Tractable Big Data and Big Models in Machine Learning

Mark Schmidt

University of British Columbia TAAI 2014

November 2014

- We are collecting data at unprecedented rates.
 - Seen across many fields of science and engineering.
 - Not gigabytes, but terabytes or petabytes (and beyond).

- We are collecting data at unprecedented rates.
 - Seen across many fields of science and engineering.
 - Not gigabytes, but terabytes or petabytes (and beyond).

- Many important aspects to the 'big data' puzzle:
 - Distributed data storage and management, parallel computation, software paradigms, data mining, machine learning, privacy and security issues, reacting to other agents, power management, summarization and visualization.

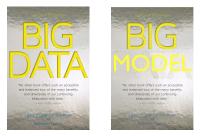
- Machine learning uses big data to fit richer statistical models:
 - Vision, bioinformatics, speech, natural language, web, social.
 - Developping broadly applicable tools.
 - Output of models can be used for further analysis.

- Machine learning uses big data to fit richer statistical models:
 - Vision, bioinformatics, speech, natural language, web, social.
 - Developping broadly applicable tools.
 - Output of models can be used for further analysis.

- Machine learning uses big data to fit richer statistical models:
 - Vision, bioinformatics, speech, natural language, web, social.
 - Developping broadly applicable tools.
 - Output of models can be used for further analysis.

Numerical optimization is at the core of many of these models.

- Machine learning uses big data to fit richer statistical models:
 - Vision, bioinformatics, speech, natural language, web, social.
 - Developping broadly applicable tools.
 - Output of models can be used for further analysis.



- Numerical optimization is at the core of many of these models.
- But, traditional 'black-box' methods have difficulty with:
 - the large data sizes.
 - the large model complexities.

Two Issues in this Talk

- The first issue is computation:
 - We 'open up the black box', by using the structure of machine models to derive faster large-scale optimization algorithms.
 - Can lead to enormous speedups for big data and complex models.

(polynomial vs. exponential)

Two Issues in this Talk

- The first issue is computation:
 - We 'open up the black box', by using the structure of machine models to derive faster large-scale optimization algorithms.
 - Can lead to enormous speedups for big data and complex models.
 (polynomial vs. exponential)
- The second issue is modeling:
 - By expanding the set of tractable problems, we can propose richer classes of statistical models that can be efficiently fit.

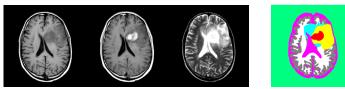
Two Issues in this Talk

- The first issue is computation:
 - We 'open up the black box', by using the structure of machine models to derive faster large-scale optimization algorithms.
 - Can lead to enormous speedups for big data and complex models.
 (polynomial vs. exponential)
- The second issue is modeling:
 - By expanding the set of tractable problems, we can propose richer classes of statistical models that can be efficiently fit.
- My research tries to alternate between these two.

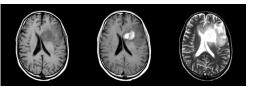
Structured sparsity (inexact proximal-gradient method)

- 2 Learning dependencies (costly models with simple constraints)
- Fitting a huge dataset (stochastic average gradient)

• Task: Segmentation of Multi-Modality MRI Data

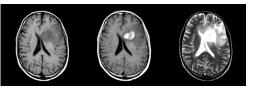


Task: Segmentation of Multi-Modality MRI Data



- Applications:
 - image-guided surgery
 - radiation target planning.
 - quantifying treatment response.
 - mining growth patterns.

Task: Segmentation of Multi-Modality MRI Data

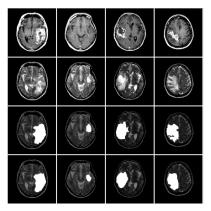


- Applications:
 - image-guided surgery
 - radiation target planning.
 - quantifying treatment response.
 - mining growth patterns.
- Challenges:
 - variety of tumor appearances.
 - similarity to normal tissue.

Solution strategy:

Incorporate prior knowledge by registration with template.

Pixel-level classifier using image- and template-based features.



• Best performance with logistic regression:

$$\min_{x\in\mathbb{R}^P}\frac{1}{N}\sum_{i=1}^N f_i(x).$$

Best performance with logistic regression:

$$\min_{x\in\mathbb{R}^P}\frac{1}{N}\sum_{i=1}^N f_i(x)$$

- Problem 1: Estimating x is slow:
 - 8 million voxels per volume.
 - Later in this talk: Big-N problems.

Best performance with logistic regression:

$$\min_{x\in\mathbb{R}^P}\frac{1}{N}\sum_{i=1}^N f_i(x)$$

- Problem 1: Estimating x is slow:
 - 8 million voxels per volume.
 - Later in this talk: Big-N problems.
- Problem 2: Designing features.
 - Lots of possible candidate features.
 - Using all features leads to over-fitting.
- Due to slow training time: manual feature selection.

• Strange idea: try all features with L2-Regularization:

$$\min_{\mathbf{x}\in\mathbb{R}^P}\frac{1}{N}\sum_{i=1}^N f_i(\mathbf{x}) + \lambda \sum_{i=1}^P x_i^2.$$

• Strange idea: try all features with L2-Regularization:

$$\min_{x\in\mathbb{R}^P}\frac{1}{N}\sum_{i=1}^N f_i(x) + \lambda \sum_{i=1}^P x_i^2.$$

- Reduces over-fitting.
- As good as best selected features.
- Smooth function, so we can compute this on large datasets:

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

• Strange idea: try all features with L2-Regularization:

$$\min_{x\in\mathbb{R}^P}\frac{1}{N}\sum_{i=1}^N f_i(x) + \lambda \sum_{i=1}^P x_i^2.$$

- Reduces over-fitting.
- As good as best selected features.
- Smooth function, so we can compute this on large datasets: http://www.di.ens.fr/-mschmidt/Software/minFunc.html
- But, uses all features so slow to segment new images.

• Strange idea: try all features with L2-Regularization:

$$\min_{\boldsymbol{x}\in\mathbb{R}^{P}}\frac{1}{N}\sum_{i=1}^{N}f_{i}(\boldsymbol{x})+\lambda\sum_{i=1}^{P}x_{i}^{2}.$$

- Reduces over-fitting.
- As good as best selected features.
- Smooth function, so we can compute this on large datasets: http://www.di.ens.fr/-mschmidt/Software/minFunc.html
- But, uses all features so slow to segment new images.
- Another strange idea: try all features with L1-Regularization:

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + \lambda \sum_{i=1}^{P} |x_i|.$$

- Still reduces over-fitting.
- But, solution *x* is SPARSE (some $x_j = 0$).
- Feature selection by only training once.

Feature Selection with L1-Regularization (Binary)

- Binary case:
 - Setting variable $x_i = 0$ removes the feature a_i .

• Because we classify using the sign of $x^T a$:

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = x^T a$$

Feature Selection with L1-Regularization (Binary)

- Binary case:
 - Setting variable $x_i = 0$ removes the feature a_i .

• Because we classify using the sign of $x^T a$:

$$\begin{bmatrix} 0 & x_2 & 0 & x_4 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = x^T a$$

Variable Selection with L1-Regularization

- C-class case:
 - Setting variable $x_j = 0$ may **not** remove the feature a_j .

• Because we classify using the maximum of $x_c^T a$:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ x_{41} & x_{42} & x_{43} & x_{44} & x_{45} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} x_1^T a \\ x_2^T a \\ x_3^T a \\ x_3^T a \end{bmatrix}$$

Variable Selection with L1-Regularization

- C-class case:
 - Setting variable $x_j = 0$ may **not** remove the feature a_j .

• Because we classify using the maximum of $x_c^T a$:

$$\begin{bmatrix} 0 & x_{12} & 0 & x_{14} & 0 \\ 0 & x_{22} & x_{23} & x_{24} & 0 \\ x_{31} & x_{32} & 0 & x_{34} & 0 \\ 0 & 0 & 0 & x_{44} & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} x_1^T a \\ x_2^T a \\ x_3^T a \\ x_3^T a \end{bmatrix}$$

Feature Selection with Group L1-Regularization

- C-class case:
 - Setting group $\{x_{1j}, x_{2j}, x_{3j}, x_{4j}, x_{5j}\} = 0$ removes the feature a_j .

Because we classify using the maximum of x^T_c a:

$$\begin{bmatrix} 0 & x_{12} & 0 & x_{14} & 0 \\ 0 & x_{22} & 0 & x_{24} & 0 \\ 0 & x_{32} & 0 & x_{34} & 0 \\ 0 & x_{42} & 0 & x_{44} & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} x_1^T a \\ x_2^T a \\ x_3^T a \\ x_3^T a \end{bmatrix}$$

• L1-Regularization encourages sparsity in variables x_i.

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + \lambda \sum_{i=1}^{P} |x_i|.$$

• L1-Regularization encourages sparsity in variables x_i.

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + \lambda \sum_{i=1}^{P} |x_i|.$$

• Group L1-regularization encourages sparsity in groups x_g:

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + \lambda \sum_{g \in \mathcal{G}} \|x_g\|.$$

• L1-Regularization encourages sparsity in variables x_i.

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + \lambda \sum_{i=1}^{P} |x_i|.$$

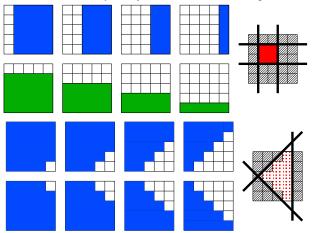
Group L1-regularization encourages sparsity in groups x_g:

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + \lambda \sum_{g \in \mathcal{G}} \|x_g\|.$$

Structured sparsity generalizes groups to other structures.

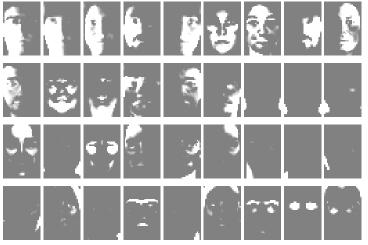
• Examples of structured sparsity:

Structured sparsity to select convex regions:



• Examples of structured sparsity:

Dictionary learned with non-negative matrix factorization:

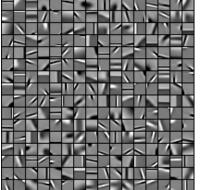


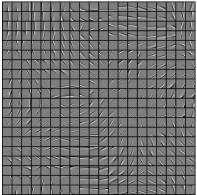
• Examples of structured sparsity:

Dictionary learned with structured sparsity:

• Examples of structured sparsity:

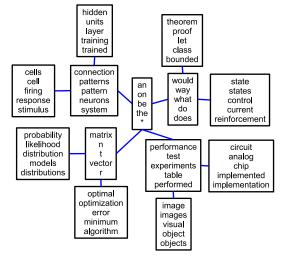
Spatially-structured dictionary with structured sparsity:





• Examples of structured sparsity:

Tree-structured dictionary with structured sparsity:



- Examples of structured sparsity:
 - A linear model with variable interactions:

 $m(x) = x_1 + x_2 + x_3 + x_{12} + x_{13} + x_{23} + x_{123}.$

• E.g., Mutations in both gene A and gene B lead to cancer.

Structured Sparsity Examples

- Examples of structured sparsity:
 - A linear model with variable interactions:

 $m(x) = x_1 + x_2 + x_3 + x_{12} + x_{13} + x_{23} + x_{123}.$

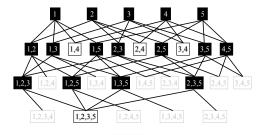
- E.g., Mutations in both gene A and gene B lead to cancer.
- We can't consider all 2^P possible interations.

Structured Sparsity Examples

- Examples of structured sparsity:
 - A linear model with variable interactions:

 $m(x) = x_1 + x_2 + x_3 + x_{12} + x_{13} + x_{23} + x_{123}.$

- E.g., Mutations in both gene A and gene B lead to cancer.
- We can't consider all 2^P possible interations.
- Structured sparsity on the hierarchical models.



• Unfortunately, all these regularizers are non-smooth.

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

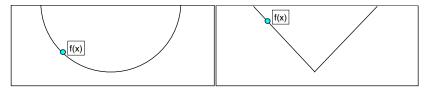
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization



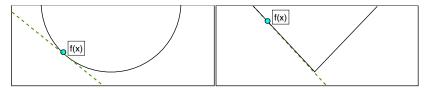
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization



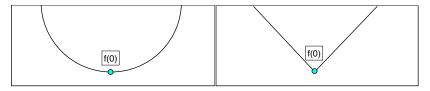
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization



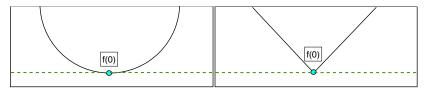
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization



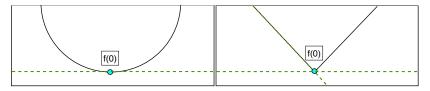
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization



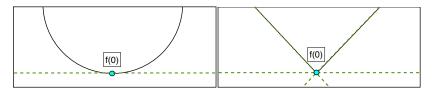
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization L1-regularization



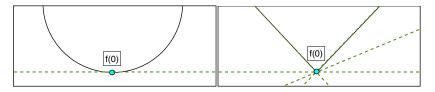
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization L1-regularization



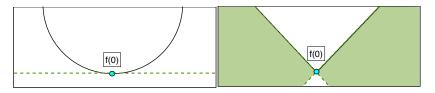
- Unfortunately, all these regularizers are non-smooth.
- Consider our problem

$$\min_{x\in\mathbb{R}^p} \quad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

data fitting term + regularizer

- A solution must have:
 - -gradient(data-fitting term) = subgradient(regularizer).
- Non-smoothness at zero 'catches' many solution:

L2-regularization L1-regularization



Can we solve huge-dimensional non-smooth optimization problems?

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
 - Algorithm can use O(P) time to choose an iterate x^t .
 - Algorithm receives the function and subgradient at *x*^{*t*}.

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
 - Algorithm can use O(P) time to choose an iterate x^t .
 - Algorithm receives the function and subgradient at *x*^{*t*}.
- How many iterations does it take to reach an accuracy of ε?

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
 - Algorithm can use O(P) time to choose an iterate x^t .
 - Algorithm receives the function and subgradient at *x*^{*t*}.
- How many iterations does it take to reach an accuracy of ε?
- With standard subgradient-continuity and curvature assumptions:
 - Smooth problems can be solved in O(log(1/e)) iterations.

(polynomial-time)

Can we solve huge-dimensional non-smooth optimization problems?

- Black-box model of large-scale optimization:
 - Algorithm can use O(P) time to choose an iterate x^t .
 - Algorithm receives the function and subgradient at *x*^{*t*}.
- How many iterations does it take to reach an accuracy of ε?
- With standard subgradient-continuity and curvature assumptions:
 - Smooth problems can be solved in $O(\log(1/\epsilon))$ iterations.

(polynomial-time)

• Non-smooth problems can be solved in $O(1/\epsilon)$ iterations.

(exponential-time)

- Bad news:
 - Any non-smooth method requires $\Omega(1/\epsilon)$ in the worst case.
 - Huge difference in practice between non-smooth and smooth.

- Bad news:
 - Any non-smooth method requires $\Omega(1/\epsilon)$ in the worst case.
 - Huge difference in practice between non-smooth and smooth.
- Is large-scale L1-regularization not feasible?

- Bad news:
 - Any non-smooth method requires $\Omega(1/\epsilon)$ in the worst case.
 - Huge difference in practice between non-smooth and smooth.
- Is large-scale L1-regularization not feasible?
 - No, we don't have a general non-smooth black-box:

$$\min_{x \in \mathbb{R}^p} \quad \frac{1}{N} \sum_{i=1}^N f(x) + r(x)$$

smooth + 'simple'

- Bad news:
 - Any non-smooth method requires $\Omega(1/\epsilon)$ in the worst case.
 - Huge difference in practice between non-smooth and smooth.
- Is large-scale L1-regularization not feasible?
 - No, we don't have a general non-smooth black-box:

$$\min_{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} f(x) + r(x)$$

smooth + 'simple'

• Proximal-gradient methods solve these problems in $O(\log(1/\epsilon))$.

• To minimize a smooth objective

 $\min_{x\in\mathbb{R}^P}f(x),$

the gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{argmin}_{x \in \mathbb{R}^{\rho}} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} \|x - x^t\|^2.$$

• To minimize a smooth objective

 $\min_{x\in\mathbb{R}^P}f(x),$

the gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2lpha} \|x - x^t\|^2.$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha f'(\mathbf{x}^t),$$

• To minimize a smooth objective

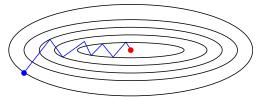
 $\min_{x\in\mathbb{R}^P}f(x),$

the gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} \|x - x^t\|^2.$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha f'(\mathbf{x}^t),$$



• To minimize a smooth objective

 $\min_{x\in\mathbb{R}^P}f(x),$

the gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} \|x - x^t\|^2.$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha f'(\mathbf{x}^t),$$

• To minimize a smooth objective

 $\min_{x\in\mathbb{R}^P}f(x),$

the gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} ||x - x^t||^2.$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha f'(\mathbf{x}^t),$$

- Accelerated gradient method requires $O(\sqrt{\kappa} \log(1/\epsilon))$.
- Spectral gradient method is faster in practice.

• To minimize a smooth objective

 $\min_{x\in\mathbb{R}^P}f(x),$

the gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} f(x^{t}) + f'(x^{t})^{\mathsf{T}}(x - x^{t}) + \frac{1}{2\alpha} \|x - x^{t}\|^{2}.$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha f'(\mathbf{x}^t),$$

- Accelerated gradient method requires $O(\sqrt{\kappa} \log(1/\epsilon))$.
- Spectral gradient method is faster in practice.

• To minimize a smooth plus simple objective

 $\min_{x\in\mathbb{R}^P}f(x)+r(x),$

the gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} f(x^{t}) + f'(x^{t})^{T}(x - x^{t}) + \frac{1}{2\alpha} ||x - x^{t}||^{2}.$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha f'(\mathbf{x}^t),$$

- Accelerated gradient method requires $O(\sqrt{\kappa} \log(1/\epsilon))$.
- Spectral gradient method is faster in practice.

• To minimize a smooth plus simple objective

 $\min_{x\in\mathbb{R}^P}f(x)+r(x),$

the proximal-gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} \|x - x^t\|^2 + r(x).$$

yielding the iteration

$$x^{t+1} = \operatorname{prox}_{\alpha r}[x^t - \alpha f'(x^t)],$$

- Accelerated gradient method requires $O(\sqrt{\kappa} \log(1/\epsilon))$.
- Spectral gradient method is faster in practice.

• To minimize a smooth plus simple objective

 $\min_{x\in\mathbb{R}^P}f(x)+r(x),$

the proximal-gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} \|x - x^t\|^2 + r(x).$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{prox}_{\alpha r} [\mathbf{x}^t - \alpha f'(\mathbf{x}^t)],$$

- Accelerated gradient method requires $O(\sqrt{\kappa} \log(1/\epsilon))$.
- Spectral gradient method is faster in practice.

• To minimize a smooth plus simple objective

 $\min_{x\in\mathbb{R}^P}f(x)+r(x),$

the proximal-gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} \|x - x^t\|^2 + r(x).$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{prox}_{\alpha r} [\mathbf{x}^t - \alpha f'(\mathbf{x}^t)],$$

- Accelerated proximal-gradient method requires $O(\sqrt{\kappa} \log(1/\epsilon))$.
- Spectral proximal-gradient method is faster in practice.

• To minimize a smooth plus simple objective

 $\min_{x\in\mathbb{R}^P}f(x)+r(x),$

the proximal-gradient method minimizes the approximation

$$x^{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^p} f(x^t) + f'(x^t)^T (x - x^t) + \frac{1}{2\alpha} \|x - x^t\|^2 + r(x).$$

yielding the iteration

$$\mathbf{x}^{t+1} = \mathbf{prox}_{\alpha r} [\mathbf{x}^t - \alpha f'(\mathbf{x}^t)],$$

- Accelerated proximal-gradient method requires $O(\sqrt{\kappa} \log(1/\epsilon))$.
- Spectral proximal-gradient method is faster in practice.
- Non-smooth optimization at the speed of smooth optimization.

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|^{2}.$$

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|^{2}.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^+ = \text{softThresh}_{\alpha\lambda}[x - \alpha f'(x)]$$

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|^{2}.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^+ = \text{softThresh}_{\alpha\lambda}[x - \alpha f'(x)].$$

• Example with $\lambda = 1$:		
Input	Threshold	Soft-Threshold
0.6715 -1.2075 0.7172 1.6302 0.4889		

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|^{2}.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^+ =$$
softThresh $_{\alpha\lambda}[x - \alpha f'(x)].$

• Example with $\lambda = 1$:								
Input	Threshold	Soft-Threshold						
0.6715 -1.2075 0.7172 1.6302 0.4889	0 -1.2075 0 1.6302 0							

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_{r}[y] = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|^{2}.$$

• For L1-regularization, we obtain iterative soft-thresholding:

$$x^+ =$$
softThresh $_{\alpha\lambda}[x - \alpha f'(x)].$

• Example with $\lambda = 1$:								
Input	Threshold		Soft-Threshold					
0.6715	[0]		0					
-1.2075	-1.2075		-0.2075					
0.7172	0		0					
1.6302	1.6302		0.6302					
0.4889			0					

• Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases},$$

• Projected-gradient methods are another special case:

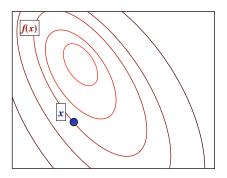
$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}$$

$$x^+ = \operatorname{project}_{\mathcal{C}}[x - \alpha f'(x)],$$

• Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}$$

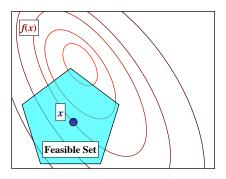
$$x^+ = \operatorname{project}_{\mathcal{C}}[x - \alpha f'(x)]$$



• Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}$$

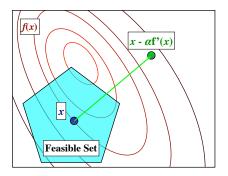
$$x^+ = \operatorname{project}_{\mathcal{C}}[x - \alpha f'(x)]_{\mathcal{C}}$$



• Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}$$

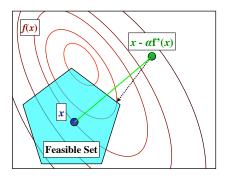
$$\mathbf{x}^+ = \operatorname{project}_{\mathcal{C}}[\mathbf{x} - \alpha f'(\mathbf{x})],$$



• Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}$$

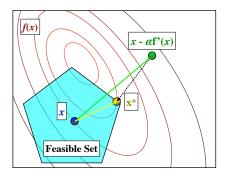
$$\mathbf{x}^+ = \operatorname{project}_{\mathcal{C}}[\mathbf{x} - \alpha f'(\mathbf{x})],$$



• Projected-gradient methods are another special case:

$$r(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}$$

$$\mathbf{x}^+ = \operatorname{project}_{\mathcal{C}}[\mathbf{x} - \alpha f'(\mathbf{x})],$$



• For what problems can we apply these methods?

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.
 - One linear constraint.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.
 - One linear constraint.
 - Probability constraints.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.
 - One linear constraint.
 - Probability constraints.
 - A few other simple regularizers/constraints.

- For what problems can we apply these methods?
- We can efficiently compute the proximity operator for:
 - L1-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bounds.
 - One linear constraint.
 - Probability constraints.
 - A few other simple regularizers/constraints.
- For many problems we can not efficiently compute this operator.

• We can efficiently approximate the proximity operator for:

- We can efficiently approximate the proximity operator for:
 - Structured sparsity.

- We can efficiently approximate the proximity operator for:
 - Structured sparsity.
 - Penalties on the differences between variables.

- We can efficiently approximate the proximity operator for:
 - Structured sparsity.
 - Penalties on the differences between variables.
 - Regularizers and constraints on the singular values of matrices.

- We can efficiently approximate the proximity operator for:
 - Structured sparsity.
 - Penalties on the differences between variables.
 - Regularizers and constraints on the singular values of matrices.
 - Sums of simple functions.

- We can efficiently approximate the proximity operator for:
 - Structured sparsity.
 - Penalties on the differences between variables.
 - Regularizers and constraints on the singular values of matrices.
 - Sums of simple functions.
- Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

• We can efficiently approximate the proximity operator for:

- Structured sparsity.
- Penalties on the differences between variables.
- Regularizers and constraints on the singular values of matrices.
- Sums of simple functions.
- Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

Do inexact methods have the O(κ log(1/ε)) rate?

- We can efficiently approximate the proximity operator for:
 - Structured sparsity.
 - Penalties on the differences between variables.
 - Regularizers and constraints on the singular values of matrices.
 - Sums of simple functions.
- Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

- Do inexact methods have the O(κ log(1/ε)) rate?
 - Yes, if the errors are appropriately controlled. [Schmidt et al., 2011]

Proposition [Schmidt et al., 2011] If the sequences of gradient errors $\{||e_t||\}$ and proximal errors $\{\sqrt{\varepsilon_t}\}$ are in $\{O((1 - \kappa^{-1})^t)\}$, then the inexact proximal-gradient method requires $O(\kappa \log(1/\epsilon))$ iterations.

Proposition [Schmidt et al., 2011] If the sequences of gradient errors $\{||e_t||\}$ and proximal errors $\{\sqrt{\varepsilon_t}\}$ are in $\{O((1 - \kappa^{-1})^t)\}$, then the inexact proximal-gradient method requires $O(\kappa \log(1/\epsilon))$ iterations.

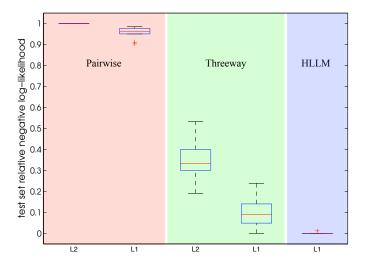
- Classic result as a special case (constants are good).
- The rates degrades gracefully if the errors are larger.

Proposition [Schmidt et al., 2011] If the sequences of gradient errors $\{||e_t||\}$ and proximal errors $\{\sqrt{\varepsilon_t}\}$ are in $\{O((1 - \kappa^{-1})^t)\}$, then the inexact proximal-gradient method requires $O(\kappa \log(1/\epsilon))$ iterations.

- Classic result as a special case (constants are good).
- The rates degrades gracefully if the errors are larger.
- We also showed the $O(\sqrt{\kappa} \log(1/\epsilon))$ accelerated method rate.
- We also considered weaker convexity assumptions on *f*.
- Huge improvement in practice over black-box methods.

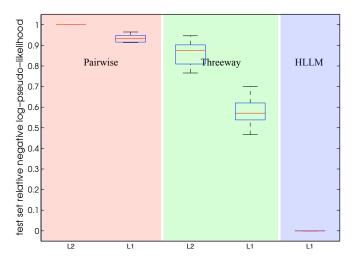
Flow Cytometry Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):



Traffic Flow Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):



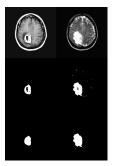
- Theoretical justification for what works in practice.
- Significantly extends class of tractable problems.
- Many subsequent applications with inexact proximal operators:
 - Genomic expression, model predictive control, neuroimaging, satellite image fusion, simulating flow fields.

- Theoretical justification for what works in practice.
- Significantly extends class of tractable problems.
- Many subsequent applications with inexact proximal operators:
 - Genomic expression, model predictive control, neuroimaging, satellite image fusion, simulating flow fields.
- But, it assumes computing f'(x) and $\operatorname{prox}_r[x]$ have similar cost.

- Theoretical justification for what works in practice.
- Significantly extends class of tractable problems.
- Many subsequent applications with inexact proximal operators:
 - Genomic expression, model predictive control, neuroimaging, satellite image fusion, simulating flow fields.
- But, it assumes computing f'(x) and $\operatorname{prox}_r[x]$ have similar cost.
- Often *f*′(*x*) is much more expensive:
 - We may have a large dataset.
 - Data-fitting term might be complex.
- Particularly true for structured output prediction:
 - Text, biological sequences, speech, images, matchings, graphs.

Motivation: Automatic Brain Tumor Segmentation

- Independent pixel classifier ignores correlations.
- Conditional random fields (CRFs) generalize logistic regression to multiple labels.



• Data-fitting term is solution of 8-million node graph-cut problem.

Structured sparsity (inexact proximal-gradient method)

- 2 Learning dependencies (costly models with simple constraints)
- Fitting a huge dataset (stochastic average gradient)

Motivation: Graphical Model Structure Learning

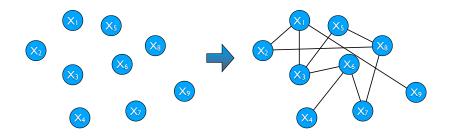
Discovering the dependencies between variables:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

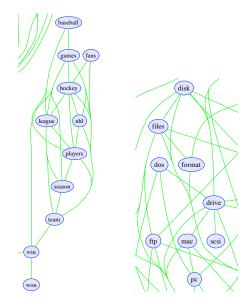
Motivation: Graphical Model Structure Learning

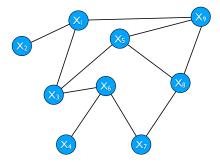
Discovering the dependencies between variables:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1



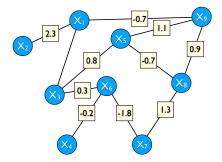
Example: Graphical Model Structure Learning



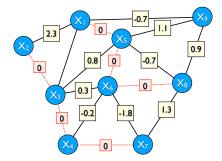


• We want to fit a Markov random field with unknown structure.

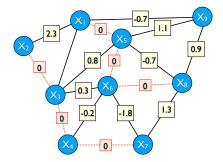
Structure Learning with *l*₁-Regularization



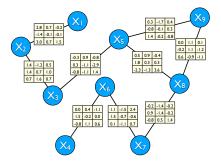
• We want to fit a Markov random field with unknown structure.



• We want to fit a Markov random field with unknown structure.

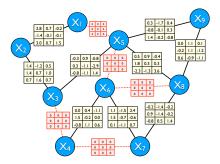


- We want to fit a Markov random field with unknown structure.
- Learn a sparse structure by ℓ_1 -regularization of edge weights.



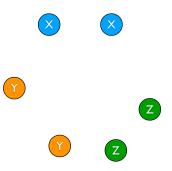
In some cases, we want sparsity in groups of parameters:

Multi-class variables [Lee et al., 2006].

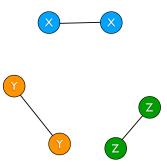


In some cases, we want sparsity in groups of parameters:

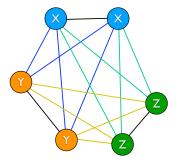
Multi-class variables [Lee et al., 2006].



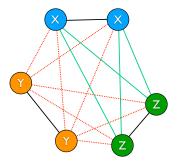
- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].



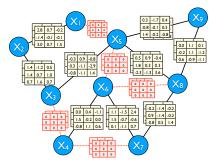
- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].



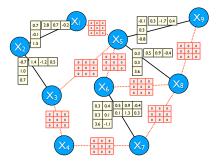
- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].



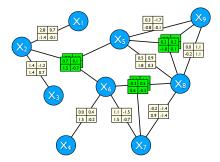
- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].



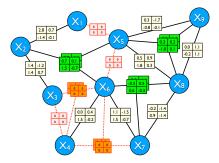
- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].
 - Onditional random fields [Schmidt et al., 2008].



- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].
 - Onditional random fields [Schmidt et al., 2008].
 - Low-rank Edges [Schmidt, 2010].



- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].
 - Onditional random fields [Schmidt et al., 2008].
 - Low-rank Edges [Schmidt, 2010].
 - Iigher-order models [Schmidt & Murphy, 2010].



- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].
 - Onditional random fields [Schmidt et al., 2008].
 - Low-rank Edges [Schmidt, 2010].
 - Iigher-order models [Schmidt & Murphy, 2010].

Costly Data-Fitting Term, Simple Regularizer

• These problems and many others have the form:

$$\min_{x\in\mathbb{R}^p} \qquad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

costly smooth + simple

Costly Data-Fitting Term, Simple Regularizer

These problems and many others have the form:

$$\min_{x \in \mathbb{R}^p} \quad \frac{1}{N} \sum_{i=1}^N f_i(x) + r(x)$$

costly smooth + simple

• Different than classic optimization (like linear programming).

(cheap smooth plus complex non-smooth)

Costly Data-Fitting Term, Simple Regularizer

• These problems and many others have the form:

$$\min_{x\in\mathbb{R}^p} \qquad \frac{1}{N}\sum_{i=1}^N f_i(x) + r(x)$$

costly smooth + simple

• Different than classic optimization (like linear programming).

(cheap smooth plus complex non-smooth)

- Inspiration from the smooth case:
 - For smooth high-dimensional problems, L-BFGS outperform accelerated/spectral gradient methods.

Quasi-Newton Methods

• Gradient method for optimizing a smooth *f*:

$$\mathbf{x}^+ = \mathbf{x} - \alpha f'(\mathbf{x}).$$

Quasi-Newton Methods

• Gradient method for optimizing a smooth *f*:

$$\mathbf{x}^+ = \mathbf{x} - \alpha f'(\mathbf{x}).$$

• Newton-like methods alternatively use:

$$x^+ = x - \alpha H^{-1} f'(x).$$

• *H* approximates the second-derivative matrix.

Quasi-Newton Methods

• Gradient method for optimizing a smooth *f*:

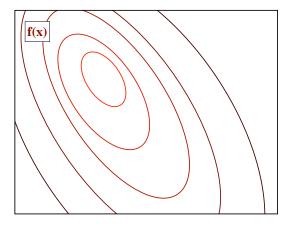
$$\mathbf{x}^+ = \mathbf{x} - \alpha f'(\mathbf{x}).$$

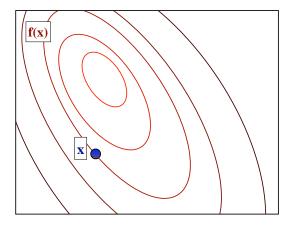
• Newton-like methods alternatively use:

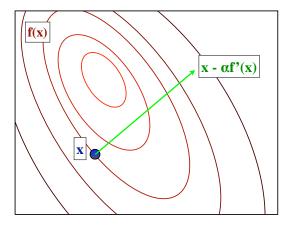
$$x^+ = x - \alpha H^{-1} f'(x).$$

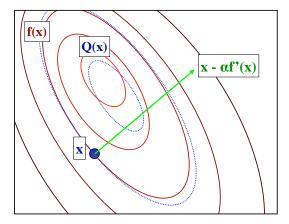
- *H* approximates the second-derivative matrix.
- L-BFGS is a particular strategy to choose the *H* values:
 - Based on gradient differences.
 - Linear storage and linear time.

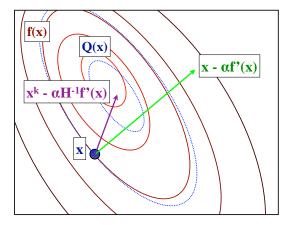
http://www.di.ens.fr/~mschmidt/Software/minFunc.html











• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$

• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

• Can we just plug in the Newton-like step?

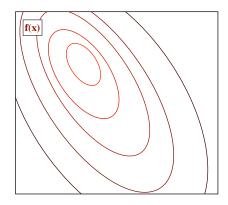
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$

• NO!

• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

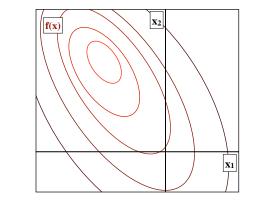
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

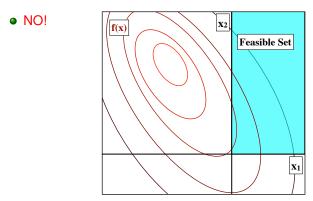
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

• Can we just plug in the Newton-like step?

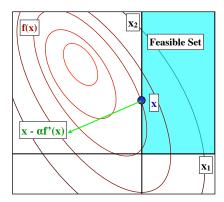
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$

• NO!

• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

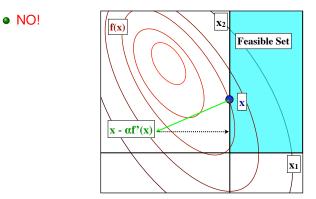
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

• Can we just plug in the Newton-like step?

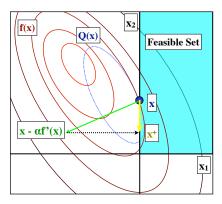
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$

• NO! f(x)Feasible Set $x - \alpha f'(x)$ x^+ x^+

• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

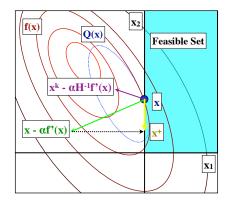
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

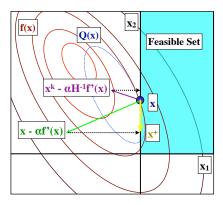
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

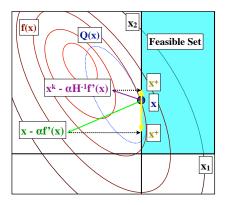
$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$



• Proximal-gradient method:

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha f'(x)].$$

$$x^+ = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)].$$

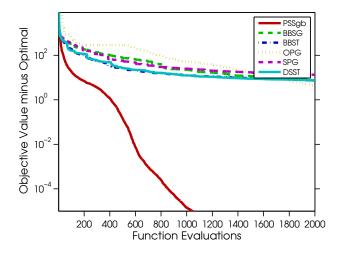


- In some cases, we can modify H to make this work:
 - Bound constraints.
 - Probability constraints.
 - L1-regularization.
- Two-metric (sub)gradient projection.

[Gafni & Bertskeas, 1984, Schmidt, 2010].

Comparing to accelerated/spectral/diagonal gradient

Comparing to methods that do not use L-BFGS (sido data):



http://www.di.ens.fr/~mschmidt/Software/L1General.html

• The broken proximal-Newton method:

$$x^{+} = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)],$$

with the Euclidean proximal operator:

$$\operatorname{prox}_{r}[y] = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|^{2},$$

$$x^{+} = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)]_{H},$$

with the Euclidean proximal operator:

$$\operatorname{prox}_{r}[y] = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|^{2},$$

$$x^{+} = \operatorname{prox}_{\alpha r} [x - \alpha H^{-1} f'(x)]_{H},$$

with the non-Euclidean proximal operator:

$$\operatorname{prox}_{r}[y]_{H} = \operatorname*{arg\,min}_{x \in \mathbb{R}^{P}} r(x) + \frac{1}{2} \|x - y\|_{H}^{2},$$

$$x^{+} = \operatorname{prox}_{\alpha r} [x - \alpha H^{-1} f'(x)]_{H},$$

with the non-Euclidean proximal operator:

$$\operatorname{prox}_{r}[y]_{H} = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|_{H}^{2},$$

- Non-smooth Newton-like method
- Same convergence properties as smooth case.

$$x^{+} = \operatorname{prox}_{\alpha r} [x - \alpha H^{-1} f'(x)]_{H},$$

with the non-Euclidean proximal operator:

$$\operatorname{prox}_{r}[y]_{H} = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|_{H}^{2},$$

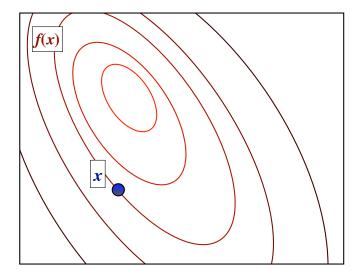
- Non-smooth Newton-like method
- Same convergence properties as smooth case.
- But, the prox is expensive even with a simple regularizer.

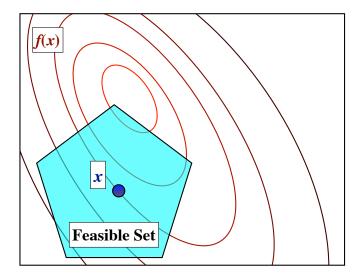
$$x^{+} = \operatorname{prox}_{\alpha r}[x - \alpha H^{-1}f'(x)]_{H},$$

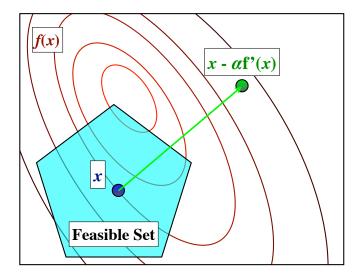
with the non-Euclidean proximal operator:

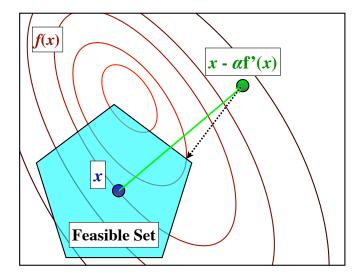
$$\operatorname{prox}_{r}[y]_{H} = \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} r(x) + \frac{1}{2} \|x - y\|_{H}^{2},$$

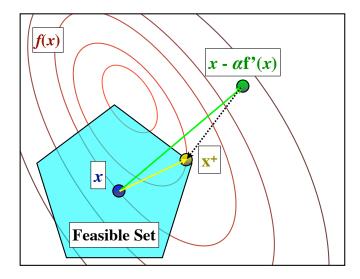
- Non-smooth Newton-like method
- Same convergence properties as smooth case.
- But, the prox is expensive even with a simple regularizer.
- Solution: use a cheap approximate solution.

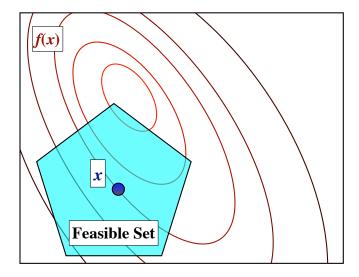


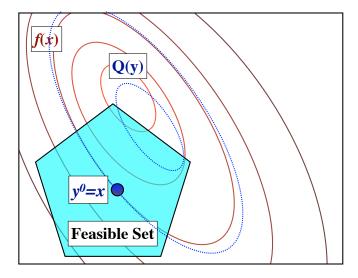


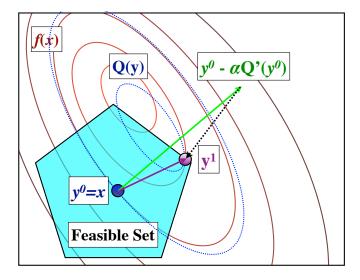


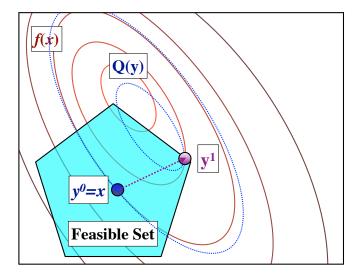


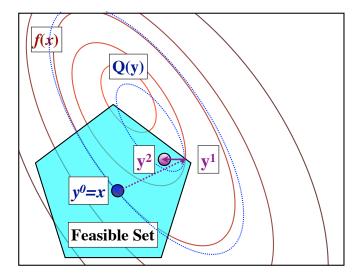


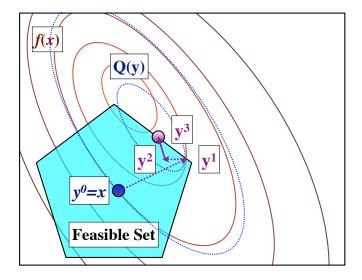


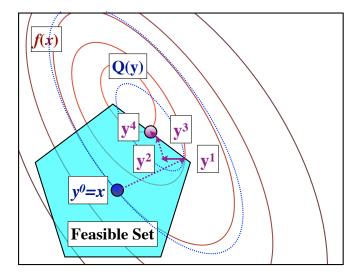


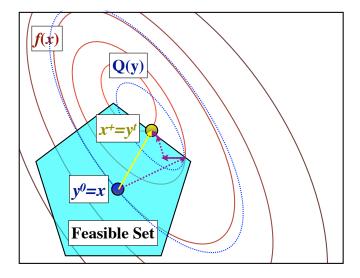












• A proximal quasi-Newton (PQN) algorithm:

• A proximal quasi-Newton (PQN) algorithm:

[Schmidt et al., 2009, Schmidt, 2010]

• Outer: evaluate f(x) and f'(x), use L-BFGS to update H.

• A proximal quasi-Newton (PQN) algorithm:

- Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
 - Requires multiplication by *H* (linear-time for L-BFGS).
 - Requires proximal operator of *r* (cheap for simple constraints).

• A proximal quasi-Newton (PQN) algorithm:

- Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
 - Requires multiplication by *H* (linear-time for L-BFGS).
 - Requires proximal operator of *r* (cheap for simple constraints).
- For small α, one iteration is sufficient to give descent.

• A proximal quasi-Newton (PQN) algorithm:

- Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
 - Requires multiplication by *H* (linear-time for L-BFGS).
 - Requires proximal operator of *r* (cheap for simple constraints).
- For small α , one iteration is sufficient to give descent.
- Cheap inner iterations lead to fewer expensive outer iterations.

• A proximal quasi-Newton (PQN) algorithm:

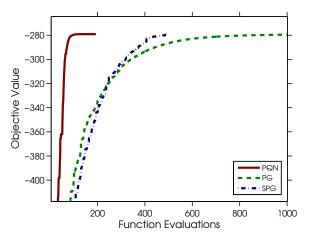
- Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
 - Requires multiplication by *H* (linear-time for L-BFGS).
 - Requires proximal operator of *r* (cheap for simple constraints).
- For small α , one iteration is sufficient to give descent.
- Cheap inner iterations lead to fewer expensive outer iterations.
- "Optimizing costly functions with simple constraints".

• A proximal quasi-Newton (PQN) algorithm:

- Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
- Inner: spectral proximal-gradient to approximate proximal operator:
 - Requires multiplication by *H* (linear-time for L-BFGS).
 - Requires proximal operator of *r* (cheap for simple constraints).
- For small α, one iteration is sufficient to give descent.
- Cheap inner iterations lead to fewer expensive outer iterations.
- "Optimizing costly functions with simple constraints".
- "Optimizing costly functions with simple regularizers".

Graphical Model Structure Learning with Groups

Comparing PQN to first-order methods on a graphical model structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].



Inexact Proximal Newton

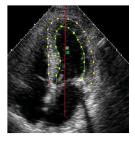
- The proximal quasi-Newton (PQN) approach:
 - "The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps the most elegant and logical extension of quasi-Newton methods, but it involves solving a sub-iteration." [Becker and Fadili, 2012].
 - "PQN is an implementation that uses a limited-memory quasi-Newton update and has both excellent empirical performance and theoretical properties." [Lee et al., 2012].

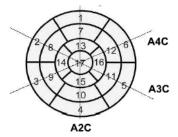
Inexact Proximal Newton

- The proximal quasi-Newton (PQN) approach:
 - "The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps the most elegant and logical extension of quasi-Newton methods, but it involves solving a sub-iteration." [Becker and Fadili, 2012].
 - "PQN is an implementation that uses a limited-memory quasi-Newton update and has both excellent empirical performance and theoretical properties." [Lee et al., 2012].
 - Proximal-Newton methods are becoming optimization workhorse, e.g. NIPS 2012:
 - Becker & Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco & Sudderth.
 - http://www.di.ens.fr/~mschmidt/Software/PQN.html

Motivation: Structure Learning in CRFs

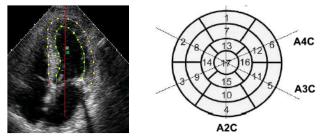
• Task: early detection of coronoary heart disease.





Motivation: Structure Learning in CRFs

• Task: early detection of coronoary heart disease.



- Assess motion of heart segments using structured prediction.
- Data-fitting function is dynamic program.

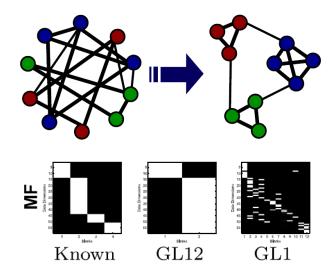
Example: Learning Variable Groupings

Discovering variable groupings:



Example: Learning Variable Groupings

Discovering variable groupings:



Conditioning by observation vs. conditioning by intervention:

Conditioning by observation vs. conditioning by intervention:

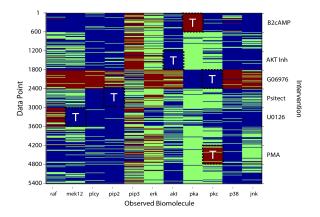
• If I see that my watch says 11:55, then it's almost lunch time

Conditioning by observation vs. conditioning by intervention:

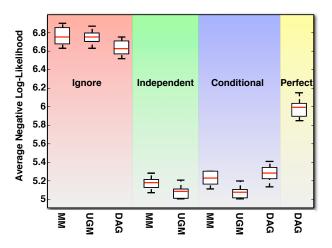
- If I see that my watch says 11:55, then it's almost lunch time
- If I set my watch so it says 11:55, it doesn't help

Conditioning by observation vs. conditioning by intervention:

- If I see that my watch says 11:55, then it's almost lunch time
- If I set my watch so it says 11:55, it doesn't help



Using structured prediction to model interventions:



- Structured sparsity (inexact proximal-gradient method)
- 2 Learning dependencies (costly models with simple constraints)
- Sitting a huge dataset (stochastic average gradient)

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^p}f(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}f(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

• We are interested in cases where *N* is very large.

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^p}f(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

- We are interested in cases where *N* is very large.
- Simple example is least-squares,

$$f_i(x) := (a_i^T x - b_i)^2.$$

- Other examples:
 - logistic regression, Huber regression, smooth SVMs, CRFs, etc.

• We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t f'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N f'_i(x_t).$$

- Only requires $O(\log(1/\epsilon))$ iterations.
- Iteration cost is linear in N.
- Quasi-Newton methods still require O(N).

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

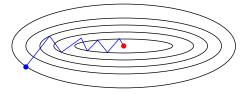
$$x_{t+1} = x_t - \alpha_t f'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N f'_i(x_t).$$

- Only requires O(log(1/ε)) iterations.
- Iteration cost is linear in N.
- Quasi-Newton methods still require O(N).
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of *i*(*t*) from {1, 2, ..., *N*}.

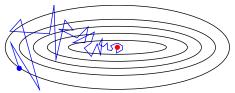
$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t f_{i(t)}'(\mathbf{x}_t).$$

- Iteration cost is independent of *N*.
- Requires O(1/\epsilon) iterations.

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

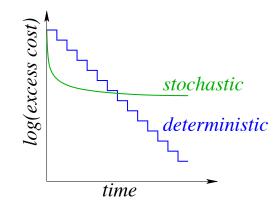


Stochastic gradient method [Robbins & Monro, 1951]:



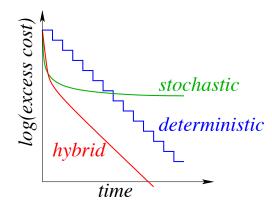
Motivation for New Methods

- DG method requires $O(\log(1/\epsilon))$ with O(N).
- SG method requires $O(1/\epsilon)$ iterations with O(1).



Motivation for New Methods

- DG method requires $O(\log(1/\epsilon))$ with O(N).
- SG method requires $O(1/\epsilon)$ iterations with O(1).



• Goal is requiring $O(\log(1/\epsilon))$ iterations with O(1) cost.

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic versions of accelerated and Newton methods

 Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic versions of accelerated and Newton methods

- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the O(1/\epsilon) rate

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic versions of accelerated and Newton methods

- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the $O(1/\epsilon)$ rate
- Constant step-size SG, accelerated SG
 - Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
 - $O(\log(1/\epsilon))$ iterations to reach a fixed tolerance

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic versions of accelerated and Newton methods

- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the $O(1/\epsilon)$ rate
- Constant step-size SG, accelerated SG
 - Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
 - $O(\log(1/\epsilon))$ iterations to reach a fixed tolerance

Hybrid methods, incremental average gradient

- Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
- $O(\log(1/\epsilon))$ iterations but eventually requires full passes.

• Can we have O(1) cost but only require $O(\log(1/\epsilon))$ iterations?

- Can we have O(1) cost but only require $O(\log(1/\epsilon))$ iterations?
 - YES!

- Can we have O(1) cost but only require O(log(1/\epsilon)) iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N f'_i(x^t)$$

- Can we have O(1) cost but only require O(log(1/\epsilon)) iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N f'_i(x^t)$$

- Can we have O(1) cost but only require O(log(1/\epsilon)) iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select *i*(*t*) from {1, 2, ..., *n*} and compute *f*[']_{*i*(*t*)}(*x*^t).

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^i$$

• Memory: $y_i^t = f_i'(x^t)$ from the last *t* where *i* was selected.

- Can we have O(1) cost but only require O(log(1/\epsilon)) iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \frac{y_i^t}{y_i^t}$$

- Memory: $y_i^t = f_i'(x^t)$ from the last *t* where *i* was selected.
- Stochastic variant of increment average gradient (IAG). [Blatt et al., 2007]

- Can we have O(1) cost but only require O(log(1/\epsilon)) iterations?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \frac{y_i^t}{y_i^t}$$

- Memory: $y_i^t = f_i'(x^t)$ from the last *t* where *i* was selected.
- Stochastic variant of increment average gradient (IAG). [Blatt et al., 2007]
- Assumes gradients of non-selected examples don't change.
- Assumption becomes accurate as $||x^{t+1} x^t|| \rightarrow 0$.
- Memory requirements reduced to O(N) for many problems.

• Proof is 'infamous', but the constants are good.

- Proof is 'infamous', but the constants are good.
- Number of f'_i evaluations to reach ϵ :

- Proof is 'infamous', but the constants are good.
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: O(κ(1/ε)).

- Proof is 'infamous', but the constants are good.
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: O(κ(1/ε)).
 - Gradient: $O(N\kappa \log(1/\epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: O(κ(1/ε)).
 - Gradient: $O(N\kappa \log(1/\epsilon))$.
 - Accelerated: $O(N\sqrt{\kappa}\log(1/\epsilon))$.

- Proof is 'infamous', but the constants are good.
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: O(κ(1/ε)).
 - Gradient: $O(N\kappa \log(1/\epsilon))$.
 - Accelerated: $O(N\sqrt{\kappa}\log(1/\epsilon))$.
 - SAG: $O(\max\{N,\kappa\}\log(1/\epsilon))$.

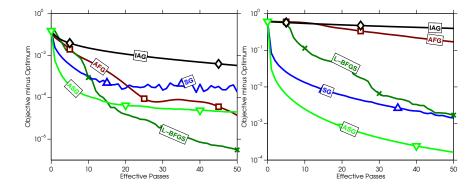
- Proof is 'infamous', but the constants are good.
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: O(κ(1/ε)).
 - Gradient: $O(N\kappa \log(1/\epsilon))$.
 - Accelerated: $O(N\sqrt{\kappa}\log(1/\epsilon))$.
 - SAG: $O(\max\{N,\kappa\}\log(1/\epsilon))$.

• SAG beats two lower bounds:

- Stochastic gradient bound of $O(1/\epsilon)$.
- Deterministic gradient bound of $O(N\sqrt{\kappa}\log(1/\epsilon))$ (large N and κ).

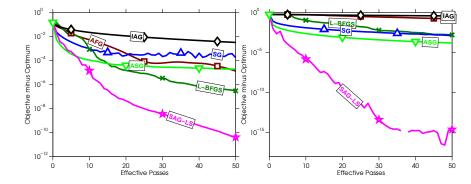
Comparing FG and SG Methods

• quantum (*n* = 50000, *p* = 78) and rcv1 (*n* = 697641, *p* = 47236)



SAG Compared to FG and SG Methods

• quantum (*n* = 50000, *p* = 78) and rcv1 (*n* = 697641, *p* = 47236)



• Faster theoretical convergence using only the 'sum' structure.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Robust stochastic gradient algorithm:
 - Adaptive step-size, termination criterion.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Robust stochastic gradient algorithm:
 - Adaptive step-size, termination criterion.
- Various extensions:
 - Non-uniform sampling.

[Schmidt et al., 2013]

Non-smooth problems.

[Mairal, 2013, Wong et al., 2013, Mairal, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

Memory-free methods.

[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Xiao and Zhang, 2014]

Quasi-Newton methods.

[Sohl-Dickstein et al., 2014]