-gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 21 / 40

Proximal-Gradient Methods Motivation: LASSO

LASSO: Sparse Regularization

How can we solve non-differentiable problems like the LASSO?

Try to convert it into a smooth problem?

We can write the LASSO as a quadratic program (QP).
But can’t solve general huge-dimensional QPs.

Use an off-the-shelf non-smooth solver?

These methods have sub-linear convergence rates.
They are very slow!

Use a special class of methods called proximal-gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 21 / 40

Proximal-Gradient Methods Projected Gradient

Example: Non-Negative Least Squares

Consider non-negative least squares,

min
x≥0

m∑

i=1

(bi −
n∑

j=1

aijxj)
2,

Should this be easier than with general constraints?

The constraints are simple:

Given y , we can efficiently find closest x satisfying constraints.
(just set negative yi to zero)

Gradient projection:

Alternates between gradient step and projection step:

xk+1 = project[xk − αk∇f (xk)],

project[y] = arg min
x

1

2
‖x− y‖2, s.t. x ≥ 0.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 22 / 40

Proximal-Gradient Methods Projected Gradient

Example: Non-Negative Least Squares

Consider non-negative least squares,

min
x≥0

m∑

i=1

(bi −
n∑

j=1

aijxj)
2,

Should this be easier than with general constraints?

The constraints are simple:

Given y , we can efficiently find closest x satisfying constraints.
(just set negative yi to zero)

Gradient projection:

Alternates between gradient step and projection step:

xk+1 = project[xk − αk∇f (xk)],

project[y] = arg min
x

1

2
‖x− y‖2, s.t. x ≥ 0.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 22 / 40

Proximal-Gradient Methods Projected Gradient

Example: Non-Negative Least Squares

Consider non-negative least squares,

min
x≥0

m∑

i=1

(bi −
n∑

j=1

aijxj)
2,

Should this be easier than with general constraints?

The constraints are simple:

Given y , we can efficiently find closest x satisfying constraints.
(just set negative yi to zero)

Gradient projection:

Alternates between gradient step and projection step:

xk+1 = project[xk − αk∇f (xk)],

project[y] = arg min
x

1

2
‖x− y‖2, s.t. x ≥ 0.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 22 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)

x1

x2

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)
Feasible Set

x1

x2

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)
Feasible Set

xk

x1

x2

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)
Feasible Set

xk

x1

x2

xk - !!f(xk)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)
Feasible Set

xk

x1

x2

xk - !!f(xk)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)
Feasible Set

[xk - !!f(xk)]+

xk

x1

x2

xk - !!f(xk)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Simple Constraints

Gradient projection has the same convergence rate as the
unconstrained gradient method,

f (xk)− f (x∗) ≤
(

1− 1

κf

)
[f (x0)− f (x∗)].

You can do line-search to select the step-size.

Accelerated gradient projection,

xk+1 = project[yk − αk∇f (yk)],

yk+1 = xk + βk(xk+1 − xk),

gives a better dependence on the condition number,

f (xk)− f (x∗) ≤
(

1− 1√
κf

)
[f (x0)− f (x∗)].

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 24 / 40

Proximal-Gradient Methods Projected Gradient

Simple Constraints

Gradient projection has the same convergence rate as the
unconstrained gradient method,

f (xk)− f (x∗) ≤
(

1− 1

κf

)
[f (x0)− f (x∗)].

You can do line-search to select the step-size.

Accelerated gradient projection,

xk+1 = project[yk − αk∇f (yk)],

yk+1 = xk + βk(xk+1 − xk),

gives a better dependence on the condition number,

f (xk)− f (x∗) ≤
(

1− 1√
κf

)
[f (x0)− f (x∗)].

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 24 / 40

Proximal-Gradient Methods Proximal-Gradient

Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Alternates between gradient descent on f and proximity operator of r :

xk+ 1
2

= xk − αk∇f (xk),

xk+1 = arg min
y

{
1

2
‖y − xk+ 1

2
‖2 + αk r(y)

}
,

Convergence rates are still the same as for minimizing f alone.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 25 / 40

Proximal-Gradient Methods Proximal-Gradient

Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Alternates between gradient descent on f and proximity operator of r :

xk+ 1
2

= xk − αk∇f (xk),

xk+1 = arg min
y

{
1

2
‖y − xk+ 1

2
‖2 + αk r(y)

}
,

Convergence rates are still the same as for minimizing f alone.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 25 / 40

Proximal-Gradient Methods Proximal-Gradient

Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Alternates between gradient descent on f and proximity operator of r :

xk+ 1
2

= xk − αk∇f (xk),

xk+1 = arg min
y

{
1

2
‖y − xk+ 1

2
‖2 + αk r(y)

}
,

Convergence rates are still the same as for minimizing f alone.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 25 / 40

Proximal-Gradient Methods Proximal-Gradient

Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
xk+1 = projectC[xk − αk∇f (xk)],

f(x)

x

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

Proximal-Gradient Methods Proximal-Gradient

Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
xk+1 = projectC[xk − αk∇f (xk)],

f(x)

x

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

Proximal-Gradient Methods Proximal-Gradient

Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
xk+1 = projectC[xk − αk∇f (xk)],

f(x)

x

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

Proximal-Gradient Methods Proximal-Gradient

Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
xk+1 = projectC[xk − αk∇f (xk)],

Feasible Set

f(x)

x

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

Proximal-Gradient Methods Proximal-Gradient

Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
xk+1 = projectC[xk − αk∇f (xk)],

Feasible Set

x - !f’(x)
f(x)

x

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

Proximal-Gradient Methods Proximal-Gradient

Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
xk+1 = projectC[xk − αk∇f (xk)],

Feasible Set

f(x)

x

x - !f’(x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

Proximal-Gradient Methods Proximal-Gradient

Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
xk+1 = projectC[xk − αk∇f (xk)],

Feasible Set

x+

f(x)

x

x - !f’(x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

Proximal-Gradient Methods Proximal-Gradient

Proximal Operator, Iterative Soft Thresholding

For L1-regularization, we obtain iterative soft-thresholding:

xk+1 = softThreshαkλ[xk − αk∇f (xk)].

Example with λ = 1:
Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0




Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 27 / 40

Proximal-Gradient Methods Proximal-Gradient

Proximal Operator, Iterative Soft Thresholding

For L1-regularization, we obtain iterative soft-thresholding:

xk+1 = softThreshαkλ[xk − αk∇f (xk)].

Example with λ = 1:
Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0




Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 27 / 40

Proximal-Gradient Methods Proximal-Gradient

Proximal Operator, Iterative Soft Thresholding

For L1-regularization, we obtain iterative soft-thresholding:

xk+1 = softThreshαkλ[xk − αk∇f (xk)].

Example with λ = 1:
Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0




Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 27 / 40

Proximal-Gradient Methods Proximal-Gradient

Proximal Operator, Iterative Soft Thresholding

For L1-regularization, we obtain iterative soft-thresholding:

xk+1 = softThreshαkλ[xk − αk∇f (xk)].

Example with λ = 1:
Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0




Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 27 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.
2 Small number of linear constraint.
3 Probability constraints.
4 L1-Regularization.
5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:

1 Lower and upper bounds.
2 Small number of linear constraint.
3 Probability constraints.
4 L1-Regularization.
5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.

2 Small number of linear constraint.
3 Probability constraints.
4 L1-Regularization.
5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.
2 Small number of linear constraint.

3 Probability constraints.
4 L1-Regularization.
5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.
2 Small number of linear constraint.
3 Probability constraints.

4 L1-Regularization.
5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.
2 Small number of linear constraint.
3 Probability constraints.
4 L1-Regularization.

5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.
2 Small number of linear constraint.
3 Probability constraints.
4 L1-Regularization.
5 Group `1-Regularization.

6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.
2 Small number of linear constraint.
3 Probability constraints.
4 L1-Regularization.
5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient Methods Proximal-Gradient

Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 Lower and upper bounds.
2 Small number of linear constraint.
3 Probability constraints.
4 L1-Regularization.
5 Group `1-Regularization.
6 A few other simple regularizers/constraints.

Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Stochastic Gradient Methods

Outline

1 Machine Learning

2 Convergence Rates of First-Order Algorithms

3 Proximal-Gradient Methods

4 Stochastic Gradient Methods
Motivation: Big-M Problems
Notation and Algorithm
Convergence Rate

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 29 / 40

Stochastic Gradient Methods Motivation: Big-M Problems

Big-N Problems

Consider the problem of minimizing a finite sum,

min
x

1

m

m∑

i=1

fi (x),

where m is very large.

This could be a big least squares problem, or another ML model.

Examples:

Each i is a Facebook user.
Each i is a product on Amazon.
Each i is a webpage on the internet.

We can’t afford to go through all m examples many times.

One way to deal with this restriction is stochastic gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 30 / 40

Stochastic Gradient Methods Motivation: Big-M Problems

Big-N Problems

Consider the problem of minimizing a finite sum,

min
x

1

m

m∑

i=1

fi (x),

where m is very large.

This could be a big least squares problem, or another ML model.

Examples:

Each i is a Facebook user.
Each i is a product on Amazon.
Each i is a webpage on the internet.

We can’t afford to go through all m examples many times.

One way to deal with this restriction is stochastic gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 30 / 40

Stochastic Gradient Methods Motivation: Big-M Problems

Big-N Problems

Consider the problem of minimizing a finite sum,

min
x

1

m

m∑

i=1

fi (x),

where m is very large.

This could be a big least squares problem, or another ML model.

Examples:

Each i is a Facebook user.
Each i is a product on Amazon.
Each i is a webpage on the internet.

We can’t afford to go through all m examples many times.

One way to deal with this restriction is stochastic gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 30 / 40

Stochastic Gradient Methods Notation and Algorithm

Stochastic Gradient Methods

Stochastic gradient methods consider minimizing expectations,

min
x

E[f (x)].

They assume we can generate a random vector pk whose expectation
is the gradient

E[pk] = ∇f (xk),

and take a gradient step using this direction,

xk+1 = xk − αkpk .

For convergence, usually require the step-sizes αk to converge to 0.
E.g., Robbins-Munro conditions,

∞∑

k=1

αk =∞,
∞∑

k=1

α2
k <∞,

suggests using αk = γ/k for some constant γ.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 31 / 40

Stochastic Gradient Methods Notation and Algorithm

Stochastic Gradient Methods

Stochastic gradient methods consider minimizing expectations,

min
x

E[f (x)].

They assume we can generate a random vector pk whose expectation
is the gradient

E[pk] = ∇f (xk),

and take a gradient step using this direction,

xk+1 = xk − αkpk .

For convergence, usually require the step-sizes αk to converge to 0.
E.g., Robbins-Munro conditions,

∞∑

k=1

αk =∞,
∞∑

k=1

α2
k <∞,

suggests using αk = γ/k for some constant γ.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 31 / 40

Stochastic Gradient Methods Notation and Algorithm

Gradient Method vs. Stochastic Gradient Method

Gradient method:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 32 / 40

Stochastic Gradient Methods Notation and Algorithm

Gradient Method vs. Stochastic Gradient Method

Gradient method:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 32 / 40

Stochastic Gradient Methods Notation and Algorithm

Application to Finite Sums

Returning to the problem of minimizing a finite sum,

min
x

1

m

m∑

i=1

fi (x).

Set pk to the gradient of a random function fik ,

E[pk] = Ei [∇fi (xk)]

=
m∑

i=1

p(i)∇fi (xk)

=
1

m

m∑

i=1

∇fi (xk).

This gives us the stochastic gradient algorithm

xk+1 = xk − αk∇fik (xk).

The iteration cost is independent of m.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 33 / 40

Stochastic Gradient Methods Notation and Algorithm

Application to Finite Sums

Returning to the problem of minimizing a finite sum,

min
x

1

m

m∑

i=1

fi (x).

Set pk to the gradient of a random function fik ,

E[pk] = Ei [∇fi (xk)]

=
m∑

i=1

p(i)∇fi (xk)

=
1

m

m∑

i=1

∇fi (xk).

This gives us the stochastic gradient algorithm

xk+1 = xk − αk∇fik (xk).

The iteration cost is independent of m.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 33 / 40

Stochastic Gradient Methods Notation and Algorithm

Application to Finite Sums

Returning to the problem of minimizing a finite sum,

min
x

1

m

m∑

i=1

fi (x).

Set pk to the gradient of a random function fik ,

E[pk] = Ei [∇fi (xk)]

=
m∑

i=1

p(i)∇fi (xk)

=
1

m

m∑

i=1

∇fi (xk).

This gives us the stochastic gradient algorithm

xk+1 = xk − αk∇fik (xk).

The iteration cost is independent of m.
Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 33 / 40

Stochastic Gradient Methods Convergence Rate

Convergence Rate of Stochastic Gradient

Stochastic gradient has much faster iterations.

But how many iterations are required?

If we set αk = 1/kλn, we have that

E[f (xk)− f (x∗)] = O(1/k).

This is a sublinear rate.

Often works badly in practice:

Initial αk might be huge.
Later αk might be tiny.

Nesterov/Newton-like variations can only improve the constant.
(even in low dimensions)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 34 / 40

Stochastic Gradient Methods Convergence Rate

Convergence Rate of Stochastic Gradient

Stochastic gradient has much faster iterations.

But how many iterations are required?

If we set αk = 1/kλn, we have that

E[f (xk)− f (x∗)] = O(1/k).

This is a sublinear rate.

Often works badly in practice:

Initial αk might be huge.
Later αk might be tiny.

Nesterov/Newton-like variations can only improve the constant.
(even in low dimensions)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 34 / 40

Stochastic Gradient Methods Convergence Rate

Comparison of Gradient and Stochastic Gradient

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 35 / 40

Stochastic Gradient Methods Convergence Rate

Improving Stochastic Gradient

How can we improve this algorithm?

1 Averaging: If you use a bigger step-size, αk = γ/
√
k, then the average

of the iterations (1
k

∑k
i=1 xi) has nearly-optimal constants.

2 Constant step-sizes: If you use a constant step-size αk = α, you can
show

E[f (xk)− f (x∗)] = (1− 2αλn)k [f (x0)− f (x∗)] + O(α),

which shows rapid progress but non-convergence.
3 Use special problem structures: For certain problems, you can show

faster rates.

Since 2012, large focus on better algorithms for finite sum structure.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

Stochastic Gradient Methods Convergence Rate

Improving Stochastic Gradient

How can we improve this algorithm?
1 Averaging: If you use a bigger step-size, αk = γ/

√
k, then the average

of the iterations (1
k

∑k
i=1 xi) has nearly-optimal constants.

2 Constant step-sizes: If you use a constant step-size αk = α, you can
show

E[f (xk)− f (x∗)] = (1− 2αλn)k [f (x0)− f (x∗)] + O(α),

which shows rapid progress but non-convergence.
3 Use special problem structures: For certain problems, you can show

faster rates.

Since 2012, large focus on better algorithms for finite sum structure.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

Stochastic Gradient Methods Convergence Rate

Improving Stochastic Gradient

How can we improve this algorithm?
1 Averaging: If you use a bigger step-size, αk = γ/

√
k, then the average

of the iterations (1
k

∑k
i=1 xi) has nearly-optimal constants.

2 Constant step-sizes: If you use a constant step-size αk = α, you can
show

E[f (xk)− f (x∗)] = (1− 2αλn)k [f (x0)− f (x∗)] + O(α),

which shows rapid progress but non-convergence.

3 Use special problem structures: For certain problems, you can show
faster rates.

Since 2012, large focus on better algorithms for finite sum structure.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

Stochastic Gradient Methods Convergence Rate

Improving Stochastic Gradient

How can we improve this algorithm?
1 Averaging: If you use a bigger step-size, αk = γ/

√
k, then the average

of the iterations (1
k

∑k
i=1 xi) has nearly-optimal constants.

2 Constant step-sizes: If you use a constant step-size αk = α, you can
show

E[f (xk)− f (x∗)] = (1− 2αλn)k [f (x0)− f (x∗)] + O(α),

which shows rapid progress but non-convergence.
3 Use special problem structures: For certain problems, you can show

faster rates.

Since 2012, large focus on better algorithms for finite sum structure.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

Stochastic Gradient Methods Convergence Rate

Improving Stochastic Gradient

How can we improve this algorithm?
1 Averaging: If you use a bigger step-size, αk = γ/

√
k, then the average

of the iterations (1
k

∑k
i=1 xi) has nearly-optimal constants.

2 Constant step-sizes: If you use a constant step-size αk = α, you can
show

E[f (xk)− f (x∗)] = (1− 2αλn)k [f (x0)− f (x∗)] + O(α),

which shows rapid progress but non-convergence.
3 Use special problem structures: For certain problems, you can show

faster rates.

Since 2012, large focus on better algorithms for finite sum structure.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

Stochastic Gradient Methods Convergence Rate

Stochastic Average Gradient

The stochastic average gradient (SAG) algorithm uses,

xk+1 = xk +
αk

m

m∑

i=1

yik ,

and evaluates a random ∇fi (xk), with yik the last evaluation of ∇fi .

With αk = 1/16Λ1, the SAG algorithm has linear rate,

E[f (xk)]− f (x∗) ≤
(

1−min

{
1

8m
,
λn

16Λ1

})k

[f (x0)− f (x∗)],

where Λ1 bounds eigenvalues of each ∇2fi (x).

Iteration cost independent of m, rate similar to gradient method.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 37 / 40

Stochastic Gradient Methods Convergence Rate

Stochastic Average Gradient

The stochastic average gradient (SAG) algorithm uses,

xk+1 = xk +
αk

m

m∑

i=1

yik ,

and evaluates a random ∇fi (xk), with yik the last evaluation of ∇fi .
With αk = 1/16Λ1, the SAG algorithm has linear rate,

E[f (xk)]− f (x∗) ≤
(

1−min

{
1

8m
,
λn

16Λ1

})k

[f (x0)− f (x∗)],

where Λ1 bounds eigenvalues of each ∇2fi (x).

Iteration cost independent of m, rate similar to gradient method.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 37 / 40

Stochastic Gradient Methods Convergence Rate

Comparing FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 38 / 40

Stochastic Gradient Methods Convergence Rate

SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 39 / 40

Stochastic Gradient Methods Convergence Rate

Summary

Part 1: Numerical optimization is at the core of many modern
machine learning applications.

Part 2: Gradient-based methods allow elegant scaling with
dimensionality for smooth problems.

Part 3: Proximal-gradient methods allow the same scaling for many
non-smooth problems.

Part 4: Stochastic gradient methods allow scaling to a huge number
of data samples.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 40 / 40

	Machine Learning
	Supervised Learning
	Problem Formulation

	Convergence Rates of First-Order Algorithms
	Motivation and Notation
	Convergence Rate

	Proximal-Gradient Methods
	Motivation: LASSO
	Projected Gradient
	Proximal-Gradient

	Stochastic Gradient Methods
	Motivation: Big-M Problems
	Notation and Algorithm
	Convergence Rate

