Tractable Big Data and Big Models in Machine Learning

Mark Schmidt
University of British Columbia

TAAI 2014
November 2014

Context: Big Data and Big Models

- We are collecting data at unprecedented rates.
- Seen across many fields of science and engineering.
- Not gigabytes, but terabytes or petabytes (and beyond).

Context: Big Data and Big Models

- We are collecting data at unprecedented rates.
- Seen across many fields of science and engineering.
- Not gigabytes, but terabytes or petabytes (and beyond).

- Many important aspects to the 'big data' puzzle:
- Distributed data storage and management, parallel computation, software paradigms, data mining, machine learning, privacy and security issues, reacting to other agents, power management, summarization and visualization.

Context: Big Data and Big Models

- Machine learning uses big data to fit richer statistical models:
- Vision, bioinformatics, speech, natural language, web, social.
- Developping broadly applicable tools.
- Output of models can be used for further analysis.

Context: Big Data and Big Models

- Machine learning uses big data to fit richer statistical models:
- Vision, bioinformatics, speech, natural language, web, social.
- Developping broadly applicable tools.
- Output of models can be used for further analysis.

Context: Big Data and Big Models

- Machine learning uses big data to fit richer statistical models:
- Vision, bioinformatics, speech, natural language, web, social.
- Developping broadly applicable tools.
- Output of models can be used for further analysis.

- Numerical optimization is at the core of many of these models.

Context: Big Data and Big Models

- Machine learning uses big data to fit richer statistical models:
- Vision, bioinformatics, speech, natural language, web, social.
- Developping broadly applicable tools.
- Output of models can be used for further analysis.

- Numerical optimization is at the core of many of these models.
- But, traditional 'black-box' methods have difficulty with:
- the large data sizes.
- the large model complexities.

Two Issues in this Talk

- The first issue is computation:
- We 'open up the black box', by using the structure of machine models to derive faster large-scale optimization algorithms.
- Can lead to enormous speedups for big data and complex models.
(polynomial vs. exponential)

Two Issues in this Talk

- The first issue is computation:
- We 'open up the black box', by using the structure of machine models to derive faster large-scale optimization algorithms.
- Can lead to enormous speedups for big data and complex models.
(polynomial vs. exponential)
- The second issue is modeling:
- By expanding the set of tractable problems, we can propose richer classes of statistical models that can be efficiently fit.

Two Issues in this Talk

- The first issue is computation:
- We 'open up the black box', by using the structure of machine models to derive faster large-scale optimization algorithms.
- Can lead to enormous speedups for big data and complex models.
(polynomial vs. exponential)
- The second issue is modeling:
- By expanding the set of tractable problems, we can propose richer classes of statistical models that can be efficiently fit.
- My research tries to alternate between these two.

Outline

(1) Structured sparsity (inexact proximal-gradient method)

2 Learning dependencies (costly models with simple constraints)
3 Fitting a huge dataset (stochastic average gradient)

Motivation: Automatic Brain Tumor Segmentation

- Task: Segmentation of Multi-Modality MRI Data

Motivation: Automatic Brain Tumor Segmentation

- Task: Segmentation of Multi-Modality MRI Data

- Applications:
- image-guided surgery
- radiation target planning.
- quantifying treatment response.
- mining growth patterns.

Motivation: Automatic Brain Tumor Segmentation

- Task: Segmentation of Multi-Modality MRI Data

- Applications:
- image-guided surgery
- radiation target planning.
- quantifying treatment response.
- mining growth patterns.
- Challenges:
- variety of tumor appearances.
- similarity to normal tissue.

Motivation: Automatic Brain Tumor Segmentation

- Solution strategy:
(1) Incorporate prior knowledge by registration with template.
(2) Pixel-level classifier using image- and template-based features.

Motivation: Automatic Brain Tumor Segmentation

- Best performance with logistic regression:

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)
$$

Motivation: Automatic Brain Tumor Segmentation

- Best performance with logistic regression:

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)
$$

- Problem 1: Estimating x is slow:
- 8 million voxels per volume.
- Later in this talk: Big-N problems.

Motivation: Automatic Brain Tumor Segmentation

- Best performance with logistic regression:

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)
$$

- Problem 1: Estimating x is slow:
- 8 million voxels per volume.
- Later in this talk: Big-N problems.
- Problem 2: Designing features.
- Lots of possible candidate features.
- Using all features leads to over-fitting.
- Due to slow training time: manual feature selection.

Adding Regularization

- Strange idea: try all features with L2-Regularization:

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P} x_{i}^{2} .
$$

Adding Regularization

- Strange idea: try all features with L2-Regularization:

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P} x_{i}^{2} .
$$

- Reduces over-fitting.
- As good as best selected features.
- Smooth function, so we can compute this on large datasets: http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Adding Regularization

- Strange idea: try all features with L2-Regularization:

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P} x_{i}^{2}
$$

- Reduces over-fitting.
- As good as best selected features.
- Smooth function, so we can compute this on large datasets: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
- But, uses all features so slow to segment new images.

Adding Regularization

- Strange idea: try all features with L2-Regularization:

$$
\min _{x \in \mathbb{R}^{p}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P} x_{i}^{2} .
$$

- Reduces over-fitting.
- As good as best selected features.
- Smooth function, so we can compute this on large datasets:

```
http://www.di.ens.fr/~mschmidt/Software/minFunc.html
```

- But, uses all features so slow to segment new images.
- Another strange idea: try all features with L1-Regularization:

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P}\left|x_{i}\right|
$$

- Still reduces over-fitting.
- But, solution x is SPARSE (some $x_{j}=0$).
- Feature selection by only training once.

Feature Selection with L1-Regularization (Binary)

- Binary case:
- Setting variable $x_{j}=0$ removes the feature a_{j}.

- Because we classify using the sign of $x^{\top} a$:

$$
\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=x^{T} a
$$

Feature Selection with L1-Regularization (Binary)

- Binary case:
- Setting variable $x_{j}=0$ removes the feature a_{j}.

- Because we classify using the sign of $x^{\top} a$:

$$
\left[\begin{array}{lllll}
0 & x_{2} & 0 & x_{4} & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=x^{\top} a
$$

Variable Selection with L1-Regularization

- C-class case:
- Setting variable $x_{j}=0$ may not remove the feature a_{j}.

- Because we classify using the maximum of x_{c}^{\top} a:

$$
\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\
x_{41} & x_{42} & x_{43} & x_{44} & x_{45}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{T} a \\
x_{2}^{T} a \\
x_{3}^{T} a \\
x_{3}^{T} a
\end{array}\right]
$$

Variable Selection with L1-Regularization

- C-class case:
- Setting variable $x_{j}=0$ may not remove the feature a_{j}.

- Because we classify using the maximum of x_{c}^{T} a:

$$
\left[\begin{array}{ccccc}
0 & x_{12} & 0 & x_{14} & 0 \\
0 & x_{22} & x_{23} & x_{24} & 0 \\
x_{31} & x_{32} & 0 & x_{34} & 0 \\
0 & 0 & 0 & x_{44} & 0
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{T} a \\
x_{2}^{T} a \\
x_{3}^{T} a \\
x_{3}^{T} a
\end{array}\right]
$$

Feature Selection with Group L1-Regularization

- C-class case:
- Setting group $\left\{x_{1 j}, x_{2 j}, x_{3 j}, x_{4 j}, x_{5 j}\right\}=0$ removes the feature a_{j}.

- Because we classify using the maximum of x_{c}^{\top} a:

$$
\left[\begin{array}{lllll}
0 & x_{12} & 0 & x_{14} & 0 \\
0 & x_{22} & 0 & x_{24} & 0 \\
0 & x_{32} & 0 & x_{34} & 0 \\
0 & x_{42} & 0 & x_{44} & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{T} a \\
x_{2}^{T} a \\
x_{3}^{T} a \\
x_{3}^{T} a
\end{array}\right]
$$

Group L1-Regularization

- L1-Regularization encourages sparsity in variables x_{i}.

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P}\left|x_{i}\right|
$$

Group L1-Regularization

- L1-Regularization encourages sparsity in variables x_{i}.

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P}\left|x_{i}\right| .
$$

- Group L1-regularization encourages sparsity in groups x_{g} :

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{g \in \mathcal{G}}\left\|x_{g}\right\| .
$$

Group L1-Regularization

- L1-Regularization encourages sparsity in variables x_{i}.

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{i=1}^{P}\left|x_{i}\right| .
$$

- Group L1-regularization encourages sparsity in groups x_{g} :

$$
\min _{x} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+\lambda \sum_{g \in \mathcal{G}}\left\|x_{g}\right\| .
$$

- Structured sparsity generalizes groups to other structures.

Structured Sparsity Examples

- Examples of structured sparsity:

Structured sparsity to select convex regions:

Structured Sparsity Examples

- Examples of structured sparsity:

Dictionary learned with non-negative matrix factorization:

Structured Sparsity Examples

- Examples of structured sparsity:

Dictionary learned with structured sparsity:

Structured Sparsity Examples

- Examples of structured sparsity:

Spatially-structured dictionary with structured sparsity:

													-		-	T		1
										,	-	F	-			-		
											=	-						1
								-			-	\checkmark						
													F		7			51
					-			1	-				I		-			$-$
									-				5					
1						-							-					
			J						-	-						,		
\checkmark																		
									-	7	-							
		,								\checkmark	7							
		,							-		,							
											+							
										7						,		
											,	1)					
													4			\checkmark		
																	,	

Structured Sparsity Examples

- Examples of structured sparsity:

Tree-structured dictionary with structured sparsity:

Structured Sparsity Examples

- Examples of structured sparsity:
- A linear model with variable interactions:

$$
m(x)=x_{1}+x_{2}+x_{3}+x_{12}+x_{13}+x_{23}+x_{123}
$$

- E.g., Mutations in both gene A and gene B lead to cancer.

Structured Sparsity Examples

- Examples of structured sparsity:
- A linear model with variable interactions:

$$
m(x)=x_{1}+x_{2}+x_{3}+x_{12}+x_{13}+x_{23}+x_{123}
$$

- E.g., Mutations in both gene A and gene B lead to cancer.
- We can't consider all 2^{P} possible interations.

Structured Sparsity Examples

- Examples of structured sparsity:
- A linear model with variable interactions:

$$
m(x)=x_{1}+x_{2}+x_{3}+x_{12}+x_{13}+x_{23}+x_{123}
$$

- E.g., Mutations in both gene A and gene B lead to cancer.
- We can't consider all 2^{P} possible interations.
- Structured sparsity on the hierarchical models.

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

data fitting term + regularizer

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

$$
\text { data fitting term }+ \text { regularizer }
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

$$
\text { data fitting term }+ \text { regularizer }
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization
L1-regularization

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

$$
\text { data fitting term }+ \text { regularizer }
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization
L1-regularization

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

$$
\text { data fitting term }+ \text { regularizer }
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization
L1-regularization

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

$$
\text { data fitting term }+ \text { regularizer }
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization
L1-regularization

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

$$
\text { data fitting term }+ \text { regularizer }
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization
L1-regularization

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x) \\
& \text { data fitting term }+ \text { regularizer }
\end{aligned}
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

> L2-regularization

L1-regularization

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x)
$$

$$
\text { data fitting term }+ \text { regularizer }
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

> L2-regularization

L1-regularization

Where does the sparsity come from?

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x) \\
& \text { data fitting term }+ \text { regularizer }
\end{aligned}
$$

- A solution must have:
- -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization
L1-regularization

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
- Algorithm can use $O(P)$ time to choose an iterate x^{t}.
- Algorithm receives the function and subgradient at x^{t}.

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
- Algorithm can use $O(P)$ time to choose an iterate x^{t}.
- Algorithm receives the function and subgradient at x^{t}.
- How many iterations does it take to reach an accuracy of ϵ ?

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
- Algorithm can use $O(P)$ time to choose an iterate x^{t}.
- Algorithm receives the function and subgradient at x^{t}.
- How many iterations does it take to reach an accuracy of ϵ ?
- With standard subgradient-continuity and curvature assumptions:
- Smooth problems can be solved in $O(\log (1 / \epsilon))$ iterations.

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
- Algorithm can use $O(P)$ time to choose an iterate x^{t}.
- Algorithm receives the function and subgradient at x^{t}.
- How many iterations does it take to reach an accuracy of ϵ ?
- With standard subgradient-continuity and curvature assumptions:
- Smooth problems can be solved in $O(\log (1 / \epsilon))$ iterations.
(polynomial-time)
- Non-smooth problems can be solved in $O(1 / \epsilon)$ iterations.

Opening Up the Black Box

- Bad news:
- Any non-smooth method requires $\Omega(1 / \epsilon)$ in the worst case.
- Huge difference in practice between non-smooth and smooth.

Opening Up the Black Box

- Bad news:
- Any non-smooth method requires $\Omega(1 / \epsilon)$ in the worst case.
- Huge difference in practice between non-smooth and smooth.
- Is large-scale L1-regularization not feasible?

Opening Up the Black Box

- Bad news:
- Any non-smooth method requires $\Omega(1 / \epsilon)$ in the worst case.
- Huge difference in practice between non-smooth and smooth.
- Is large-scale L1-regularization not feasible?
- No, we don't have a general non-smooth black-box:

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} & \sum_{i=1}^{N} f(x)+r(x) \\
& \text { smooth }+ \text { 'simple' }
\end{aligned}
$$

Opening Up the Black Box

- Bad news:
- Any non-smooth method requires $\Omega(1 / \epsilon)$ in the worst case.
- Huge difference in practice between non-smooth and smooth.
- Is large-scale L1-regularization not feasible?
- No, we don't have a general non-smooth black-box:

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{P}} \frac{1}{N} & \sum_{i=1}^{N} f(x)+r(x) \\
& \text { smooth }+ \text { 'simple' }
\end{aligned}
$$

- Proximal-gradient methods solve these problems in $O(\log (1 / \epsilon))$.

Converge Rate of Gradient Method

- To minimize a smooth objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)
$$

the gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}
$$

Converge Rate of Gradient Method

- To minimize a smooth objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)
$$

the gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}
$$

yielding the iteration

$$
x^{t+1}=x^{t}-\alpha f^{\prime}\left(x^{t}\right),
$$

and requiring $O(\kappa \log (1 / \epsilon))$ iterations.

Converge Rate of Gradient Method

- To minimize a smooth objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)
$$

the gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2} .
$$

yielding the iteration

$$
x^{t+1}=x^{t}-\alpha f^{\prime}\left(x^{t}\right),
$$

and requiring $O(\kappa \log (1 / \epsilon))$ iterations.

Converge Rate of Gradient Method

- To minimize a smooth objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)
$$

the gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}
$$

yielding the iteration

$$
x^{t+1}=x^{t}-\alpha f^{\prime}\left(x^{t}\right),
$$

and requiring $O(\kappa \log (1 / \epsilon))$ iterations.

Converge Rate of Gradient Method

- To minimize a smooth objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)
$$

the gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}
$$

yielding the iteration

$$
x^{t+1}=x^{t}-\alpha f^{\prime}\left(x^{t}\right),
$$

and requiring $O(\kappa \log (1 / \epsilon))$ iterations.

- Accelerated gradient method requires $O(\sqrt{\kappa} \log (1 / \epsilon))$.
- Spectral gradient method is faster in practice.

Converge Rate of
 Gradient Method

- To minimize a smooth objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)
$$

the gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2} .
$$

yielding the iteration

$$
x^{t+1}=x^{t}-\alpha f^{\prime}\left(x^{t}\right),
$$

and requiring $O(\kappa \log (1 / \epsilon))$ iterations.

- Accelerated gradient method requires $O(\sqrt{\kappa} \log (1 / \epsilon))$.
- Spectral gradient method is faster in practice.

Converge Rate of
 Gradient Method

- To minimize a smooth plus simple objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)+r(x)
$$

the gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2} .
$$

yielding the iteration

$$
x^{t+1}=x^{t}-\alpha f^{\prime}\left(x^{t}\right),
$$

and requiring $O(\kappa \log (1 / \epsilon))$ iterations.

- Accelerated gradient method requires $O(\sqrt{\kappa} \log (1 / \epsilon))$.
- Spectral gradient method is faster in practice.

Converge Rate of
 Gradient Method

- To minimize a smooth plus simple objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)+r(x)
$$

the proximal-gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}+r(x) .
$$

yielding the iteration

$$
x^{t+1}=\operatorname{prox}_{\alpha r}\left[x^{t}-\alpha f^{\prime}\left(x^{t}\right)\right],
$$

and requiring $O(\kappa \log (1 / \epsilon))$ iterations.

- Accelerated gradient method requires $O(\sqrt{\kappa} \log (1 / \epsilon))$.
- Spectral gradient method is faster in practice.

Converge Rate of
 Gradient Method

- To minimize a smooth plus simple objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)+r(x)
$$

the proximal-gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}+r(x)
$$

yielding the iteration

$$
x^{t+1}=\operatorname{prox}_{\alpha r}\left[x^{t}-\alpha f^{\prime}\left(x^{t}\right)\right]
$$

and still requiring $O(\kappa \log (1 / \epsilon))$ iterations.

- Accelerated gradient method requires $O(\sqrt{\kappa} \log (1 / \epsilon))$.
- Spectral gradient method is faster in practice.

Converge Rate of
 Gradient Method

- To minimize a smooth plus simple objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)+r(x)
$$

the proximal-gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}+r(x)
$$

yielding the iteration

$$
x^{t+1}=\operatorname{prox}_{\alpha r}\left[x^{t}-\alpha f^{\prime}\left(x^{t}\right)\right]
$$

and still requiring $O(\kappa \log (1 / \epsilon))$ iterations.

- Accelerated proximal-gradient method requires $O(\sqrt{\kappa} \log (1 / \epsilon))$.
- Spectral proximal-gradient method is faster in practice.

Converge Rate of
 Gradient Method

- To minimize a smooth plus simple objective

$$
\min _{x \in \mathbb{R}^{P}} f(x)+r(x)
$$

the proximal-gradient method minimizes the approximation

$$
x^{t+1}=\underset{x \in \mathbb{R}^{P}}{\arg \min } f\left(x^{t}\right)+f^{\prime}\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha}\left\|x-x^{t}\right\|^{2}+r(x)
$$

yielding the iteration

$$
x^{t+1}=\operatorname{prox}_{\alpha r}\left[x^{t}-\alpha f^{\prime}\left(x^{t}\right)\right]
$$

and still requiring $O(\kappa \log (1 / \epsilon))$ iterations.

- Accelerated proximal-gradient method requires $O(\sqrt{\kappa} \log (1 / \epsilon))$.
- Spectral proximal-gradient method is faster in practice.
- Non-smooth optimization at the speed of smooth optimization.

Proximal Operator, Iterative Soft Thresholding

- The proximal operator is the solution to

$$
\operatorname{prox}_{r}[y]=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|^{2} .
$$

Proximal Operator, Iterative Soft Thresholding

- The proximal operator is the solution to

$$
\operatorname{prox}_{r}[y]=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|^{2} .
$$

- For L1-regularization, we obtain iterative soft-thresholding:

$$
x^{+}=\operatorname{softThresh}_{\alpha \lambda}\left[x-\alpha f^{\prime}(x)\right] .
$$

Proximal Operator, Iterative Soft Thresholding

- The proximal operator is the solution to

$$
\operatorname{prox}_{r}[y]=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|^{2} .
$$

- For L1-regularization, we obtain iterative soft-thresholding:

$$
x^{+}=\operatorname{softThresh}_{\alpha \lambda}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Example with $\lambda=1$:

Input
$\left[\begin{array}{c}0.6715 \\ -1.2075 \\ 0.7172 \\ 1.6302 \\ 0.4889\end{array}\right]$

Proximal Operator, Iterative Soft Thresholding

- The proximal operator is the solution to

$$
\operatorname{prox}_{r}[y]=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|^{2} .
$$

- For L1-regularization, we obtain iterative soft-thresholding:

$$
x^{+}=\operatorname{softThresh}_{\alpha \lambda}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Example with $\lambda=1$:

Input
$\left[\begin{array}{c}0.6715 \\ -1.2075 \\ 0.7172 \\ 1.6302 \\ 0.4889\end{array}\right] \quad\left[\begin{array}{c}0 \\ -1.2075 \\ 0 \\ 1.6302 \\ 0\end{array}\right]$

Proximal Operator, Iterative Soft Thresholding

- The proximal operator is the solution to

$$
\operatorname{prox}_{r}[y]=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|^{2} .
$$

- For L1-regularization, we obtain iterative soft-thresholding:

$$
x^{+}=\operatorname{softThresh}_{\alpha \lambda}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Example with $\lambda=1$:

Input	Threshold	Soft-Threshold
$\left[\begin{array}{c}0.6715 \\ -1.2075 \\ 0.7172 \\ 1.6302 \\ 0.4889\end{array}\right]$	$\left[\begin{array}{c}0 \\ -1.2075 \\ 0 \\ 1.6302 \\ 0\end{array}\right]$	$\left[\begin{array}{c}0 \\ -0.2075 \\ 0 \\ 0.6302 \\ 0\end{array}\right]$

Special case of Projected-Gradient Methods

- Projected-gradient methods are another special case:

$$
r(x)=\left\{\begin{array}{ll}
0 & \text { if } x \in \mathcal{C} \\
\infty & \text { if } x \notin \mathcal{C}
\end{array},\right.
$$

Special case of Projected-Gradient Methods

- Projected-gradient methods are another special case:

$$
r(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ \infty & \text { if } x \notin \mathcal{C}\end{cases}
$$

gives

$$
x^{+}=\operatorname{project}_{C}\left[x-\alpha f^{\prime}(x)\right],
$$

Special case of Projected-Gradient Methods

- Projected-gradient methods are another special case:

$$
r(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ \infty & \text { if } x \notin \mathcal{C}\end{cases}
$$

gives

$$
x^{+}=\operatorname{project}_{C}\left[x-\alpha f^{\prime}(x)\right],
$$

Special case of Projected-Gradient Methods

- Projected-gradient methods are another special case:

$$
r(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ \infty & \text { if } x \notin \mathcal{C}\end{cases}
$$

gives

$$
x^{+}=\operatorname{project}_{C}\left[x-\alpha f^{\prime}(x)\right],
$$

Special case of Projected-Gradient Methods

- Projected-gradient methods are another special case:

$$
r(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ \infty & \text { if } x \notin \mathcal{C}\end{cases}
$$

gives

$$
x^{+}=\operatorname{project}_{\mathcal{C}}\left[x-\alpha f^{\prime}(x)\right],
$$

Special case of Projected-Gradient Methods

- Projected-gradient methods are another special case:

$$
r(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ \infty & \text { if } x \notin \mathcal{C}\end{cases}
$$

gives

$$
x^{+}=\operatorname{project}_{C}\left[x-\alpha f^{\prime}(x)\right],
$$

Special case of Projected-Gradient Methods

- Projected-gradient methods are another special case:

$$
r(x)= \begin{cases}0 & \text { if } x \in \mathcal{C} \\ \infty & \text { if } x \notin \mathcal{C}\end{cases}
$$

gives

$$
x^{+}=\operatorname{project}_{C}\left[x-\alpha f^{\prime}(x)\right],
$$

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
(1) L1-Regularization.

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
(1) L1-Regularization.
(2) Group ℓ_{1}-Regularization.

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
(1) L1-Regularization.
(2) Group ℓ_{1}-Regularization.
(3) Lower and upper bounds.

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
(1) L1-Regularization.
(2) Group ℓ_{1}-Regularization.
(3) Lower and upper bounds.
(4) One linear constraint.

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
(1) L1-Regularization.
(2) Group ℓ_{1}-Regularization.
(3) Lower and upper bounds.
(4) One linear constraint.
(3) Probability constraints.

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
(1) L1-Regularization.
(2) Group ℓ_{1}-Regularization.
(3) Lower and upper bounds.
(4) One linear constraint.
(3) Probability constraints.
(A few other simple regularizers/constraints.

Exact Proximal-Gradient Methods

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
(1) L1-Regularization.
(2) Group ℓ_{1}-Regularization.
(3) Lower and upper bounds.
(9) One linear constraint.
(3) Probability constraints.
(0) A few other simple regularizers/constraints.
- For many problems we can not efficiently compute this operator.

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
(1) Structured sparsity.

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
(1) Structured sparsity.
(2) Penalties on the differences between variables.

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
(1) Structured sparsity.
(2) Penalties on the differences between variables.
(3) Regularizers and constraints on the singular values of matrices.

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
(1) Structured sparsity.
(2) Penalties on the differences between variables.
(3) Regularizers and constraints on the singular values of matrices.
(a) Sums of simple functions.

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
(1) Structured sparsity.
(2) Penalties on the differences between variables.
(3) Regularizers and constraints on the singular values of matrices.
(9) Sums of simple functions.
- Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu \& Ye [2010], Barbero \& Sra [2011], Fadili \& Peyré [2011], Ma et al. [2011]

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
(1) Structured sparsity.
(2) Penalties on the differences between variables.
(3) Regularizers and constraints on the singular values of matrices.
(a) Sums of simple functions.
- Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu \& Ye [2010], Barbero \& Sra [2011], Fadili \& Peyré [2011], Ma et al. [2011]

- Do inexact methods have the $O(\kappa \log (1 / \epsilon))$ rate?

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximity operator for:
(1) Structured sparsity.
(2) Penalties on the differences between variables.
(3) Regularizers and constraints on the singular values of matrices.
(a) Sums of simple functions.
- Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu \& Ye [2010], Barbero \& Sra [2011], Fadili \& Peyré [2011], Ma et al. [2011]

- Do inexact methods have the $O(\kappa \log (1 / \epsilon))$ rate?
- Yes, if the errors are appropriately controlled. [Schmidt et al., 2011]

Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors $\left\{\left\|e_{t}\right\|\right\}$ and proximal errors $\left\{\sqrt{\varepsilon_{t}}\right\}$ are in $\left\{O\left(\left(1-\kappa^{-1}\right)^{t}\right)\right\}$, then the inexact proximal-gradient method requires $O(\kappa \log (1 / \epsilon))$ iterations.

Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors $\left\{\left\|e_{t}\right\|\right\}$ and proximal errors $\left\{\sqrt{\varepsilon_{t}}\right\}$ are in $\left\{O\left(\left(1-\kappa^{-1}\right)^{t}\right)\right\}$, then the inexact proximal-gradient method requires $O(\kappa \log (1 / \epsilon))$ iterations.

- Classic result as a special case (constants are good).
- The rates degrades gracefully if the errors are larger.

Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors $\left\{\left\|e_{t}\right\|\right\}$ and proximal errors $\left\{\sqrt{\varepsilon_{t}}\right\}$ are in $\left\{O\left(\left(1-\kappa^{-1}\right)^{t}\right)\right\}$, then the inexact proximal-gradient method requires $O(\kappa \log (1 / \epsilon))$ iterations.

- Classic result as a special case (constants are good).
- The rates degrades gracefully if the errors are larger.
- We also showed the $O(\sqrt{\kappa} \log (1 / \epsilon))$ accelerated method rate.
- We also considered weaker convexity assumptions on f.
- Huge improvement in practice over black-box methods.

Flow Cytometry Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):

Traffic Flow Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):

Discussion

- Theoretical justification for what works in practice.
- Significantly extends class of tractable problems.
- Many subsequent applications with inexact proximal operators:
- Genomic expression, model predictive control, neuroimaging, satellite image fusion, simulating flow fields.

Discussion

- Theoretical justification for what works in practice.
- Significantly extends class of tractable problems.
- Many subsequent applications with inexact proximal operators:
- Genomic expression, model predictive control, neuroimaging, satellite image fusion, simulating flow fields.
- But, it assumes computing $f^{\prime}(x)$ and $\operatorname{prox}_{r}[x]$ have similar cost.

Discussion

- Theoretical justification for what works in practice.
- Significantly extends class of tractable problems.
- Many subsequent applications with inexact proximal operators:
- Genomic expression, model predictive control, neuroimaging, satellite image fusion, simulating flow fields.
- But, it assumes computing $f^{\prime}(x)$ and $\operatorname{prox}_{r}[x]$ have similar cost.
- Often $f^{\prime}(x)$ is much more expensive:
- We may have a large dataset.
- Data-fitting term might be complex.
- Particularly true for structured output prediction:
- Text, biological sequences, speech, images, matchings, graphs.

Motivation: Automatic Brain Tumor Segmentation

- Independent pixel classifier ignores correlations.
- Conditional random fields (CRFs) generalize logistic regression to multiple labels.

- Data-fitting term is solution of 8-million node graph-cut problem.

Outline

(1) Structured sparsity (inexact proximal-gradient method)

2 Learning dependencies (costly models with simple constraints)
(3) Fitting a huge dataset (stochastic average gradient)

Motivation: Graphical Model Structure Learning

Discovering the dependencies between variables:

car	drive	files	hockey	mac	league	pc	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

Motivation: Graphical Model Structure Learning

Discovering the dependencies between variables:

car	drive	files	hockey	mac	league	pc	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

Example: Graphical Model Structure Learning

Structure Learning with ℓ_{1}-Regularization

- We want to fit a Markov random field with unknown structure.

Structure Learning with ℓ_{1}-Regularization

- We want to fit a Markov random field with unknown structure.

Structure Learning with ℓ_{1}-Regularization

- We want to fit a Markov random field with unknown structure.

Structure Learning with ℓ_{1}-Regularization

- We want to fit a Markov random field with unknown structure.
- Learn a sparse structure by ℓ_{1}-regularization of edge weights.

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].
(3) Conditional random fields [Schmidt et al., 2008].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].
(3) Conditional random fields [Schmidt et al., 2008].
(4) Low-rank Edges [Schmidt, 2010].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].
(3) Conditional random fields [Schmidt et al., 2008].
(4) Low-rank Edges [Schmidt, 2010].
(5) Higher-order models [Schmidt \& Murphy, 2010].

Structure Learning with Group ℓ_{1}-Regularization

- In some cases, we want sparsity in groups of parameters:
(1) Multi-class variables [Lee et al., 2006].
(2) Blockwise-sparsity [Duchi et al., 2008].
(3) Conditional random fields [Schmidt et al., 2008].
(9) Low-rank Edges [Schmidt, 2010].
((Higher-order models [Schmidt \& Murphy, 2010].

Costly Data-Fitting Term, Simple Regularizer

- These problems and many others have the form:

$$
\begin{array}{r}
\min _{x \in \mathbb{R}^{P}} \quad \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x) \\
\text { costly smooth }+ \text { simple }
\end{array}
$$

Costly Data-Fitting Term, Simple Regularizer

- These problems and many others have the form:

$$
\begin{array}{r}
\min _{x \in \mathbb{R}^{P}} \quad \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x) \\
\text { costly smooth }+ \text { simple }
\end{array}
$$

- Different than classic optimization (like linear programming).

Costly Data-Fitting Term, Simple Regularizer

- These problems and many others have the form:

$$
\begin{array}{r}
\min _{x \in \mathbb{R}^{P}} \quad \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+r(x) \\
\text { costly smooth }+ \text { simple }
\end{array}
$$

- Different than classic optimization (like linear programming).
(cheap smooth plus complex non-smooth)
- Inspiration from the smooth case:
- For smooth high-dimensional problems, L-BFGS outperform accelerated/spectral gradient methods.

Quasi-Newton Methods

- Gradient method for optimizing a smooth f :

$$
x^{+}=x-\alpha f^{\prime}(x)
$$

Quasi-Newton Methods

- Gradient method for optimizing a smooth f :

$$
x^{+}=x-\alpha f^{\prime}(x)
$$

- Newton-like methods alternatively use:

$$
x^{+}=x-\alpha H^{-1} f^{\prime}(x) .
$$

- H approximates the second-derivative matrix.

Quasi-Newton Methods

- Gradient method for optimizing a smooth f :

$$
x^{+}=x-\alpha f^{\prime}(x)
$$

- Newton-like methods alternatively use:

$$
x^{+}=x-\alpha H^{-1} f^{\prime}(x) .
$$

- H approximates the second-derivative matrix.
- L-BFGS is a particular strategy to choose the H values:
- Based on gradient differences.
- Linear storage and linear time.
http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Gradient Method and Newton's Method

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right]
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right]
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right]
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right]
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Naive Proximal Quasi-Newton Method

- Proximal-gradient method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha f^{\prime}(x)\right] .
$$

- Can we just plug in the Newton-like step?

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right] .
$$

- NO!

Two-Metric (Sub)Gradient Projection

- In some cases, we can modify H to make this work:
- Bound constraints.
- Probability constraints.
- L1-regularization.
- Two-metric (sub)gradient projection.
[Gafni \& Bertskeas, 1984, Schmidt, 2010].

Comparing to accelerated/spectral/diagonal gradient

Comparing to methods that do not use L-BFGS (sido data):

Inexact Proximal-Newton

- The broken proximal-Newton method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right],
$$

with the Euclidean proximal operator:

$$
\operatorname{prox}_{r}[y]=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|^{2}
$$

Inexact Proximal-Newton

- The fixed proximal-Newton method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right]_{H},
$$

with the Euclidean proximal operator:

$$
\operatorname{prox}_{r}[y]=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|^{2},
$$

Inexact Proximal-Newton

- The fixed proximal-Newton method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right]_{H},
$$

with the non-Euclidean proximal operator:

$$
\operatorname{prox}_{r}[y]_{H}=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|_{H}^{2},
$$

where $\|x\|_{H}^{2}=x^{\top} H x$.

Inexact Proximal-Newton

- The fixed proximal-Newton method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right]_{H},
$$

with the non-Euclidean proximal operator:

$$
\operatorname{prox}_{r}[y]_{H}=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|_{H}^{2},
$$

where $\|x\|_{H}^{2}=x^{\top} H x$.

- Non-smooth Newton-like method
- Same convergence properties as smooth case.

Inexact Proximal-Newton

- The fixed proximal-Newton method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right]_{H},
$$

with the non-Euclidean proximal operator:

$$
\operatorname{prox}_{r}[y]_{H}=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|_{H}^{2},
$$

where $\|x\|_{H}^{2}=x^{\top} H x$.

- Non-smooth Newton-like method
- Same convergence properties as smooth case.
- But, the prox is expensive even with a simple regularizer.

Inexact Proximal-Newton

- The fixed proximal-Newton method:

$$
x^{+}=\operatorname{prox}_{\alpha r}\left[x-\alpha H^{-1} f^{\prime}(x)\right]_{H},
$$

with the non-Euclidean proximal operator:

$$
\operatorname{prox}_{r}[y]_{H}=\underset{x \in \mathbb{R}^{P}}{\arg \min } r(x)+\frac{1}{2}\|x-y\|_{H}^{2},
$$

where $\|x\|_{H}^{2}=x^{\top} H x$.

- Non-smooth Newton-like method
- Same convergence properties as smooth case.
- But, the prox is expensive even with a simple regularizer.
- Solution: use a cheap approximate solution.

Inexact Projected Newton

Projected Quasi-Newton (PQN) Algorithm

- A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

Projected Quasi-Newton (PQN) Algorithm

- A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
- Outer: evaluate $f(x)$ and $f^{\prime}(x)$, use L-BFGS to update H.

Projected Quasi-Newton (PQN) Algorithm

- A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
- Outer: evaluate $f(x)$ and $f^{\prime}(x)$, use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
- Requires multiplication by H (linear-time for L-BFGS).
- Requires proximal operator of r (cheap for simple constraints).

Projected Quasi-Newton (PQN) Algorithm

- A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
- Outer: evaluate $f(x)$ and $f^{\prime}(x)$, use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
- Requires multiplication by H (linear-time for L-BFGS).
- Requires proximal operator of r (cheap for simple constraints).
- For small α, one iteration is sufficient to give descent.

Projected Quasi-Newton (PQN) Algorithm

- A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
- Outer: evaluate $f(x)$ and $f^{\prime}(x)$, use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
- Requires multiplication by H (linear-time for L-BFGS).
- Requires proximal operator of r (cheap for simple constraints).
- For small α, one iteration is sufficient to give descent.
- Cheap inner iterations lead to fewer expensive outer iterations.

Projected Quasi-Newton (PQN) Algorithm

- A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
- Outer: evaluate $f(x)$ and $f^{\prime}(x)$, use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
- Requires multiplication by H (linear-time for L-BFGS).
- Requires proximal operator of r (cheap for simple constraints).
- For small α, one iteration is sufficient to give descent.
- Cheap inner iterations lead to fewer expensive outer iterations.
- "Optimizing costly functions with simple constraints".

Projected Quasi-Newton (PQN) Algorithm

- A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
- Outer: evaluate $f(x)$ and $f^{\prime}(x)$, use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
- Requires multiplication by H (linear-time for L-BFGS).
- Requires proximal operator of r (cheap for simple constraints).
- For small α, one iteration is sufficient to give descent.
- Cheap inner iterations lead to fewer expensive outer iterations.
- "Optimizing costly functions with simple constraints".
- "Optimizing costly functions with simple regularizers".

Graphical Model Structure Learning with Groups

Comparing PQN to first-order methods on a graphical model structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].

Inexact Proximal Newton

- The proximal quasi-Newton (PQN) approach:
- "The projected quasi-Newton (PQN) algorithm $[19,20]$ is perhaps the most elegant and logical extension of quasi-Newton methods, but it involves solving a sub-iteration." [Becker and Fadiil, 2012].
- "PQN is an implementation that uses a limited-memory quasi-Newton update and has both excellent empirical performance and theoretical properties." [Lee et al., 2012].

Inexact Proximal Newton

- The proximal quasi-Newton (PQN) approach:
- "The projected quasi-Newton (PQN) algorithm $[19,20]$ is perhaps the most elegant and logical extension of quasi-Newton methods, but it involves solving a sub-iteration." [Becker and Fadiil, 2012].
- "PQN is an implementation that uses a limited-memory quasi-Newton update and has both excellent empirical performance and theoretical properties." [Lee et al., 2012].
- Proximal-Newton methods are becoming optimization workhorse, e.g. NIPS 2012:
- Becker \& Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco \& Sudderth.
- http://www.di.ens.fr/~mschmidt/Software/PQN.html

Motivation: Structure Learning in CRFs

- Task: early detection of coronoary heart disease.

Motivation: Structure Learning in CRFs

- Task: early detection of coronoary heart disease.

- Assess motion of heart segments using structured prediction.
- Data-fitting function is dynamic program.

Example: Learning Variable Groupings

Discovering variable groupings:

Example: Learning Variable Groupings

Discovering variable groupings:

Known

GL12

GL1

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

- If I see that my watch says $11: 55$, then it's almost lunch time

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

- If I see that my watch says $11: 55$, then it's almost lunch time
- If I set my watch so it says 11:55, it doesn't help

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

- If I see that my watch says $11: 55$, then it's almost lunch time
- If I set my watch so it says 11:55, it doesn't help

Example: Modeling Interventional Data

Using structured prediction to model interventions:

Outline

(1) Structured sparsity (inexact proximal-gradient method)
(2) Learning dependencies (costly models with simple constraints)
(3) Fitting a huge dataset (stochastic average gradient)

Big-N Problems

- We want to minimize the sum of a finite set of smooth functions:

$$
\min _{x \in \mathbb{R}^{P}} f(x):=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x) .
$$

Big-N Problems

- We want to minimize the sum of a finite set of smooth functions:

$$
\min _{x \in \mathbb{R}^{P}} f(x):=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x)
$$

- We are interested in cases where N is very large.

Big-N Problems

- We want to minimize the sum of a finite set of smooth functions:

$$
\min _{x \in \mathbb{R}^{p}} f(x):=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x)
$$

- We are interested in cases where N is very large.
- Simple example is least-squares,

$$
f_{i}(x):=\left(a_{i}^{T} x-b_{i}\right)^{2}
$$

- Other examples:
- logistic regression, Huber regression, smooth SVMs, CRFs, etc.

Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x)=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x)$.

Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x)=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$
x_{t+1}=x_{t}-\alpha_{t} f^{\prime}\left(x_{t}\right)=x_{t}-\frac{\alpha_{t}}{N} \sum_{i=1}^{N} f_{i}^{\prime}\left(x_{t}\right)
$$

- Only requires $O(\log (1 / \epsilon))$ iterations.
- Iteration cost is linear in N.
- Quasi-Newton methods still require $O(N)$.

Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x)=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$
x_{t+1}=x_{t}-\alpha_{t} f^{\prime}\left(x_{t}\right)=x_{t}-\frac{\alpha_{t}}{N} \sum_{i=1}^{N} f_{i}^{\prime}\left(x_{t}\right) .
$$

- Only requires $O(\log (1 / \epsilon))$ iterations.
- Iteration cost is linear in N.
- Quasi-Newton methods still require $O(N)$.
- Stochastic gradient method [Robbins \& Monro, 1951]:
- Random selection of $i(t)$ from $\{1,2, \ldots, N\}$.

$$
x_{t+1}=x_{t}-\alpha_{t} f_{i(t)}^{\prime}\left(x_{t}\right) .
$$

- Iteration cost is independent of N.
- Requires $O(1 / \epsilon)$ iterations.

Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $g(x)=\frac{1}{N} \sum_{i=1}^{n} f_{i}(x)$.
- Deterministic gradient method [Cauchy, 1847]:

- Stochastic gradient method [Robbins \& Monro, 1951]:

Motivation for New Methods

- DG method requires $O(\log (1 / \epsilon))$ with $O(N)$.
- SG method requires $O(1 / \epsilon)$ iterations with $O(1)$.

Motivation for New Methods

- DG method requires $O(\log (1 / \epsilon))$ with $O(N)$.
- SG method requires $O(1 / \epsilon)$ iterations with $O(1)$.

- Goal is requiring $O(\log (1 / \epsilon))$ iterations with $O(1)$ cost.

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
- Polyak \& Juditsky (1992), Tseng (1998), Kushner \& Yin (2003) Nesterov (2009), Xiao (2010), Hazan \& Kale (2011), Rakhlin et al. (2012)
- Stochastic versions of accelerated and Newton methods
- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
- Polyak \& Juditsky (1992), Tseng (1998), Kushner \& Yin (2003) Nesterov (2009), Xiao (2010), Hazan \& Kale (2011), Rakhlin et al. (2012)
- Stochastic versions of accelerated and Newton methods
- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the $O(1 / \epsilon)$ rate

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
- Polyak \& Juditsky (1992), Tseng (1998), Kushner \& Yin (2003) Nesterov (2009), Xiao (2010), Hazan \& Kale (2011), Rakhlin et al. (2012)
- Stochastic versions of accelerated and Newton methods
- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the $O(1 / \epsilon)$ rate
- Constant step-size SG, accelerated SG
- Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
- $O(\log (1 / \epsilon)$ iterations to reach a fixed tolerance

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
- Polyak \& Juditsky (1992), Tseng (1998), Kushner \& Yin (2003) Nesterov (2009), Xiao (2010), Hazan \& Kale (2011), Rakhlin et al. (2012)
- Stochastic versions of accelerated and Newton methods
- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the $O(1 / \epsilon)$ rate
- Constant step-size SG, accelerated SG
- Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
- $O(\log (1 / \epsilon)$ iterations to reach a fixed tolerance
- Hybrid methods, incremental average gradient
- Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
- $O(\log (1 / \epsilon))$ iterations but eventually requires full passes.

Stochastic Average Gradient

- Can we have $O(1)$ cost but only require $O(\log (1 / \epsilon))$ iterations?

Stochastic Average Gradient

- Can we have $O(1)$ cost but only require $O(\log (1 / \epsilon))$ iterations?
- YES!

Stochastic Average Gradient

- Can we have $O(1)$ cost but only require $O(\log (1 / \epsilon))$ iterations?
- YES! The stochastic average gradient (SAG) algorithm:
- Randomly select $i(t)$ from $\{1,2, \ldots, n\}$ and compute $f_{i(t)}^{\prime}\left(x^{t}\right)$.

$$
x^{t+1}=x^{t}-\frac{\alpha^{t}}{N} \sum_{i=1}^{N} f_{i}^{\prime}\left(x^{t}\right)
$$

Stochastic Average Gradient

- Can we have $O(1)$ cost but only require $O(\log (1 / \epsilon))$ iterations?
- YES! The stochastic average gradient (SAG) algorithm:
- Randomly select $i(t)$ from $\{1,2, \ldots, n\}$ and compute $f_{i(t)}^{\prime}\left(x^{t}\right)$.

$$
x^{t+1}=x^{t}-\frac{\alpha^{t}}{N} \sum_{i=1}^{N} f_{i}^{\prime}\left(x^{t}\right)
$$

Stochastic Average Gradient

- Can we have $O(1)$ cost but only require $O(\log (1 / \epsilon))$ iterations?
- YES! The stochastic average gradient (SAG) algorithm:
- Randomly select $i(t)$ from $\{1,2, \ldots, n\}$ and compute $f_{i(t)}^{\prime}\left(x^{t}\right)$.

$$
x^{t+1}=x^{t}-\frac{\alpha^{t}}{N} \sum_{i=1}^{N} y_{i}^{t}
$$

- Memory: $y_{i}^{t}=f_{i}^{\prime}\left(x^{t}\right)$ from the last t where i was selected.

Stochastic Average Gradient

- Can we have $O(1)$ cost but only require $O(\log (1 / \epsilon))$ iterations?
- YES! The stochastic average gradient (SAG) algorithm:
- Randomly select $i(t)$ from $\{1,2, \ldots, n\}$ and compute $f_{i(t)}^{\prime}\left(x^{t}\right)$.

$$
x^{t+1}=x^{t}-\frac{\alpha^{t}}{N} \sum_{i=1}^{N} y_{i}^{t}
$$

- Memory: $y_{i}^{t}=f_{i}^{\prime}\left(x^{t}\right)$ from the last t where i was selected.
- Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Stochastic Average Gradient

- Can we have $O(1)$ cost but only require $O(\log (1 / \epsilon))$ iterations?
- YES! The stochastic average gradient (SAG) algorithm:
- Randomly select $i(t)$ from $\{1,2, \ldots, n\}$ and compute $f_{i(t)}^{\prime}\left(x^{t}\right)$.

$$
x^{t+1}=x^{t}-\frac{\alpha^{t}}{N} \sum_{i=1}^{N} y_{i}^{t}
$$

- Memory: $y_{i}^{t}=f_{i}^{\prime}\left(x^{t}\right)$ from the last t where i was selected.
- Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]
- Assumes gradients of non-selected examples don't change.
- Assumption becomes accurate as $\left\|x^{t+1}-x^{t}\right\| \rightarrow 0$.
- Memory requirements reduced to $O(N)$ for many problems.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

- Proof is 'infamous', but the constants are good.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f_{i}^{\prime} evaluations to reach ϵ :

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f_{i}^{\prime} evaluations to reach ϵ :
- Stochastic: $O(\kappa(1 / \epsilon))$.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f_{i}^{\prime} evaluations to reach ϵ :
- Stochastic: $O(\kappa(1 / \epsilon))$.
- Gradient: $O\left(N_{\kappa} \log (1 / \epsilon)\right)$.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f_{i}^{\prime} evaluations to reach ϵ :
- Stochastic: $O(\kappa(1 / \epsilon))$.
- Gradient: $O\left(N_{\kappa} \log (1 / \epsilon)\right)$.
- Accelerated: $O(N \sqrt{\kappa} \log (1 / \epsilon))$.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f_{i}^{\prime} evaluations to reach ϵ :
- Stochastic: $O(\kappa(1 / \epsilon))$.
- Gradient: $O\left(N_{\kappa} \log (1 / \epsilon)\right)$.
- Accelerated: $O(N \sqrt{\kappa} \log (1 / \epsilon))$.
- SAG: $O(\max \{N, \kappa\} \log (1 / \epsilon))$.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG iterations to reach an accuracy of ϵ is $O(\max \{\kappa, N\} \log (1 / \epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f_{i}^{\prime} evaluations to reach ϵ :
- Stochastic: $O(\kappa(1 / \epsilon))$.
- Gradient: $O\left(N_{\kappa} \log (1 / \epsilon)\right)$.
- Accelerated: $O(N \sqrt{\kappa} \log (1 / \epsilon))$.
- SAG: $O(\max \{N, \kappa\} \log (1 / \epsilon))$.
- SAG beats two lower bounds:
- Stochastic gradient bound of $O(1 / \epsilon)$.
- Deterministic gradient bound of $O(N \sqrt{\kappa} \log (1 / \epsilon))(\operatorname{large} N$ and $\kappa)$.

Comparing FG and SG Methods

- quantum ($n=50000, p=78$) and rcv1 ($n=697641, p=47236$)

SAG Compared to FG and SG Methods

- quantum ($n=50000, p=78$) and rcv1 ($n=697641, p=47236$)

Discussion

- Faster theoretical convergence using only the 'sum' structure.

Discussion

- Faster theoretical convergence using only the 'sum’ structure.
- Simple algorithm, empirically better than theory predicts.

Discussion

- Faster theoretical convergence using only the 'sum’ structure.
- Simple algorithm, empirically better than theory predicts.
- Robust stochastic gradient algorithm:
- Adaptive step-size, termination criterion.

Discussion

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Robust stochastic gradient algorithm:
- Adaptive step-size, termination criterion.
- Various extensions:
- Non-uniform sampling.
[Schmidt et al., 2013]
- Non-smooth problems.
[Mairal, 2013, Wong et al., 2013, Mairal, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]
- Memory-free methods.
[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Xiao and Zhang, 2014]
- Quasi-Newton methods.
[Sohl-Dickstein et al., 2014]

