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@ We are collecting data at unprecedented rates.
e Seen across many fields of science and engineering.
o Not gigabytes, but terabytes or petabytes (and beyond).

@ Many important aspects to the ‘big data’ puzzle:

o Distributed data storage and management, parallel computation,
software paradigms, data mining, machine learning, privacy and
security issues, reacting to other agents, power management,
summarization and visualization.
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@ Machine learning uses big data to fit richer statistical models:
e Vision, bioinformatics, speech, natural language, web, social.
e Developping broadly applicable tools.
@ Output of models can be used for further analysis.

@ Numerical optimization is at the core of many of these models.
@ But, traditional ‘black-box’ methods have difficulty with:

e the large data sizes.
e the large model complexities.
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@ The first issue is computation:

e We ‘open up the black box’, by using the structure of machine
models to derive faster large-scale optimization algorithms.
e Can lead to enormous speedups for big data and complex models.

(polynomial vs. exponential)

@ The second issue is modeling:

e By expanding the set of tractable problems, we can propose richer
classes of statistical models that can be efficiently fit.

@ My research tries to alternate between these two.



0 Structured sparsity (inexact proximal-gradient method)
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Motivation: Automatic Brain Tumor Segmentation

@ Task: Segmentation of Multi-Modality MRI Data

@ Applications:

image-guided surgery

radiation target planning.
quantifying treatment response.
mining growth patterns.

@ Challenges:

e variety of tumor appearances.
e similarity to normal tissue.



Motivation: Automatic Brain Tumor Segmentation

@ Solution strategy:

@ |Incorporate prior knowledge by registration with template.
@ Pixel-level classifier using image- and template-based features.
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Motivation: Automatic Brain Tumor Segmentation

@ Best performance with logistic regression:

N
1
min, & 2_ ).

@ Problem 1: Estimating x is slow:

@ 8 million voxels per volume.
e Later in this talk: Big-N problems.

@ Problem 2: Designing features.

e Lots of possible candidate features.
@ Using all features leads to over-fitting.

@ Due to slow training time: manual feature selection.
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Adding Regularization

@ Strange idea: try all features with L2-Regularization:
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o1 5
g%rlﬁ;ﬁ(x)nLA;x, .
e Reduces over-fitting.

e As good as best selected features.

@ Smooth function, so we can compute this on large datasets:

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

e But, uses all features so slow to segment new images.
@ Another strange idea: try all features with L1-Regularization:

N

mln Z +)\Z\x,

e Still reduces over-fitting.
o But, solution x is SPARSE (some x; = 0).
e Feature selection by only training once.


http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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e Setting variable x; = 0 removes the feature g;.
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Variable Selection with L1-Regularization

@ C-class case:

e Setting variable x; = 0 may not remove the feature g;.
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Feature Selection with Group L1-Regularization

@ C-class case:

e Setting group {xij, Xz;, X3}, Xaj, Xs;} = O removes the feature g;.

@ Because we classify using the maximum of x[ a:
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@ L1-Regularization encourages sparsity in variables x;.
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@ Group L1-regularization encourages sparsity in groups xg:
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@ Structured sparsity generalizes groups to other structures.
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@ Examples of structured sparsity:

Structured sparsity to select convex regions:
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Structured Sparsity Examples

@ Examples of structured sparsity:

Dictionary learned with non-negative matrix factorization:
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@ Examples of structured sparsity:

Tree-structured dictionary with structured sparsity:
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Structured Sparsity Examples

@ Examples of structured sparsity:

@ A linear model with variable interactions:
m(x) = x1 + X2 + X3 + X12 + X13 + Xo3 + X123.

e E.g., Mutations in both gene A and gene B lead to cancer.
e We can’t consider all 27 possible interations.
e Structured sparsity on the hierarchical models.
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@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

XeRP
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@ A solution must have:
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Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

@ Black-box model of large-scale optimization:

e Algorithm can use O(P) time to choose an iterate x'.
e Algorithm receives the function and subgradient at x'.

@ How many iterations does it take to reach an accuracy of €?

@ With standard subgradient-continuity and curvature assumptions:
@ Smooth problems can be solved in O(log(1/e¢)) iterations.
(polynomial-time)
@ Non-smooth problems can be solved in O(1/¢) iterations.

(exponential-time)
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@ Bad news:

e Any non-smooth method requires Q(1/¢) in the worst case.
e Huge difference in practice between non-smooth and smooth.

@ Is large-scale L1-regularization not feasible?
e No, we don’t have a general non-smooth black-box:

min NZf + r(x)

XERP

smooth + ’‘simple’

@ Proximal-gradient methods solve these problems in O(log(1/¢)).
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Converge Rate of Gradient Method

@ To minimize a smooth plus simple objective

)[E]IRQ’ f(x)+r(x),

the proximal-gradient method minimizes the approximation
x"*1 = argmin f(x) + f'(x")T(x — x) + LHX — XY2+r(x).
XERP 20
yielding the iteration

t

X1 = prox,, [x! — af (x1)],

and still requiring O(«x log(1/¢)) iterations.
@ Accelerated proximal-gradient method requires O(+/x log(1/¢)).
@ Spectral proximal-gradient method is faster in practice.

@ Non-smooth optimization at the speed of smooth optimization.
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Proximal Operator, lterative Soft Thresholding

@ The proximal operator is the solution to

. 1
prox,[y] = argmin r(x) + §||x —y|2
XERP

@ For L1-regularization, we obtain iterative soft-thresholding:
xT = softThresh,[x — af'(x)].

@ Example with A = 1:

Input Threshold Soft-Threshold

0.6715 0 0
—1.2075 —1.2075 —0.2075

0.7172 0 0

1.6302 1.6302 0.6302

0.4889 0 0
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Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

@ L1-Regularization.

@ Group ¢1-Regularization.

© Lower and upper bounds.

@ One linear constraint.

©@ Probability constraints.

@ A few other simple regularizers/constraints.

@ For many problems we can not efficiently compute this operator.
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@ We can efficiently approximate the proximity operator for:

@ Structured sparsity.

© Penalties on the differences between variables.

© Regularizers and constraints on the singular values of matrices.

© Sums of simple functions.
@ Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

@ Do inexact methods have the O(x log(1/¢)) rate?

e Yes, if the errors are appropriately controlled. [Schmidt et al., 2011]
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Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors
{|le:||} and proximal errors {,/z;} are in {O((1 — x~")!)}, then the
inexact proximal-gradient method requires O(x log(1/¢)) iterations.

@ Classic result as a special case (constants are good).

@ The rates degrades gracefully if the errors are larger.

@ We also showed the O(v/rx log(1/¢)) accelerated method rate.
@ We also considered weaker convexity assumptions on f.

@ Huge improvement in practice over black-box methods.



Flow Cytometry Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):
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Traffic Flow Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):
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Discussion

@ Theoretical justification for what works in practice.
@ Significantly extends class of tractable problems.

@ Many subsequent applications with inexact proximal operators:

e Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

@ But, it assumes computing f/(x) and prox,[x] have similar cost.
@ Often f'(x) is much more expensive:

e We may have a large dataset.
e Data-fitting term might be complex.

@ Particularly true for structured output prediction:
e Text, biological sequences, speech, images, matchings, graphs.



Motivation: Automatic Brain Tumor Segmentation

@ Independent pixel classifier ignores correlations.

@ Conditional random fields (CRFs) generalize logistic regression
to multiple labels.

@ Data-fitting term is solution of 8-million node graph-cut problem.



9 Learning dependencies (costly models with simple constraints)



Motivation: Graphical Model Structure Learning

Discovering the dependencies between variables:
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Example: Graphical Model Structure Learning

\(w)
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Structure Learning with /{-Regularization

@ We want to fit a Markov random field with unknown structure.

@ Learn a sparse structure by ¢¢-regularization of edge weights.
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Costly Data-Fitting Term, Simple Regularizer

@ These problems and many others have the form:

;N
min NZ)‘,(X) + r(x)
i—

X€RP

costly smooth + simple

@ Different than classic optimization (like linear programming).
(cheap smooth plus complex non-smooth)
@ Inspiration from the smooth case:

e For smooth high-dimensional problems, L-BFGS outperform
accelerated/spectral gradient methods.



Quasi-Newton Methods

@ Gradient method for optimizing a smooth f:

xt =x—af'(x).
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@ H approximates the second-derivative matrix.


http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Quasi-Newton Methods

@ Gradient method for optimizing a smooth f:
xt =x—af'(x).
@ Newton-like methods alternatively use:
xT =x—aH'f'(x).

@ H approximates the second-derivative matrix.
@ L-BFGS is a particular strategy to choose the H values:

e Based on gradient differences.
o Linear storage and linear time.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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Two-Metric (Sub)Gradient Projection

@ In some cases, we can modify H to make this work:
e Bound constraints.
e Probability constraints.
@ L1-regularization.
@ Two-metric (sub)gradient projection.
[Gafni & Bertskeas, 1984, Schmidt, 2010].



Comparing to accelerated/spectral/diagonal gradient

Comparing to methods that do not use L-BFGS (sido data):
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Inexact Proximal-Newton

@ The fixed proximal-Newton method:
xt = prox,,[x — aH "' (X)]y,
with the non-Euclidean proximal operator:

. 1
prox,[yln = argmin r(x) + 5 |x — y|%,
XERP 2

where || x||2, = xTHx.
@ Non-smooth Newton-like method
@ Same convergence properties as smooth case.
@ But, the prox is expensive even with a simple regularizer.

@ Solution: use a cheap approximate solution.

(e.g., spectral proximal-gradient)
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Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

e Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
e Inner: spectral proximal-gradient to approximate proximal operator:

@ Requires multiplication by H (linear-time for L-BFGS).
@ Requires proximal operator of r (cheap for simple constraints).

e For small a, one iteration is sufficient to give descent.
@ Cheap inner iterations lead to fewer expensive outer iterations.
@ “Optimizing costly functions with simple constraints”.

@ “Optimizing costly functions with simple regularizers”.



Graphical Model Structure Learning with Groups

Comparing PQN to first-order methods on a graphical model
structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].
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Inexact Proximal Newton

@ The proximal quasi-Newton (PQN) approach:
@ “The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps
the most elegant and logical extension of quasi-Newton methods,
but it involves solving a sub-iteration.” [Becker and Fadili, 2012].
e “PQN is an implementation that uses a limited-memory
quasi-Newton update and has both excellent empirical
performance and theoretical properties.” [Lee et al., 2012].
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Inexact Proximal Newton

@ The proximal quasi-Newton (PQN) approach:
@ “The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps
the most elegant and logical extension of quasi-Newton methods,
but it involves solving a sub-iteration.” [Becker and Fadili, 2012].
e “PQN is an implementation that uses a limited-memory
quasi-Newton update and has both excellent empirical

performance and theoretical properties.” [Lee et al., 2012].
e Proximal-Newton methods are becoming optimization workhorse,
e.g. NIPS 2012:

@ Becker & Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco & Sudderth.

@ http://www.di.ens.fr/~mschmidt/Software/PQN.html
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@ Task: early detection of coronoary heart disease.




Motivation: Structure Learning in CRFs

@ Task: early detection of coronoary heart disease.

@ Assess motion of heart segments using structured prediction.

@ Data-fitting function is dynamic program.



Example: Learning Variable Groupings

Discovering variable groupings:
= @




Example: Learning Variable Groupings

....@

LA

Known GL12 GL1

Discovering variable groupings:




Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:



Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

@ If | see that my watch says 11:55, then it's almost lunch time



Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:
@ If | see that my watch says 11:55, then it's almost lunch time

@ If I set my watch so it says 11:55, it doesn’t help



Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:
@ If | see that my watch says 11:55, then it's almost lunch time

@ If I set my watch so it says 11:55, it doesn’t help
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Example: Modeling Interventional Data

Using structured prediction to model interventions:
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e Fitting a huge dataset (stochastic average gradient)
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Big-N Problems

@ We want to minimize the sum of a finite set of smooth functions:

min f(x fi(x
XERP Z
@ We are interested in cases where N is very large.
@ Simple example is least-squares,
fi(x) := (a] x — b))2.

@ Other examples:
@ logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing f(x) = %Zf; fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

N
ay
Xep1 = Xp — ouf'(Xt) *NZ

e Only requires O(log(1/e)) iterations.
e lteration cost is linear in .
e Quasi-Newton methods still require O(N).

@ Stochastic gradient method [Robbins & Monro, 1951]:
e Random selection of i(t) from {1,2,..., N}.

X1 = Xt — Oétf//(r)(Xt).

e lteration cost is independent of N.
o Requires O(1/¢) iterations.



Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing g(x) = 4 >7_; fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:



Motivation for New Methods

@ DG method requires O(log(1/¢)) with O(N).
@ SG method requires O(1/¢) iterations with O(1).
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Motivation for New Methods

@ DG method requires O(log(1/¢)) with O(N).
@ SG method requires O(1/e¢) iterations with O(1).
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@ Goal is requiring O(log(1/¢)) iterations with O(1) cost.



Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:
@ Step-size strategies, momentum, gradient/iterate averaging
@ Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov
(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)
@ Stochastic versions of accelerated and Newton methods

@ Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
Martens (2010), Xiao (2010), Duchi et al. (2011)
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A variety of methods have been proposed to speed up SG methods:
@ Step-size strategies, momentum, gradient/iterate averaging

@ Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov
(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

@ Stochastic versions of accelerated and Newton methods
@ Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
Martens (2010), Xiao (2010), Duchi et al. (2011)
@ None of these methods improve on the O(1/¢) rate
@ Constant step-size SG, accelerated SG

@ Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
@ O(log(1/e) iterations to reach a fixed tolerance

@ Hybrid methods, incremental average gradient

@ Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
e O(log(1/e)) iterations but eventually requires full passes.
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Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))

iterations?
e YES! The stochastic average gradient (SAG) algorithm:
@ Randomly select i(t) from {1,2,...,n} and compute f,.’(t)(x’).

t N
t+1 t @ t
X :x——E Y

NH

@ Memory: y! = f/(x") from the last t where i was selected.

Stochastic variant of increment average gradient (IAG).

[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x'*' — x|| — 0.
Memory requirements reduced to O(N) for many problems.
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Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.
@ Number of f/ evaluations to reach e:

e Stochastic: O(x(1/¢)).

o Gradient: O(Nk log(1/e)).

e Accelerated: O(Ny/klog(1/¢)).

e SAG: O(max{N, x}log(1/e¢)).

@ SAG beats two lower bounds:

e Stochastic gradient bound of O(1/e).
o Deterministic gradient bound of O(N+/klog(1/¢)) (large N and x).
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Discussion

@ Faster theoretical convergence using only the ‘sum’ structure.
@ Simple algorithm, empirically better than theory predicts.
@ Robust stochastic gradient algorithm:
o Adaptive step-size, termination criterion.
@ Various extensions:
@ Non-uniform sampling.
[Schmidt et al., 2013]
@ Non-smooth problems.
[Mairal, 2013, Wong et al., 2013, Mairal, 2014, Xiao and Zhang, 2014, Defazio et al.,
2014]
e Memory-free methods.
[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and
Richtarik, 2013, Xiao and Zhang, 2014]
@ Quasi-Newton methods.
[Sohl-Dickstein et al., 2014]



	Structured sparsity (inexact proximal-gradient method)
	Learning dependencies (costly models with simple constraints)
	Fitting a huge dataset (stochastic average gradient)

