Optimization for Machine Learning CS 406

Mark Schmidt

UBC Computer Science

Term 2, 2014-15

Goals of this Lecture

- Give an overview and motivation for the machine learning technique of supervised learning.
- Generalize convergence rates of gradient methods for solving linear systems to general smooth convex optimization problems.
- Introduce the proximal-gradient algorithm, one of the most efficient algorithms for solving special classes of non-smooth convex optimization problems.
- Introduce the stochastic-gradient algorithm, for solving data-fitting problems when the size of the data is very large.

Machine Learning

• Study of using computers to automatically detect patterns in data, and use these to make predictions or decisions.

Machine Learning

- Study of using computers to automatically detect patterns in data, and use these to make predictions or decisions.
- One of the fastest-growing areas of science/engineering.
- Recent successes: Kinect, book/movie recommendation, spam detection, credit card fraud detection, face recognition, speech recognition, object recognition, self-driving cars.

Supervised learning

- Supervised learning:
 - Given input and output examples.
 - Build a model that predicts the output from the inputs.
 - You can use the model to predict the output on new inputs.

Supervised learning

- Supervised learning:
 - Given input and output examples.
 - Build a model that predicts the output from the inputs.
 - You can use the model to predict the output on new inputs.
- Canonical example: hand-written digit recognition:

Supervised Learning

Supervised Learning

- You have a well-defined pattern recognition problem.
- But don't know how to write a program to solve it.

Supervised Learning

- You have a well-defined pattern recognition problem.
- But don't know how to write a program to solve it.
- And you have lots of labeled data.
- Key reason for machine learning's popularity and success.

Training and Testing

- Steps for supervised learning:
 - Training phase: build model that maps from input features to labels. (based on many examples of the correct behaviour)
 - Presting phase: model is used to label new inputs.

• Typically, the training phase is formulated as an optimization problem,

$$\min_{\mathbf{x}} \sum_{i=1}^{m} f_i(\mathbf{x}) + \lambda r(\mathbf{x}).$$

data fitting term + regularizer

• Typically, the training phase is formulated as an optimization problem,

$$\min_{\mathbf{x}} \sum_{i=1}^{m} f_i(\mathbf{x}) + \lambda r(\mathbf{x}).$$

data fitting term + regularizer

- Data-fitting term: how well does x fit data sample *i*?
- Regularizer: how simple is x?

(simple models are more likely to do well at test time)

• Typically, the training phase is formulated as an optimization problem,

$$\min_{\mathbf{x}} \sum_{i=1}^{m} f_i(\mathbf{x}) + \lambda r(\mathbf{x}).$$

data fitting term + regularizer

- Data-fitting term: how well does x fit data sample *i*?
- Regularizer: how simple is x? (simple models are more likely to do well at test time)
- Example is least squares,

$$f_i(\mathbf{x}) = \frac{1}{2}(b_i - \sum_{j=1}^n a_{ij}x_j)^2.$$

• Typically, the training phase is formulated as an optimization problem,

$$\min_{\mathbf{x}} \sum_{i=1}^{m} f_i(\mathbf{x}) + \lambda r(\mathbf{x}).$$

data fitting term + regularizer

- Data-fitting term: how well does x fit data sample *i*?
- Regularizer: how simple is x? (simple models are more likely to do well at test time)
- Example is least squares,

$$f_i(\mathbf{x}) = \frac{1}{2}(b_i - \sum_{j=1}^n a_{ij}x_j)^2.$$

• Squared ℓ_2 -norm regularization:

$$r(\mathbf{x}) = \|\mathbf{x}\|^2$$

Outline

Machine Learning

2 Convergence Rates of First-Order Algorithms

- Motivation and Notation
- Convergence Rate
- 3 Proximal-Gradient Methods
- 4 Stochastic Gradient Methods

Motivation for First-Order Methods

• We first consider the unconstrained optimization problem,

 $\min_{\mathbf{x}} f(\mathbf{x}).$

- In typical ML models the dimension, dimension *n* is very large.
- We will focus on matrix-free methods, as in the previous lecture:
 - Allows *n* to be in the billions or more.
 - We can show dimension-independent convergence rates.

Motivation for First-Order Methods

• We first consider the unconstrained optimization problem,

 $\min_{\mathbf{x}} f(\mathbf{x}).$

- In typical ML models the dimension, dimension *n* is very large.
- We will focus on matrix-free methods, as in the previous lecture:
 - Allows *n* to be in the billions or more.
 - We can show dimension-independent convergence rates.
- As before, the simplest case is gradient descent,

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k).$$

• How many iterations are needed?

Strongly-Convex and Strongly-Smooth

• Consider special case of least squares:

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{b} - A\mathbf{x}\|^2.$$

Recall that

$$\nabla^2 f(\mathbf{x}) = A^T A,$$

so the eigenvalues of $\nabla^2 f(\mathbf{x})$ are between λ_1 and λ_n for all \mathbf{x} .

Strongly-Convex and Strongly-Smooth

• Consider special case of least squares:

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{b} - A\mathbf{x}\|^2.$$

Recall that

$$\nabla^2 f(\mathbf{x}) = A^T A,$$

so the eigenvalues of $\nabla^2 f(\mathbf{x})$ are between λ_1 and λ_n for all \mathbf{x} .

- Functions f with eigenvalues of Hessian bounded between positive constants for all f are called 'strongly smooth' and 'strongly convex'.
- These assumptions are sufficient to show a linear convergence rate.

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{T} (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{T} \nabla^{2} f(\mathbf{z}) (\mathbf{y} - \mathbf{x})$$

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) + \frac{1}{2}(\mathbf{y} - \mathbf{x})^{\mathsf{T}} \nabla^2 f(\mathbf{z})(\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \leq \lambda_1 \mathbf{v}^T \mathbf{v} = \lambda_1 \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_1}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic upper bound on function value.

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{T}(\mathbf{y} - \mathbf{x}) + \frac{1}{2}(\mathbf{y} - \mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \leq \lambda_1 \mathbf{v}^T \mathbf{v} = \lambda_1 \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_1}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic upper bound on function value.

Mark Schmidt (UBC Computer Science)

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) + \frac{1}{2}(\mathbf{y} - \mathbf{x})^{\mathsf{T}} \nabla^2 f(\mathbf{z})(\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \leq \lambda_1 \mathbf{v}^T \mathbf{v} = \lambda_1 \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_1}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic upper bound on function value.

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{T}(\mathbf{y} - \mathbf{x}) + \frac{1}{2}(\mathbf{y} - \mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \leq \lambda_1 \mathbf{v}^T \mathbf{v} = \lambda_1 \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_1}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic upper bound on function value.

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{T} (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{T} \nabla^{2} f(\mathbf{z}) (\mathbf{y} - \mathbf{x})$$

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\mathsf{T}} \nabla^2 f(\mathbf{z}) (\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \geq \lambda_n \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_n}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic lower bound on function value.

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) +
abla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + rac{1}{2} (\mathbf{y} - \mathbf{x})^T
abla^2 f(\mathbf{z}) (\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \geq \lambda_n \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_n}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic lower bound on function value.

Mark Schmidt (UBC Computer Science)

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) +
abla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + rac{1}{2} (\mathbf{y} - \mathbf{x})^T
abla^2 f(\mathbf{z}) (\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \geq \lambda_n \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_n}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic lower bound on function value.

Mark Schmidt (UBC Computer Science)

• From Taylor's theorem, for some z we have:

$$f(\mathbf{y}) = f(\mathbf{x}) +
abla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + rac{1}{2} (\mathbf{y} - \mathbf{x})^T
abla^2 f(\mathbf{z}) (\mathbf{y} - \mathbf{x})$$

• Use that $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \geq \lambda_n \|\mathbf{v}\|^2$ for any \mathbf{v} and \mathbf{z} .

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\lambda_n}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Global quadratic lower bound on function value.

•

Bounds on Progress and Sub-Optimality

• We have the upper bound

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x}_{k+1} - \mathbf{x}_k) + \frac{\lambda_1}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2,$$

• We have the upper bound

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x}_{k+1} - \mathbf{x}_k) + \frac{\lambda_1}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2,$$

treating \mathbf{x}_{k+1} as a variable and minimizing the right side gives

$$\mathbf{x}_{k+1} = \mathbf{x}_k - rac{1}{\lambda_1}
abla f(\mathbf{x}_k), \quad f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - rac{1}{2\lambda_1} \|
abla f(\mathbf{x}_k) \|^2,$$

• We have the upper bound

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x}_{k+1} - \mathbf{x}_k) + \frac{\lambda_1}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2,$$

treating \mathbf{x}_{k+1} as a variable and minimizing the right side gives

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{\lambda_1} \nabla f(\mathbf{x}_k), \quad f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - \frac{1}{2\lambda_1} \|\nabla f(\mathbf{x}_k)\|^2,$$

which is gradient descent with a particular step-size.

• We have the upper bound

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x}_{k+1} - \mathbf{x}_k) + \frac{\lambda_1}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2,$$

treating \mathbf{x}_{k+1} as a variable and minimizing the right side gives

$$\mathbf{x}_{k+1} = \mathbf{x}_k - rac{1}{\lambda_1}
abla f(\mathbf{x}_k), \quad f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - rac{1}{2\lambda_1} \|
abla f(\mathbf{x}_k) \|^2,$$

which is gradient descent with a particular step-size.

• We have the lower bound

$$f(\mathbf{y}) \geq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{y} - \mathbf{x}_k) + \frac{\lambda_n}{2} \|\mathbf{y} - \mathbf{x}_k\|^2,$$

• We have the upper bound

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x}_{k+1} - \mathbf{x}_k) + \frac{\lambda_1}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2,$$

treating \mathbf{x}_{k+1} as a variable and minimizing the right side gives

$$\mathbf{x}_{k+1} = \mathbf{x}_k - rac{1}{\lambda_1}
abla f(\mathbf{x}_k), \quad f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - rac{1}{2\lambda_1} \|
abla f(\mathbf{x}_k) \|^2,$$

which is gradient descent with a particular step-size.

• We have the lower bound

$$f(\mathbf{y}) \geq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{y} - \mathbf{x}_k) + \frac{\lambda_n}{2} \|\mathbf{y} - \mathbf{x}_k\|^2,$$

and minimizing both sides in terms of y gives

$$f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - \frac{1}{2\lambda_n} \|\nabla f(\mathbf{x}_k)\|^2,$$

which bounds how far \mathbf{x}_k is from the solution \mathbf{x}^* .

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - \frac{1}{2\lambda_1} \|\nabla f(\mathbf{x}_k)\|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - \frac{1}{2\lambda_n} \|\nabla f(\mathbf{x}_k)\|^2.$$

• The bound guaranteed progress and maximum sub-optimality.

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - rac{1}{2\lambda_1} \|
abla f(\mathbf{x}_k) \|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - rac{1}{2\lambda_n} \|
abla f(\mathbf{x}_k) \|^2.$$

• The bound guaranteed progress and maximum sub-optimality.

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - rac{1}{2\lambda_1} \|
abla f(\mathbf{x}_k) \|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - rac{1}{2\lambda_n} \|
abla f(\mathbf{x}_k) \|^2.$$

Convergence Rate

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - \frac{1}{2\lambda_1} \|\nabla f(\mathbf{x}_k)\|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - \frac{1}{2\lambda_n} \|\nabla f(\mathbf{x}_k)\|^2.$$

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - rac{1}{2\lambda_1} \|
abla f(\mathbf{x}_k) \|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - rac{1}{2\lambda_n} \|
abla f(\mathbf{x}_k) \|^2.$$

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - rac{1}{2\lambda_1} \|
abla f(\mathbf{x}_k) \|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - rac{1}{2\lambda_n} \|
abla f(\mathbf{x}_k) \|^2.$$

Convergence Rate

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - \frac{1}{2\lambda_1} \|\nabla f(\mathbf{x}_k)\|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - \frac{1}{2\lambda_n} \|\nabla f(\mathbf{x}_k)\|^2.$$

combine them to get

$$f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*) \leq \left(1 - \frac{\lambda_n}{\lambda_1}\right) [f(\mathbf{x}_k) - f(\mathbf{x}^*)]$$

Convergence Rate

Linear Convergence of Gradient Descent

• We have bounds on \mathbf{x}_{k+1} and \mathbf{x}^* :

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) - \frac{1}{2\lambda_1} \|\nabla f(\mathbf{x}_k)\|^2, \quad f(\mathbf{x}^*) \geq f(\mathbf{x}_k) - \frac{1}{2\lambda_n} \|\nabla f(\mathbf{x}_k)\|^2.$$

combine them to get

$$f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*) \le \left(1 - \frac{\lambda_n}{\lambda_1}\right) [f(\mathbf{x}_k) - f(\mathbf{x}^*)]$$

• Applying recursively gives a linear convergence rate:

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \left(1 - \frac{\lambda_n}{\lambda_1}\right)^k [f(\mathbf{x}_0) - f(\mathbf{x}^*)]$$

• We say that the condition number for f is given by $\kappa_f = \frac{\lambda_1}{\lambda_p}$.

Convergence Rate of Gradient Descent

- What about line-search?
 - Exact line-search has the same rate (using $\alpha_k = 1/\lambda_1$ is a special case).
 - Backtracking line-search has a slightly slower rate (but don't need λ_1).

Convergence Rate of Gradient Descent

- What about line-search?
 - Exact line-search has the same rate (using $\alpha_k = 1/\lambda_1$ is a special case).
 - Backtracking line-search has a slightly slower rate (but don't need λ_1).
- It's also possible to show that a different step-size gives

$$\|\mathbf{x}_k - \mathbf{x}^*\| \le \left(\frac{\kappa_f - 1}{\kappa_f + 1}\right)^k \|\mathbf{x}_0 - \mathbf{x}^*\|.$$

Convergence Rate of Gradient Descent

- What about line-search?
 - Exact line-search has the same rate (using $\alpha_k = 1/\lambda_1$ is a special case).
 - Backtracking line-search has a slightly slower rate (but don't need λ_1).
- It's also possible to show that a different step-size gives

$$\|\mathbf{x}_k - \mathbf{x}^*\| \le \left(rac{\kappa_f - 1}{\kappa_f + 1}
ight)^k \|\mathbf{x}_0 - \mathbf{x}^*\|.$$

- Similar to the rate for solving linear systems (last lecture).
- Can we derive a method with the faster rate of conjugate gradient? ('Non-linear' conjugate gradient methods don't actually have a faster rate.)

Nesterov's accelerated gradient method

• There is a method similar to conjugate gradient,

$$\mathbf{x}_{k+1} = \mathbf{y}_k - \alpha_k \nabla f(\mathbf{y}_k),$$

$$\mathbf{y}_{k+1} = \mathbf{x}_k + \beta_k (\mathbf{x}_{k+1} - \mathbf{x}_k),$$

called Nesterov's accelerated gradient method.

Nesterov's accelerated gradient method

• There is a method similar to conjugate gradient,

$$\mathbf{x}_{k+1} = \mathbf{y}_k - \alpha_k \nabla f(\mathbf{y}_k),$$

$$\mathbf{y}_{k+1} = \mathbf{x}_k + \beta_k (\mathbf{x}_{k+1} - \mathbf{x}_k),$$

called Nesterov's accelerated gradient method.

• It has a faster rate of

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \left(1 - rac{1}{\sqrt{\kappa_f}}
ight)^t [f(\mathbf{x}_0) - f(\mathbf{x}^*)].$$

Nesterov's accelerated gradient method

• There is a method similar to conjugate gradient,

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{y}_k - \alpha_k \nabla f(\mathbf{y}_k), \\ \mathbf{y}_{k+1} &= \mathbf{x}_k + \beta_k (\mathbf{x}_{k+1} - \mathbf{x}_k), \end{aligned}$$

called Nesterov's accelerated gradient method.

• It has a faster rate of

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \left(1 - rac{1}{\sqrt{\kappa_f}}
ight)^t [f(\mathbf{x}_0) - f(\mathbf{x}^*)].$$

 Slower in practice than non-linear conjugate gradient and quasi-Newton methods, but does not depend on dimension and generalizes to non-smooth problems...

Outline

Machine Learning

Convergence Rates of First-Order Algorithms

Proximal-Gradient Methods

- Motivation: LASSO
- Projected Gradient
- Proximal-Gradient

Motivation: Spam Filtering

• We want to recognize e-mail spam.

Motivation: Spam Filtering

- We want to recognize e-mail spam.
- We will look at phrases in the e-mail messages:
 - "CPSC 406".
 - "Meet singles in your area now"

Motivation: Spam Filtering

- We want to recognize e-mail spam.
- We will look at phrases in the e-mail messages:
 - "CPSC 406".
 - "Meet singles in your area now"
- There are too many possible phrases (model would be huge).
- But some are more helpful than others: feature selection.

• Consider the ℓ_1 -regularized least squares problem (LASSO),

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{b} - A\mathbf{x}\|^2 + \lambda \|\mathbf{x}\|_1.$$

• Recall the definition of the ℓ_1 -norm,

$$\|\mathbf{x}\|_1 = \sum_j |x_j|.$$

• Consider the ℓ_1 -regularized least squares problem (LASSO),

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{b} - A\mathbf{x}\|^2 + \lambda \|\mathbf{x}\|_1.$$

• Recall the definition of the ℓ_1 -norm,

$$\|\mathbf{x}\|_1 = \sum_j |x_j|.$$

- The ℓ_1 -norm shrinks **x**, and encourages x_j to be exactly zero:
 - Weight x_j for "meet singles" now should be hi (relevant).
 - Weight x_j for "Hello" should be 0 (not relevant).
- Each column of A contains the values of one feature, so setting $x_i = 0$ means we ignore the feature.

• Consider the ℓ_1 -regularized least squares problem (LASSO),

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{b} - A\mathbf{x}\|^2 + \lambda \|\mathbf{x}\|_1.$$

• Recall the definition of the ℓ_1 -norm,

$$\|\mathbf{x}\|_1 = \sum_j |x_j|.$$

- The ℓ_1 -norm shrinks **x**, and encourages x_i to be exactly zero:
 - Weight x_i for "meet singles" now should be hi (relevant).
 - Weight x_j for "Hello" should be 0 (not relevant).
- Each column of A contains the values of one feature, so setting $x_j = 0$ means we ignore the feature.
- The challenge is that $|x_j|$ is non-differentiable.

Motivation: LASSO

LASSO: Sparse Regularization

• How can we solve non-differentiable problems like the LASSO?

- How can we solve non-differentiable problems like the LASSO?
- Try to convert it into a smooth problem?
 - We can write the LASSO as a quadratic program (QP).
 - But can't solve general huge-dimensional QPs.

- How can we solve non-differentiable problems like the LASSO?
- Try to convert it into a smooth problem?
 - We can write the LASSO as a quadratic program (QP).
 - But can't solve general huge-dimensional QPs.
- Use an off-the-shelf non-smooth solver?
 - These methods have sub-linear convergence rates.
 - They are very slow!

- How can we solve non-differentiable problems like the LASSO?
- Try to convert it into a smooth problem?
 - We can write the LASSO as a quadratic program (QP).
 - But can't solve general huge-dimensional QPs.
- Use an off-the-shelf non-smooth solver?
 - These methods have sub-linear convergence rates.
 - They are very slow!
- Use a special class of methods called proximal-gradient methods.

Example: Non-Negative Least Squares

• Consider non-negative least squares,

$$\min_{\mathbf{x} \ge 0} \sum_{i=1}^{m} (b_i - \sum_{j=1}^{n} a_{ij} x_j)^2,$$

• Should this be easier than with general constraints?

Example: Non-Negative Least Squares

• Consider non-negative least squares,

$$\min_{\mathbf{x}\geq 0} \sum_{i=1}^{m} (b_i - \sum_{j=1}^{n} a_{ij} x_j)^2,$$

- Should this be easier than with general constraints?
- The constraints are simple:
 - Given y, we can efficiently find closest x satisfying constraints. (just set negative y_i to zero)

Example: Non-Negative Least Squares

• Consider non-negative least squares,

$$\min_{\mathbf{x} \ge 0} \sum_{i=1}^{m} (b_i - \sum_{j=1}^{n} a_{ij} x_j)^2,$$

- Should this be easier than with general constraints?
- The constraints are simple:
 - Given y, we can efficiently find closest x satisfying constraints. (just set negative y_i to zero)
- Gradient projection:
 - Alternates between gradient step and projection step:

$$\mathbf{x}_{k+1} = \operatorname{project}[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)],$$

$$\mathsf{project}[\mathbf{y}] = \mathop{\arg\min}\limits_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \mathsf{s.t.} \ \mathbf{x} \geq \mathbf{0}.$$

Projected Gradient

Simple Constraints

 Gradient projection has the same convergence rate as the unconstrained gradient method,

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \left(1 - rac{1}{\kappa_f}\right) [f(\mathbf{x}_0) - f(\mathbf{x}^*)].$$

• You can do line-search to select the step-size.

Simple Constraints

 Gradient projection has the same convergence rate as the unconstrained gradient method,

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \left(1 - rac{1}{\kappa_f}\right) [f(\mathbf{x}_0) - f(\mathbf{x}^*)].$$

- You can do line-search to select the step-size.
- Accelerated gradient projection,

$$\mathbf{x}_{k+1} = \operatorname{project}[\mathbf{y}_k - \alpha_k \nabla f(\mathbf{y}_k)],$$

$$\mathbf{y}_{k+1} = \mathbf{x}_k + \beta_k (\mathbf{x}_{k+1} - \mathbf{x}_k),$$

gives a better dependence on the condition number,

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \left(1 - \frac{1}{\sqrt{\kappa_f}}\right) [f(\mathbf{x}_0) - f(\mathbf{x}^*)].$$

Proximal-Gradient Method

• The proximal-gradient method addresses problem of the form

$$\min_{\mathbf{x}} f(\mathbf{x}) + r(\mathbf{x}),$$

where f is smooth but r is a general convex function.
Proximal-Gradient Method

• The proximal-gradient method addresses problem of the form

$$\min_{\mathbf{x}} f(\mathbf{x}) + r(\mathbf{x}),$$

where f is smooth but r is a general convex function.

• Alternates between gradient descent on f and proximity operator of r:

$$\begin{aligned} \mathbf{x}_{k+\frac{1}{2}} &= \mathbf{x}_{k} - \alpha^{k} \nabla f(\mathbf{x}^{k}), \\ \mathbf{x}_{k+1} &= \operatorname*{arg\,min}_{\mathbf{y}} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{x}_{k+\frac{1}{2}}\|^{2} + \alpha_{k} r(\mathbf{y}) \right\}, \end{aligned}$$

Proximal-Gradient Method

• The proximal-gradient method addresses problem of the form

$$\min_{\mathbf{x}} f(\mathbf{x}) + r(\mathbf{x}),$$

where f is smooth but r is a general convex function.

• Alternates between gradient descent on f and proximity operator of r:

$$\begin{aligned} \mathbf{x}_{k+\frac{1}{2}} &= \mathbf{x}_{k} - \alpha^{k} \nabla f(\mathbf{x}^{k}), \\ \mathbf{x}_{k+1} &= \operatorname*{arg\,min}_{\mathbf{y}} \left\{ \frac{1}{2} \|\mathbf{y} - \mathbf{x}_{k+\frac{1}{2}}\|^{2} + \alpha_{k} \mathbf{r}(\mathbf{y}) \right\}, \end{aligned}$$

• Convergence rates are still the same as for minimizing f alone.

Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in \mathcal{C} \\ \infty & \text{if } \mathbf{x} \notin \mathcal{C} \end{cases}$$

Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in \mathcal{C} \\ \infty & \text{if } \mathbf{x} \notin \mathcal{C} \end{cases},$$

gives

$$\mathbf{x}_{k+1} = \mathsf{project}_{\mathcal{C}}[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)],$$

Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(\mathbf{x}) = egin{cases} \mathbf{0} & ext{if } \mathbf{x} \in \mathcal{C} \ \infty & ext{if } \mathbf{x}
otin \mathcal{C} \ , \end{cases}$$

gives

$$\mathbf{x}_{k+1} = \mathsf{project}_{\mathcal{C}}[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)],$$

Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(\mathbf{x}) = egin{cases} \mathbf{0} & ext{if } \mathbf{x} \in \mathcal{C} \ \infty & ext{if } \mathbf{x}
otin \mathcal{C} \ , \end{cases}$$

gives

$$\mathbf{x}_{k+1} = \mathsf{project}_{\mathcal{C}}[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)],$$

Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(\mathbf{x}) = egin{cases} \mathbf{0} & ext{if } \mathbf{x} \in \mathcal{C} \ \infty & ext{if } \mathbf{x} \notin \mathcal{C} \end{cases},$$

gives

$$\mathbf{x}_{k+1} = \mathsf{project}_{\mathcal{C}}[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)],$$

Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(\mathbf{x}) = egin{cases} \mathbf{0} & ext{if } \mathbf{x} \in \mathcal{C} \ \infty & ext{if } \mathbf{x}
otin \mathcal{C} \ , \end{cases}$$

gives

$$\mathbf{x}_{k+1} = \mathsf{project}_{\mathcal{C}}[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)],$$

Special case of Projected-Gradient Methods

• Projected-gradient methods are a special case:

$$r(\mathbf{x}) = egin{cases} \mathbf{0} & ext{if } \mathbf{x} \in \mathcal{C} \ \infty & ext{if } \mathbf{x}
otin \mathcal{C} \ , \end{cases}$$

gives

$$\mathbf{x}_{k+1} = \mathsf{project}_{\mathcal{C}}[\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)],$$

$$\mathbf{x}_{k+1} = \text{softThresh}_{\alpha_k \lambda} [\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)].$$

$$\mathbf{x}_{k+1} = \text{softThresh}_{\alpha_k \lambda} [\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)].$$

• Exa	mple with $\lambda=1$:		
	Input	Threshold	Soft-Threshold
	$\begin{bmatrix} 0.6715\\ -1.2075\\ 0.7172\\ 1.6302\\ 0.4889 \end{bmatrix}$		

$$\mathbf{x}_{k+1} = \text{softThresh}_{\alpha_k \lambda} [\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)].$$

$$\mathbf{x}_{k+1} = \text{softThresh}_{\alpha_k \lambda} [\mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)].$$

• For what problems can we apply these methods?

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - Lower and upper bounds.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - Lower and upper bounds.
 - 2 Small number of linear constraint.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - Lower and upper bounds.
 - Small number of linear constraint.
 - Probability constraints.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - Lower and upper bounds.
 - 2 Small number of linear constraint.
 - Probability constraints.
 - 4 L1-Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - Lower and upper bounds.
 - 2 Small number of linear constraint.
 - Probability constraints.
 - 4 L1-Regularization.
 - **o** Group ℓ_1 -Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - Lower and upper bounds.
 - 2 Small number of linear constraint.
 - Probability constraints.
 - L1-Regularization.
 - **5** Group ℓ_1 -Regularization.
 - A few other simple regularizers/constraints.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - Lower and upper bounds.
 - 2 Small number of linear constraint.
 - Probability constraints.
 - L1-Regularization.
 - **5** Group ℓ_1 -Regularization.
 - A few other simple regularizers/constraints.
- Can solve huge instances of these constrained/non-smooth problem.

Outline

Machine Learning

- 2 Convergence Rates of First-Order Algorithms
- Proximal-Gradient Methods

Stochastic Gradient Methods

- Motivation: Big-M Problems
- Notation and Algorithm
- Convergence Rate

Big-N Problems

• Consider the problem of minimizing a finite sum,

$$\min_{\mathbf{x}} \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}),$$

where *m* is very large.

• This could be a big least squares problem, or another ML model.

Big-N Problems

• Consider the problem of minimizing a finite sum,

$$\min_{\mathbf{x}} \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}),$$

where *m* is very large.

- This could be a big least squares problem, or another ML model.
- Examples:
 - Each *i* is a Facebook user.
 - Each *i* is a product on Amazon.
 - Each *i* is a webpage on the internet.

Big-N Problems

• Consider the problem of minimizing a finite sum,

$$\min_{\mathbf{x}} \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}),$$

where *m* is very large.

- This could be a big least squares problem, or another ML model.
- Examples:
 - Each *i* is a Facebook user.
 - Each *i* is a product on Amazon.
 - Each *i* is a webpage on the internet.
- We can't afford to go through all *m* examples many times.
- One way to deal with this restriction is stochastic gradient methods.

Stochastic Gradient Methods

• Stochastic gradient methods consider minimizing expectations,

 $\min_{\mathbf{x}} \mathbb{E}[f(\mathbf{x})].$

• They assume we can generate a random vector **p**_k whose expectation is the gradient

$$\mathbb{E}[\mathbf{p}_k] = \nabla f(\mathbf{x}^k),$$

and take a gradient step using this direction,

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{p}_k.$$

Notation and Algorithm

Stochastic Gradient Methods

Stochastic gradient methods consider minimizing expectations,

min $\mathbb{E}[f(\mathbf{x})]$.

• They assume we can generate a random vector \mathbf{p}_k whose expectation is the gradient

$$\mathbb{E}[\mathbf{p}_k] = \nabla f(\mathbf{x}^k),$$

and take a gradient step using this direction,

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{p}_k.$$

- For convergence, usually require the step-sizes α_k to converge to 0.
 - E.g., Robbins-Munro conditions,

$$\sum_{k=1}^{\infty} \alpha_k = \infty, \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty,$$

suggests using $\alpha_k = \gamma/k$ for some constant γ .

Gradient Method vs. Stochastic Gradient Method

Gradient method:

Gradient Method vs. Stochastic Gradient Method

Gradient method:

Stochastic gradient method:

Application to Finite Sums

• Returning to the problem of minimizing a finite sum,

$$\min_{\mathbf{x}} \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}).$$

• Set \mathbf{p}_k to the gradient of a random function f_{i_k} ,

Application to Finite Sums

• Returning to the problem of minimizing a finite sum,

$$\min_{\mathbf{x}} \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}).$$

• Set \mathbf{p}_k to the gradient of a random function f_{i_k} , $\mathbb{E}[\mathbf{p}_k] = \mathbb{E}_i[\nabla f_i(\mathbf{x}_k)]$

$$\mathbb{E}[\mathbf{p}_k] = \mathbb{E}_i[\nabla f_i(\mathbf{x}_k)]$$
$$= \sum_{i=1}^m p(i) \nabla f_i(\mathbf{x}_k)$$
$$= \frac{1}{m} \sum_{i=1}^m \nabla f_i(\mathbf{x}_k).$$

Application to Finite Sums

• Returning to the problem of minimizing a finite sum,

$$\min_{\mathbf{x}} \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}).$$

• Set \mathbf{p}_k to the gradient of a random function f_{i_k} , $\mathbb{E}[\mathbf{p}_k] = \mathbb{E}_i[\nabla f_i(\mathbf{x}_k)]$

$$\mathbb{E}[\mathbf{p}_k] = \mathbb{E}_i[
abla f_i(\mathbf{x}_k)]$$

= $\sum_{i=1}^m p(i)
abla f_i(\mathbf{x}_k)$
= $\frac{1}{m} \sum_{i=1}^m
abla f_i(\mathbf{x}_k).$

This gives us the stochastic gradient algorithm

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f_{i_k}(\mathbf{x}_k).$$

• The iteration cost is independent of *m*.

Convergence Rate of Stochastic Gradient

- Stochastic gradient has much faster iterations.
- But how many iterations are required?

Convergence Rate of Stochastic Gradient

- Stochastic gradient has much faster iterations.
- But how many iterations are required?
- If we set $\alpha_k = 1/k\lambda_n$, we have that

$$\mathbb{E}[f(x^k) - f(x^*)] = O(1/k).$$

- This is a sublinear rate.
- Often works badly in practice:
 - Initial α_k might be huge.
 - Later α_k might be tiny.
- Nesterov/Newton-like variations can only improve the constant. (even in low dimensions)

Comparison of Gradient and Stochastic Gradient

Improving Stochastic Gradient

• How can we improve this algorithm?

Convergence Rate

Improving Stochastic Gradient

• How can we improve this algorithm?

4 Averaging: If you use a bigger step-size, $\alpha_k = \gamma/\sqrt{k}$, then the average of the iterations $(\frac{1}{k}\sum_{i=1}^{k} \mathbf{x}_i)$ has nearly-optimal constants.

Convergence Rate

Improving Stochastic Gradient

• How can we improve this algorithm?

- Averaging: If you use a bigger step-size, $\alpha_k = \gamma/\sqrt{k}$, then the average of the iterations $(\frac{1}{\iota}\sum_{i=1}^{k} \mathbf{x}_i)$ has nearly-optimal constants.
- 2 Constant step-sizes: If you use a constant step-size $\alpha_k = \alpha$, you can show

$$\mathbb{E}[f(x^{k}) - f(x^{*})] = (1 - 2\alpha\lambda_{n})^{k}[f(x^{0}) - f(x^{*})] + O(\alpha),$$

which shows rapid progress but non-convergence.

Improving Stochastic Gradient

• How can we improve this algorithm?

- Averaging: If you use a bigger step-size, $\alpha_k = \gamma/\sqrt{k}$, then the average of the iterations $(\frac{1}{k}\sum_{i=1}^k \mathbf{x}_i)$ has nearly-optimal constants.
- **②** Constant step-sizes: If you use a constant step-size $\alpha_k = \alpha$, you can show

$$\mathbb{E}[f(x^{k}) - f(x^{*})] = (1 - 2\alpha\lambda_{n})^{k}[f(x^{0}) - f(x^{*})] + O(\alpha),$$

which shows rapid progress but non-convergence.

Use special problem structures: For certain problems, you can show faster rates.

Improving Stochastic Gradient

• How can we improve this algorithm?

- Averaging: If you use a bigger step-size, $\alpha_k = \gamma/\sqrt{k}$, then the average of the iterations $(\frac{1}{k}\sum_{i=1}^k \mathbf{x}_i)$ has nearly-optimal constants.
- **②** Constant step-sizes: If you use a constant step-size $\alpha_k = \alpha$, you can show

$$\mathbb{E}[f(x^{k}) - f(x^{*})] = (1 - 2\alpha\lambda_{n})^{k}[f(x^{0}) - f(x^{*})] + O(\alpha),$$

which shows rapid progress but non-convergence.

- Use special problem structures: For certain problems, you can show faster rates.
- Since 2012, large focus on better algorithms for finite sum structure.

Stochastic Average Gradient

• The stochastic average gradient (SAG) algorithm uses,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{\alpha_k}{m} \sum_{i=1}^m \mathbf{y}_k^i,$$

and evaluates a random $\nabla f_i(x^k)$, with \mathbf{y}_k^i the last evaluation of ∇f_i .

Stochastic Average Gradient

• The stochastic average gradient (SAG) algorithm uses,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{\alpha_k}{m} \sum_{i=1}^m \mathbf{y}_k^i,$$

and evaluates a random $\nabla f_i(x^k)$, with \mathbf{y}_k^i the last evaluation of ∇f_i . • With $\alpha_k = 1/16\Lambda_1$, the SAG algorithm has linear rate,

$$\mathbb{E}[f(\mathbf{x}_k)] - f(\mathbf{x}^*) \le \left(1 - \min\left\{\frac{1}{8m}, \frac{\lambda_n}{16\Lambda_1}\right\}\right)^k [f(\mathbf{x}_0) - f(\mathbf{x}^*)],$$

where Λ_1 bounds eigenvalues of *each* $\nabla^2 f_i(\mathbf{x})$.

• Iteration cost independent of *m*, rate similar to gradient method.

Comparing FG and SG Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

SAG Compared to FG and SG Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

Summary

- Part 1: Numerical optimization is at the core of many modern machine learning applications.
- Part 2: Gradient-based methods allow elegant scaling with dimensionality for smooth problems.
- Part 3: Proximal-gradient methods allow the same scaling for many non-smooth problems.
- Part 4: Stochastic gradient methods allow scaling to a huge number of data samples.