Optimization for Machine Learning
CS 406

Mark Schmidt

UBC Computer Science

Term 2, 2014-15

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Goals of this Lecture

@ Give an overview and motivation for the machine learning technique
of supervised learning.

@ Generalize convergence rates of gradient methods for solving linear
systems to general smooth convex optimization problems.

© Introduce the proximal-gradient algorithm, one of the most efficient
algorithms for solving special classes of non-smooth convex
optimization problems.

@ Introduce the stochastic-gradient algorithm, for solving data-fitting
problems when the size of the data is very large.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 2 /40

Machine Learning

Machine Learning

Machine Learning
A Probabilistic Pe

e Study of using computers to automatically detect patterns in data,
and use these to make predictions or decisions.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 3 /40

Machine Learning

Machine Learning

Machine Learning

A Probabilistic Persj

e Study of using computers to automatically detect patterns in data,
and use these to make predictions or decisions.

@ One of the fastest-growing areas of science/engineering.

@ Recent successes: Kinect, book/movie recommendation, spam
detection, credit card fraud detection, face recognition, speech
recognition, object recognition, self-driving cars.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 3 /40

\EYINENRETG- M Supervised Learning

Supervised learning

@ Supervised learning:

e Given input and output examples.
o Build a model that predicts the output from the inputs.
e You can use the model to predict the output on new inputs.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

4/ 40

Supervised Learning
Supervised learning
@ Supervised learning:

e Given input and output examples.
o Build a model that predicts the output from the inputs.

e You can use the model to predict the output on new inputs.

@ Canonical example: hand-written digit recognition:

true class =7 true class = 2 true class = 1

true class =0 true class = 4 true class = 1

OR B/

true class = 4 true class =9 true class =5

Mark Schmidt (UBC Computer Science) Term 2, 2014-15

4/ 40

\EYINENRETG- M Supervised Learning

Supervised Learning

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 5/ 40

\EYINENRETG- M Supervised Learning

Supervised Learning

@ You have a well-defined pattern recognition problem.

@ But don’t know how to write a program to solve it.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 5/ 40

\EYINENRETG- M Supervised Learning

Supervised Learning

@ You have a well-defined pattern recognition problem.

@ But don’t know how to write a program to solve it.
@ And you have lots of labeled data.

@ Key reason for machine learning’s popularity and success.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 5/ 40

Training and Testing

@ Steps for supervised learning:
@ Training phase: build model that maps from input features to labels.
(based on many examples of the correct behaviour)
@ Testing phase: model is used to label new inputs.

machine

N learning
extractor

A
feature classifier
(LTI TTT T} IE!!!;I
. extractor model

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Machine Learning

Connection to Numerical Optimization

o Typically, the training phase is formulated as an optimization problem,
m
mxin Z fi(x) + Ar(x).
i=1

data fitting term 4 regularizer

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Machine Learning Problem Formulation

Connection to Numerical Optimization

@ Typically, the training phase is formulated as an optimization problem,

min Zf,-(x) + Ar(x).
i=1

data fitting term + regularizer

@ Data-fitting term: how well does x fit data sample /7
@ Regularizer: how simple is x?
(simple models are more likely to do well at test time)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

7/40

Machine Learning Problem Formulation

Connection to Numerical Optimization

@ Typically, the training phase is formulated as an optimization problem,

min Zf,-(x) + Ar(x).
i=1

data fitting term + regularizer

@ Data-fitting term: how well does x fit data sample /7
@ Regularizer: how simple is x?

(simple models are more likely to do well at test time)
@ Example is least squares,

fi(x) :—(b ZaUXJ

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

7/40

Machine Learning Problem Formulation

Connection to Numerical Optimization

@ Typically, the training phase is formulated as an optimization problem,

min Zf;(x) + Ar(x).
i=1

data fitting term + regularizer

@ Data-fitting term: how well does x fit data sample /7
@ Regularizer: how simple is x?

(simple models are more likely to do well at test time)
@ Example is least squares,

fi(x) :—(b ZaUXJ

@ Squared £>-norm regularization:
r(x) = [x||*.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

7/40

Outline

© Convergence Rates of First-Order Algorithms

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Motivation and Notation
Motivation for First-Order Methods

@ We first consider the unconstrained optimization problem,

min f(x).
X
@ In typical ML models the dimension, dimension n is very large.
@ We will focus on matrix-free methods, as in the previous lecture:

e Allows n to be in the billions or more.
o We can show dimension-independent convergence rates.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 9 /40

Motivation and Notation
Motivation for First-Order Methods

@ We first consider the unconstrained optimization problem,

min f(x).

X

In typical ML models the dimension, dimension n is very large.

We will focus on matrix-free methods, as in the previous lecture:

e Allows n to be in the billions or more.
o We can show dimension-independent convergence rates.

As before, the simplest case is gradient descent,
Xk+1 = Xk — o, VF(Xg).

@ How many iterations are needed?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 9 /40

ikl
Strongly-Convex and Strongly-Smooth

o Consider special case of least squares:
. 1 2
min f(x) = =||b — Ax||“.
x 2

@ Recall that
V3f(x) = ATA,

so the eigenvalues of V2f(x) are between \; and \, for all x.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 10 / 40

ikl
Strongly-Convex and Strongly-Smooth

@ Consider special case of least squares:

. 1 2

min f(x) = =||b — Ax||“.

x 2

@ Recall that
V3f(x) = ATA,
so the eigenvalues of V2f(x) are between \; and \, for all x.

@ Functions f with eigenvalues of Hessian bounded between positive

constants for all f are called ‘strongly smooth’ and ‘strongly convex'.

@ These assumptions are sufficient to show a linear convergence rate.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 10 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

@ From Taylor's theorem, for some z we have:

Fy) = () + VAT (y %) + 5 (y)T V2(2)(y)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

@ From Taylor's theorem, for some z we have:
Fy) = () + VAT (y %) + 5 (y)T V2(2)(y)
o Use that v V2f(z)v < \;v'v = \;||v||? for any v and z.
Fly) < F(x) + VFG)T(y —x) + Ly x|

@ Global quadratic upper bound on function value.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

@ From Taylor's theorem, for some z we have:
Fy) = () + VAT (y %) + 5 (y)T V2(2)(y)
o Use that v V2f(z)v < \;v'v = \;||v||? for any v and z.
Fly) < F(x) + VFG)T(y —x) + Ly x|

@ Global quadratic upper bound on function value.

=
=

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

@ From Taylor's theorem, for some z we have:
Fy) = () + VAT (y %) + 5 (y)T V2(2)(y)
o Use that v V2f(z)v < \;v'v = \;||v||? for any v and z.
Fly) < F(x) + VFG)T(y —x) + Ly x|

@ Global quadratic upper bound on function value.

10 + VI)T(y)]

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Smoothness

@ From Taylor's theorem, for some z we have:
Fy) = () + VAT (y %) + 5 (y)T V2(2)(y)
o Use that v V2f(z)v < \;v'v = \;||v||? for any v and z.
Fly) < F(x) + VFG)T(y —x) + Ly x|
@ Global quadratic upper bound on function value.

S\ [100 + VieTyx) + (2)tlyxie] [

1
\

10 + VI)T(y)]

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 11 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

@ From Taylor's theorem, for some z we have:

Fy) = () + VAT (y %) + 5 (y)T V2(2)(y)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

@ From Taylor's theorem, for some z we have:
1
Fly) = F(x) + VFX) "y = x) + 5y =) V2 (2)(y — %)
o Use that v/ V2f(z)v > \,|v|? for any v and z.
An
fly) > F(x) + VFX) " (y = x) + T lly — x|

@ Global quadratic lower bound on function value.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

@ From Taylor's theorem, for some z we have:
1
Fly) = F(x) + VFX) "y = x) + 5y =) V2 (2)(y — %)
o Use that v/ V2f(z)v > \,|v|? for any v and z.
An
fly) > F(x) + VFX) " (y = x) + T lly — x|

@ Global quadratic lower bound on function value.

=
=

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

@ From Taylor's theorem, for some z we have:
1
Fly) = F(x) + VFX) "y = x) + 5y =) V2 (2)(y — %)
o Use that v/ V2f(z)v > \,|v|? for any v and z.
An
fly) > F(x) + VFX) " (y = x) + T lly — x|

@ Global quadratic lower bound on function value.

f(x) + Vi) T(y-x)

I
\

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Convergence Rates of First-Order Algorithms Motivation and Notation

Implication of Strong-Convexity

@ From Taylor's theorem, for some z we have:
1
Fly) = F(x) + VFX) "y = x) + 5y =) V2 (2)(y — %)
o Use that v/ V2f(z)v > \,|v|? for any v and z.
An
fly) > F(x) + VFX) " (y = x) + T lly — x|

@ Global quadratic lower bound on function value.

f(x)

f(x) + VIO)T(y-)1\

f(x) + VE)T(y-x) + (WR)hg-xlI2[> < _

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 12 / 40

Bounds on Progress and Sub-Optimality

@ We have the upper bound

A
F(xe1) < F i) + VF(xi) T (xierr = x0) + 5 Ik — %l

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

T
Bounds on Progress and Sub-Optimality

@ We have the upper bound

A
Fxir1) < Fx) + VF000)T (k= x0) + 5 xicer = i,

treating Xx1 as a variable and minimizing the right side gives

1

1
Xib1 = Xk = ViE(xk), f(xkr1) < F(xk) — TMHVf(Xk)Hz,

1

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

T
Bounds on Progress and Sub-Optimality

@ We have the upper bound

A
Fxir1) < Fx) + VF000)T (k= x0) + 5 xicer = i,

treating Xx1 as a variable and minimizing the right side gives

1

1
Xkt1 = Xk = ViE(xk), f(xkr1) < F(xk) — 27\1|’Vf(xk)||2,

1
which is gradient descent with a particular step-size.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

T
Bounds on Progress and Sub-Optimality

@ We have the upper bound

A
Fxir1) < Fx) + VF000)T (k= x0) + 5 xicer = i,

treating Xx1 as a variable and minimizing the right side gives

1

1
Xkt1 = Xk = ViE(xk), f(xkr1) < F(xk) — 27\1|’Vf(xk)||2,

1
which is gradient descent with a particular step-size.
@ We have the lower bound

An
Fly) > f(x) + VF(x) T (y — xi) + 7I|y — xk|?,

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

T
Bounds on Progress and Sub-Optimality

@ We have the upper bound

A
Fxir1) < Fx) + VF000)T (k= x0) + 5 xicer = i,

treating Xx1 as a variable and minimizing the right side gives
1

1
Xkt1 = Xk = ViE(xk), f(xkr1) < F(xk) — 27\1|Wf(xk)||2,

1
which is gradient descent with a particular step-size.
@ We have the lower bound

An
Fly) > f(x) + VF(x) T (y — xi) + 7I|y — xk|?,

and minimizing both sides in terms of y gives
1

2\,

which bounds how far x, is from the solution x*.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 13 / 40

F(x*) > F(xic) = 5 I VF(xi)lI%,

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

@ We have bounds on x,; and x*:
1

Floxera) < F) = 5 I VPP, () 2 7o) — 5

@ The bound guaranteed progress and maximum sub-optimality.

IV (xi) 2.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

@ We have bounds on x,; and x*:

) < Fxe) = 5 IVARIP, F0x7) 2 Flxe) = 51 V()

@ The bound guaranteed progress and maximum sub-optimality.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Term 2, 2014-15

14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

@ We have bounds on x,; and x*:

) < Fxe) = 5 IVARIP, F0x7) 2 Flxe) = 51 V()

@ The bound guaranteed progress and maximum sub-optimality.

A Guaranteed
i| Progress ’

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Term 2, 2014-15

14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

@ We have bounds on x,1 and x*:

F(xky1) < Fxi) = 21A1||Vf(><k)|!2, Fx") = Fxk) =

1

2\

IV F (xi) 1.

@ The bound guaranteed progress and maximum sub-optimality.

AN

Guaranteed
Progress /

Mark Schmidt (UBC Computer Science)

Optimization for Machine Learning

Term 2, 2014-15

14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

@ We have bounds on x,; and x*:
1
f (k1) < F(x) = QTIHW(Xk)Hz, F(x*) > f(xk) - 7\\Vf(><k)|!2

@ The bound guaranteed progress and maximum sub-optimality.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

@ We have bounds on x,,1 and x*:
1 . 1
F(xir1) < FOxi) — 5 IVFxiI?, F(X*) > Fxi) = 5= IV F(xe) [
2\ 2\

@ The bound guaranteed progress and maximum sub-optimality.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 14 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent

@ We have bounds on x,; and x*:

Flxera) < F) = 5 ITFIP, () 2 7o) — 51 [V

combine them to get

F(xisa) — Fx7) < (1 - i—) [F(x0) — F(x°)]

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 15 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Linear Convergence of Gradient Descent
@ We have bounds on x,; and x*:

1 N 1
F(xk1) < Fxi) = 5= IVFIZ, A7) = F(xi) — 51V F(xi) 12
2)\1 2\n
combine them to get
. An
Floes) = 7)< (1237 1) = 7<)
@ Applying recursively gives a linear convergence rate:
A k
)~ 1) < (12 32) 10 -)
@ We say that the condition number for f is given by kr = %

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 15 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Convergence Rate of Gradient Descent

@ What about line-search?

o Exact line-search has the same rate (using ax = 1/A; is a special case).
o Backtracking line-search has a slightly slower rate (but don't need ;).

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 16 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Convergence Rate of Gradient Descent

@ What about line-search?

o Exact line-search has the same rate (using ax = 1/A; is a special case).
o Backtracking line-search has a slightly slower rate (but don't need ;).

@ It's also possible to show that a different step-size gives

k
* Hf_]' *
o= xl < (550 o = x|

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 16 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Convergence Rate of Gradient Descent

@ What about line-search?

o Exact line-search has the same rate (using oy = 1/A1 is a special case).
e Backtracking line-search has a slightly slower rate (but don't need A;).

@ It's also possible to show that a different step-size gives

k
* kf—1 *
% = x"|| < <W> [Ixo — x*|].

@ Similar to the rate for solving linear systems (last lecture).

@ Can we derive a method with the faster rate of conjugate gradient?

(‘Non-linear’ conjugate gradient methods don't actually have a faster rate.)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 16 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Nesterov's accelerated gradient method

@ There is a method similar to conjugate gradient,

Xk41 = Yk — axVF(yx),
Vi1 = Xk + Br(Xkr1 — Xk),

called Nesterov's accelerated gradient method.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 17 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Nesterov's accelerated gradient method

@ There is a method similar to conjugate gradient,

Xk41 = Yk — axVF(yx),
Vi1 = Xk + Br(Xkr1 — Xk),

called Nesterov's accelerated gradient method.

@ It has a faster rate of

F(xe) — Fx") < (1—%_) [F(x0) — ().

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 17 / 40

Convergence Rates of First-Order Algorithms Convergence Rate

Nesterov's accelerated gradient method

@ There is a method similar to conjugate gradient,
X1 = Yk — V(yk),
Y1 = Xk + Br(Xkr1 — Xk),

called Nesterov's accelerated gradient method.

@ It has a faster rate of

Fxi) — () < (1—%_) [F(x0) — ().

@ Slower in practice than non-linear conjugate gradient and
quasi-Newton methods, but does not depend on dimension and
generalizes to non-smooth problems...

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 17 / 40

Outline

© Proximal-Gradient Methods

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Motivation: Spam Filtering

@ We want to recognize e-mail spam.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

el sg
Motivation: Spam Filtering

@ We want to recognize e-mail spam.
@ We will look at phrases in the e-mail messages:

e "CPSC 406".
o “Meet singles in your area now’

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 19 / 40

el sg
Motivation: Spam Filtering

\
ksﬂ“‘ \

5
12

@ We want to recognize e-mail spam.
@ We will look at phrases in the e-mail messages:

e "CPSC 406".
o “Meet singles in your area now’

@ There are too many possible phrases (model would be huge).

@ But some are more helpful than others: feature selection.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

19 / 40

el sg
LASSO: Sparse Regularization

o Consider the ¢1-regularized least squares problem (LASSO),
i l|b Ax||2 + A
min = [b — Ax||” + Allx]lz.

@ Recall the definition of the #1-norm,

Ixlls = .

J

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

20 / 40

el sg
LASSO: Sparse Regularization

o Consider the ¢1-regularized least squares problem (LASSO),
in Sl — Ax| + x|
min 2 X X||1-
@ Recall the definition of the ¢1-norm,

Ixlls = .
j

@ The ¢1-norm shrinks x, and encourages x; to be exactly zero:

o Weight x; for “meet singles” now should be hi (relevant).
o Weight x; for "Hello” should be 0 (not relevant).

@ Each column of A contains the values of one feature, so setting
xj = 0 means we ignore the feature.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

20 / 40

el sg
LASSO: Sparse Regularization

o Consider the ¢1-regularized least squares problem (LASSO),
in Sl — Ax| + x|
min 2 X X||1-

@ Recall the definition of the ¢1-norm,
Ixllr = .
J

@ The ¢1-norm shrinks x, and encourages x; to be exactly zero:

o Weight x; for “meet singles” now should be hi (relevant).
o Weight x; for "Hello” should be 0 (not relevant).

@ Each column of A contains the values of one feature, so setting
xj = 0 means we ignore the feature.

@ The challenge is that |xj| is non-differentiable.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

20 / 40

LASSO: Sparse Regularization

@ How can we solve non-differentiable problems like the LASSO?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

el sg
LASSO: Sparse Regularization

@ How can we solve non-differentiable problems like the LASSO?
@ Try to convert it into a smooth problem?

o We can write the LASSO as a quadratic program (QP).
e But can't solve general huge-dimensional QPs.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

21 /40

el sg
LASSO: Sparse Regularization

@ How can we solve non-differentiable problems like the LASSO?
@ Try to convert it into a smooth problem?

o We can write the LASSO as a quadratic program (QP).
e But can't solve general huge-dimensional QPs.

@ Use an off-the-shelf non-smooth solver?

e These methods have sub-linear convergence rates.
o They are very slow!

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 21 / 40

el sg
LASSO: Sparse Regularization

@ How can we solve non-differentiable problems like the LASSO?
@ Try to convert it into a smooth problem?

o We can write the LASSO as a quadratic program (QP).
e But can't solve general huge-dimensional QPs.

@ Use an off-the-shelf non-smooth solver?

e These methods have sub-linear convergence rates.
o They are very slow!

@ Use a special class of methods called proximal-gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 21 / 40

HOANEIREE AV AT B Projected Gradient

Example: Non-Negative Least Squares

o Consider non-negative least squares,
m n
- 2
min (bi — E ajjx;j)”,
1 j=1

x>0 4
1=

@ Should this be easier than with general constraints?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

22/ 40

HOANEIREE AV AT B Projected Gradient

Example: Non-Negative Least Squares

o Consider non-negative least squares,

m n

- 2

min > (b = > @)%
i=1 j=1

@ Should this be easier than with general constraints?

@ The constraints are simple:

e Given y, we can efficiently find closest x satisfying constraints.
(just set negative y; to zero)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

22/ 40

Proximal-Gradient Methods Projected Gradient

Example: Non-Negative Least Squares

o Consider non-negative least squares,

m n

- 2

min > (b = > @)%
i=1 j=1

@ Should this be easier than with general constraints?

@ The constraints are simple:

e Given y, we can efficiently find closest x satisfying constraints.

(just set negative y; to zero)
o Gradient projection:
o Alternates between gradient step and projection step:

Xk+1 = project[xx — ax V£ (xk)],
. 1 2
project[y] = arg min §Hx -y, st x>0.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

22/ 40

HOANEIREE AV AT B Projected Gradient

Gradient Projection

f(x)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

HOANEIREE AV AT B Projected Gradient

Gradient Projection

Tx

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)

Feasible Set

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

Feasible Set

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

xk - aVI(xK)

NN

Feasible Set

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Term 2, 2014-15

23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)

Feasible Set

xk - aVI(xK)

A X

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

Proximal-Gradient Methods Projected Gradient

Gradient Projection

f(x)

Feasible Set

- aVI(xk) \

AN
PR

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 23 / 40

A4

HOANEIREE AV AT B Projected Gradient

Simple Constraints

@ Gradient projection has the same convergence rate as the
unconstrained gradient method,

(i) — Fx") < (1 - i) [F(x0) — ().

Kf

@ You can do line-search to select the step-size.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

24 / 40

Proximal-Gradient Methods Projected Gradient

Simple Constraints

@ Gradient projection has the same convergence rate as the
unconstrained gradient method,

(i) — Fx") < (1 - —) [F(x0) — ().

@ You can do line-search to select the step-size.
@ Accelerated gradient projection,

Xk+1 = projectlyx — axVf(yx)],
Vi1 = Xk + Bre(Xer1 — X)),

gives a better dependence on the condition number,
) — () < (1- —=) [Flxo) — F(x)].
k NG 0

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

24 / 40

Proximal-Gradient
Proximal-Gradient Method

@ The proximal-gradient method addresses problem of the form
min f(x) + r(x),
X

where f is smooth but r is a general convex function.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

25 / 40

Proximal-Gradient
Proximal-Gradient Method

@ The proximal-gradient method addresses problem of the form
min f(x) + r(x),
X

where f is smooth but r is a general convex function.

@ Alternates between gradient descent on f and proximity operator of r:

1 = Xk — aka(xk),

Xk_’_2

[)
Xk1 = argmin § Sfly —x, 17+ akr(y) o,
y

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 25 / 40

Proximal-Gradient
Proximal-Gradient Method

@ The proximal-gradient method addresses problem of the form
min f(x) + r(x),
X

where f is smooth but r is a general convex function.

@ Alternates between gradient descent on f and proximity operator of r:

1 = Xk — aka(xk),

Xk_’_2

[)
Xk1 = argmin § Sfly —x, 17+ akr(y) o,
y

@ Convergence rates are still the same as for minimizing f alone.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 25 / 40

Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:

0 ifxelC
r(x) = : :
oo ifx¢C

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

el Gl
Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:

0 ifxeC
r(x) = : :
oo ifx¢C

ives .
& Xk+1 = projecte[xx — ax VI(xk)],

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

26 / 40

el Gl
Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:

0 ifxeC
r(x) = : :
oo ifxé¢C

ives .
& Xk+1 = projecte[xk — ax VI (xk)],

(€3]

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 26 / 40

el Gl
Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:

0 ifxelC
o ifx¢cC’

ives .
& Xk+1 = projecte[xx — ax VF(xk)],

0

Feasible Set

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

26 / 40

el Gl
Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:
0 ifxelC
o ifx¢cC’

ives .
& Xk+1 = projecte[xx — ax VF(xk)],

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

26 / 40

el Gl
Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:
0 ifxelC
o ifx¢cC’

ives .
& Xk+1 = projecte[xx — ax VF(xk)],

Feasibl

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

26 / 40

el Gl
Special case of Projected-Gradient Methods

@ Projected-gradient methods are a special case:
0 ifxelC
o ifx¢cC’

ives .
& Xk+1 = projecte[xx — ax VF(xk)],

Feasible Set

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

26 / 40

Proximal-Graient
Proximal Operator, Iterative Soft Thresholding

@ For L1-regularization, we obtain iterative soft-thresholding:

Xi41 = softThreshqy, \[xx — o VF(x)].

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

27 / 40

Proximal-Graient
Proximal Operator, Iterative Soft Thresholding

@ For L1-regularization, we obtain iterative soft-thresholding:
Xi41 = softThreshqy, \[xx — o VF(x)].

o Example with A = 1:
Input Threshold Soft-Threshold

0.6715
—1.2075
0.7172
1.6302
0.4889

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

27 / 40

Proximal-Graient
Proximal Operator, Iterative Soft Thresholding

@ For L1-regularization, we obtain iterative soft-thresholding:
Xi41 = softThreshqy, \[xx — o VF(x)].

o Example with A = 1:

Input Threshold Soft-Threshold
0.6715 0
—1.2075 —1.2075
0.7172 0
1.6302 1.6302
0.4889 0

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 27 / 40

Proximal-Graient
Proximal Operator, Iterative Soft Thresholding

@ For L1-regularization, we obtain iterative soft-thresholding:
Xi41 = softThreshqy, \[xx — o VF(x)].

o Example with A = 1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302
0.4889 0 0

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

27 / 40

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

28 / 40

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:
© Lower and upper bounds.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

28 / 40

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

© Lower and upper bounds.
@ Small number of linear constraint.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

28 / 40

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

© Lower and upper bounds.
@ Small number of linear constraint.
© Probability constraints.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

28 / 40

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

© Lower and upper bounds.

@ Small number of linear constraint.
© Probability constraints.

© L1-Regularization.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

28 / 40

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

© Lower and upper bounds.

@ Small number of linear constraint.
© Probability constraints.

© L1-Regularization.

© Group /;1-Regularization.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

28 / 40

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:
© Lower and upper bounds.
@ Small number of linear constraint.
© Probability constraints.
© L1-Regularization.
© Group /;1-Regularization.
O A few other simple regularizers/constraints.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 28 / 40

Proximal-Gradient
Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?

@ We can efficiently compute the proximity operator for:

© Lower and upper bounds.

@ Small number of linear constraint.

© Probability constraints.

© L1-Regularization.

© Group /;1-Regularization.

O A few other simple regularizers/constraints.

@ Can solve huge instances of these constrained/non-smooth problem.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Term 2, 2014-15

28 / 40

Outline

@ Stochastic Gradient Methods

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

eaecutble IlEbns
Big-N Problems

o Consider the problem of minimizing a finite sum,

1
min — E fi(x),
lin 2 (x)

where m is very large.

@ This could be a big least squares problem, or another ML model.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

Term 2, 2014-15

30 / 40

eaecutble IlEbns
Big-N Problems

o Consider the problem of minimizing a finite sum,

1
min — E fi(x),
lin 2 (x)

where m is very large.
@ This could be a big least squares problem, or another ML model.

@ Examples:

e Each / is a Facebook user.
e Each i is a product on Amazon.
e Each i is a webpage on the internet.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 30 / 40

eaecutble IlEbns
Big-N Problems

o Consider the problem of minimizing a finite sum,

1
min — E fi(x),
lin 2 (x)

where m is very large.

@ This could be a big least squares problem, or another ML model.
@ Examples:

e Each / is a Facebook user.
e Each i is a product on Amazon.
e Each i is a webpage on the internet.

@ We can't afford to go through all m examples many times.

@ One way to deal with this restriction is stochastic gradient methods.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 30 / 40

Notation and Algorithm
Stochastic Gradient Methods

@ Stochastic gradient methods consider minimizing expectations,
min E[f(x)].
X

@ They assume we can generate a random vector px whose expectation
is the gradient
Elpd] = VF(x").

and take a gradient step using this direction,

Xk4+1 = Xk — OPk-

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 31/ 40

Notation and Algorithm
Stochastic Gradient Methods

@ Stochastic gradient methods consider minimizing expectations,
min E[f(x)].
X

@ They assume we can generate a random vector px whose expectation
is the gradient

Elp] = VF(x"),
and take a gradient step using this direction,
Xk4+1 = Xk — OPk-

@ For convergence, usually require the step-sizes a to converge to 0.
e E.g., Robbins-Munro conditions,

oo o0
g Qe = 00, g ai < 00,
k=1 k=1

suggests using o, = 'y/k for some constant ~.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 31/ 40

Notation and Algorithm
Gradient Method vs. Stochastic Gradient Method

Gradient method:

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 32 /40

Notation and Algorithm
Gradient Method vs. Stochastic Gradient Method

Gradient method:

Stochastic gradient method:

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 32 /40

e e A)
Application to Finite Sums

@ Returning to the problem of minimizing a finite sum,

1 m
in L5 ().
min m; (x)

@ Set py to the gradient of a random function f;,

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

33 /40

e e A)
Application to Finite Sums

@ Returning to the problem of minimizing a finite sum,
1 m
mxin - Z fi(x).
i=1

@ Set py to the gradient of a random function f;,
Elpi] = Ei[V£i(xk)]

> p(D)VHi(x)
i=1

1 m
== ; V£i(xk)-

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

33 /40

Stochastic Gradient Methods Notation and Algorithm

Application to Finite Sums
@ Returning to the problem of minimizing a finite sum,
1 m
1 £ (x).
min — ; (x)

@ Set py to the gradient of a random function f;,
Elpi] = Ei[V£i(xk)]

> p(D)VHi(x)
i=1

1 m
== ; V£i(xk)-

@ This gives us the stochastic gradient algorithm
Xk+1 = Xk — a, Vi (Xk).

@ The iteration cost is independent of m.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

33 /40

SIS BTG ELINIA VI Convergence Rate

Convergence Rate of Stochastic Gradient

@ Stochastic gradient has much faster iterations.

@ But how many iterations are required?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15

34 /40

SIS BTG ELINIA VI Convergence Rate

Convergence Rate of Stochastic Gradient

Stochastic gradient has much faster iterations.

But how many iterations are required?
If we set ax = 1/k\p, we have that

E[f(x¥) — f(x*)] = O(1/k).

This is a sublinear rate.

Often works badly in practice:

o Initial arx might be huge.
o Later ax might be tiny.

Nesterov/Newton-like variations can only improve the constant.

(even in low dimensions)

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 34 / 40

SIS BTG ELINIA VI Convergence Rate

Comparison of Gradient and Stochastic Gradient

stochastic

deterministic

log(excess cost)

t L]
Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 35/ 40

Stochastic Gradient Methods

Improving Stochastic Gradient

@ How can we improve this algorithm?

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning

SIS BTG ELINIA VI Convergence Rate

Improving Stochastic Gradient

@ How can we improve this algorithm?
@ Averaging: If you use a bigger step-size, ay = v/\/F then the average
of the iterations (} ZLI x;) has nearly-optimal constants.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

SIS BTG ELINIA VI Convergence Rate

Improving Stochastic Gradient

@ How can we improve this algorithm?
@ Averaging: If you use a bigger step-size, ay = v/\/F then the average
of the iterations (} ZLI x;) has nearly-optimal constants.
@ Constant step-sizes: If you use a constant step-size o, = «, you can
show

E[f(x¥) = F(x*)] = (1 — 22X, [F(x°) = F(x*)] + O(w),

which shows rapid progress but non-convergence.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

SIS BTG ELINIA VI Convergence Rate

Improving Stochastic Gradient

@ How can we improve this algorithm?
@ Averaging: If you use a bigger step-size, ay = v/\/F then the average
of the iterations (} fo:l x;) has nearly-optimal constants.
@ Constant step-sizes: If you use a constant step-size o, = «, you can
show

E[f(x¥) = F(x*)] = (1 — 22X, [F(x°) = F(x*)] + O(w),

which shows rapid progress but non-convergence.
© Use special problem structures: For certain problems, you can show
faster rates.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

SIS BTG ELINIA VI Convergence Rate

Improving Stochastic Gradient

@ How can we improve this algorithm?
@ Averaging: If you use a bigger step-size, ay = *y/\/E then the average
of the iterations (% fozl x;) has nearly-optimal constants.
@ Constant step-sizes: If you use a constant step-size ax = «, you can
show

E[f(x*) — f(x*)] = (1 — 2aX,) [F(x°) — f(x*)] + O(a),

which shows rapid progress but non-convergence.
© Use special problem structures: For certain problems, you can show
faster rates.

@ Since 2012, large focus on better algorithms for finite sum structure.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 36 / 40

T
Stochastic Average Gradient

@ The stochastic average gradient (SAG) algorithm uses,

m
_ Ok i
Xk+1 = Xk + ™ E Yk
i=1

and evaluates a random Vf;(x*), with yi the last evaluation of V.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 37 / 40

T
Stochastic Average Gradient

@ The stochastic average gradient (SAG) algorithm uses,
o m
k i
Xkt1 = Xk + —
k+1 = Xk + m ;Yk,

and evaluates a random Vf;(x*), with yi the last evaluation of V.
e With ay = 1/16A;, the SAG algorithm has linear rate,

strtee) — 66 < (1 min b 0 1Y o)

where A; bounds eigenvalues of each V2f;(x).

@ lteration cost independent of m, rate similar to gradient method.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 37 / 40

SIS BTG ELINIA VI Convergence Rate

Comparing FG and SG Methods

e quantum (n = 50000, p = 78) and rcvl (n = 697641, p = 47236)

Objective minus Optimum
Objective minus Optimum

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 38 / 40

el
SAG Compared to FG and SG Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641, p = 47236)

Objective minus Optimum
6‘\

B

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 39 / 40

SIS BTG ELINIA VI Convergence Rate

Summary

@ Part 1: Numerical optimization is at the core of many modern
machine learning applications.

@ Part 2: Gradient-based methods allow elegant scaling with
dimensionality for smooth problems.

@ Part 3: Proximal-gradient methods allow the same scaling for many
non-smooth problems.

@ Part 4: Stochastic gradient methods allow scaling to a huge number
of data samples.

Mark Schmidt (UBC Computer Science) Optimization for Machine Learning Term 2, 2014-15 40 / 40

	Machine Learning
	Supervised Learning
	Problem Formulation

	Convergence Rates of First-Order Algorithms
	Motivation and Notation
	Convergence Rate

	Proximal-Gradient Methods
	Motivation: LASSO
	Projected Gradient
	Proximal-Gradient

	Stochastic Gradient Methods
	Motivation: Big-M Problems
	Notation and Algorithm
	Convergence Rate

