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Context: Big Data and Big Models

We are collecting data at unprecedented rates.

Seen across many fields of science and engineering.
Not gigabytes, but terabytes or petabytes (and beyond).

Many important aspects to the ‘big data’ puzzle:

Distributed data storage and management, parallel computation,
software paradigms, data mining, machine learning, privacy and
security issues, reacting to other agents, power management,
summarization and visualization.
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Two Issues in this Talk

The first issue is computation:

We ‘open up the black box’, by using the structure of machine
models to derive faster large-scale optimization algorithms.
Can lead to enormous speedups for big data and complex models.

(polynomial vs. exponential)

The second issue is modeling:

By expanding the set of tractable problems, we can propose richer
classes of statistical models that can be efficiently fit.

My research tries to alternate between these two.
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Outline

1 Structured sparsity (inexact proximal-gradient method)

2 Learning dependencies (costly models with simple constraints)

3 Fitting a huge dataset (stochastic average gradient)



Motivation: Automatic Brain Tumor Segmentation

Task: Segmentation of Multi-Modality MRI Data

Applications:

image-guided surgery
radiation target planning.
quantifying treatment response.
mining growth patterns.

Challenges:

variety of tumor appearances.
similarity to normal tissue.
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Motivation: Automatic Brain Tumor Segmentation

Solution strategy:
1 Incorporate prior knowledge by registration with template.
2 Pixel-level classifier using image- and template-based features.



Motivation: Automatic Brain Tumor Segmentation

Best performance with logistic regression:
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fi(x).

Problem 1: Estimating x is slow:

8 million voxels per volume.
Later in this talk: Big-N problems.

Problem 2: Designing features.

Lots of possible candidate features.
Using all features leads to over-fitting.

Due to slow training time: manual feature selection.
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Adding Regularization

Strange idea: try all features with L2-Regularization:

min
x∈RP

1
N

N∑
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fi(x) + λ

P∑

i=1

x2
i .

Reduces over-fitting.
As good as best selected features.
Smooth function, so we can compute this on large datasets:
http://www.di.ens.fr/˜mschmidt/Software/minFunc.html

But, uses all features so slow to segment new images.
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x
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N∑

i=1

fi(x) + λ
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|xi |.

Still reduces over-fitting.
But, solution x is SPARSE (some xj = 0).
Feature selection by only training once.
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Binary case:

Setting variable xj = 0 removes the feature aj .

Because we classify using the sign of xT a:
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= xT a
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Variable Selection with L1-Regularization

C-class case:

Setting variable xj = 0 may not remove the feature aj .

Because we classify using the maximum of xT
c a:
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Feature Selection with Group L1-Regularization

C-class case:

Setting group {x1j , x2j , x3j , x4j , x5j} = 0 removes the feature aj .
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Group L1-Regularization

L1-Regularization encourages sparsity in variables xi .

min
x

1
N

N∑

i=1

fi(x) + λ

P∑

i=1

|xi |.

Group L1-regularization encourages sparsity in groups xg :

min
x

1
N

N∑

i=1

fi(x) + λ
∑

g∈G
‖xg‖.

Structured sparsity generalizes groups to other structures.
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Structured Sparsity Examples

Examples of structured sparsity:

Structured sparsity to select convex regions:

R. Jenatton, G. Obozinski and F. Bach

The framework of Jenatton et al. (2009) can be summarized
as follows: if we denote by G a subset of the power set of
{1, . . . , p}, such that

⋃
G∈G G = {1, . . . , p}, we define the

mixed !1/!2 norm Ω on a vector y ∈ Rp as

Ω(y) =
∑

G∈G

{ ∑

j∈G

(dG

j )2|yj |2
} 1

2

=
∑

G∈G
‖dG ◦ y‖2 ,

where (dG)G∈G ∈ Rp×|G| is a |G|-tuple of p-dimensional
vectors such that dG

j > 0 if j ∈ G and dG
j = 0 other-

wise. This normΩ linearly combines the !2 norms of possi-
bly overlapping groups of variables, with variables in each
group being weighted by (dG)G∈G . Note that a same vari-
able yj belonging to two different groups G1, G2 ∈ G is
allowed to be weighted differently in G1 and G2 (by re-
spectively dG1

j and dG2
j ).

For specific choices of G, Ω leads to standard sparsity-
inducing norms. For example, when G is the set of all
singletons, Ω is the usual !1 norm (assuming that all the
weights are equal to 1).

We focus on the case of a 2-dimensional grid where the set
of groups G is the set of all horizontal and vertical half-
spaces (see Fig. 1 taken from Jenatton et al., 2009). As
proved by Jenatton et al. (2009, Theorem 3.1), the !1/!2
norm Ω sets to zero some groups of variables ‖dG ◦ y‖2,
i.e., some entire horizontal and vertical half-spaces of the
grid, and therefore induces rectangular nonzero patterns.
Note that a larger set of convex patterns can be obtained by
adding in G half-planes with other orientations. In practice,
we use planes with angles that are multiples of π

4 , which
enables the nonzero patterns to have polygonal shapes with
up to 8 faces.

Figure 1: (Left) The set of blue and green groups with their
(not displayed) complements to penalize to select rectan-
gles. (Right) In red, an example of recovered pattern in this
setting.

Among sparsity inducing regularizations, the !1 norm is
often privileged since it is convex. However, so-called con-
cave penalizations, such as penalization by an !α quasi-
norm, which are closer to the !0 quasi-norm and penalize
more aggressively small coefficients can be preferred, es-
pecially in a context where the unregularized problem, here
dictionary learning is itself non convex. In light of recent
work showing the advantages of addressing sparse prob-
lems through concave penalization (e.g., see Zou and Li,
2008), we therefore generalize Ω to a family of non-convex

regularizers as follows: for α∈ (0, 1), we define the quasi-
norm Ωα for all vectors y∈Rp as

Ωα(y) =

{ ∑

G∈G
‖dG ◦ y‖α

2

} 1
α

= ‖ (‖dG ◦ y‖2)G∈G ‖α ,

where we denote by (‖dG ◦ y‖2)G∈G ∈ R1×|G| the |G|-
tuple composed of the different blocks ‖dG ◦ y‖2. We thus
replace the (convex) !1/!2 norm Ω by the (neither convex,
nor concave) !α/!2 quasi-norm Ωα. While leading to the
same set of (non)zero patterns, the !α quasi-norm yields
sparsity at the group level more aggressively.

3 Optimization

We consider the optimization of Eq. (1) where we use
Ωv = Ωα to regularize the dictionary V . We discuss in
Section 3.3 which norms Ωu we can handle in this opti-
mization framework.

3.1 Formulation as a Sequence of Convex Problems

We now consider Eq. (1) where we take Ωv to be Ωα, α ∈
(0, 1), that is,





min
U∈Rn×r,
V ∈Rp×r

1

2np

∥∥X−UV #∥∥2

F
+ λ

r∑

k=1

Ωα(V k)

s.t. ∀k, Ωu(Uk) ≤ 1,

(2)

Although the minimization problem in Eq. (2) is still con-
vex in U for V fixed, the converse is not true anymore
because of Ωα. Indeed, the formulation in V is non-
differentiable and non-convex. To address this problem, we
use the variational equality based on the following lemma
that is related3 to ideas from Micchelli and Pontil (2006):

Lemma 3.1. Let α ∈ (0, 2) and β = α
2−α . For any vector

y ∈ Rp, we have the following equality

‖y‖α = min
z∈Rp

+

1

2

p∑

j=1

y2
j

zj
+

1

2
‖z‖β ,

and the minimum is uniquely attained for zj =

|yj |2−α ‖y‖α−1
α , ∀j ∈ {1, . . . , p}.

Proof. Let ψ : z '→ ∑p
j=1 y2

j z−1
j + ‖z‖β be the contin-

uously differentiable function defined on (0,+∞). We
have lim‖z‖β→∞ ψ(z) = +∞ and limzj→0 ψ(z) = +∞
if yj *= 0 (for yj = 0, note that minz∈Rp

+
ψ(z) =

minz∈Rp
+,zj=0 ψ(z)). Thus, the infimum exists and it is at-

tained. Taking the derivative w.r.t. zj (for zj > 0) leads to
the expression of the unique minimum, expression that is
still correct for zj = 0.

3Note that we depart from Micchelli and Pontil (2006) who
consider a quadratic upperbound on the squared norm. We prefer
to remain in the standard dictionary learning framework where the
penalization is not squared.

JENATTON, AUDIBERT AND BACH

Figure 6: Groups with ±!/4 orientations: (Left) the set of groups (blue areas) with their (not
displayed) complements to penalize in order to select diamond-shaped patterns. (Right) An example
of nonzero pattern (red dotted area) recovered in this setting, with its corresponding zero pattern
(hatched area).

groups, embedded in the three-dimensional space obtained by tracking the frames over time. Finally,
in the context of matrix-based optimization problems, for example, multi-task learning and dictio-
nary learning, sets of groups G can also be designed to encode structural constraints the solutions
must respect. This notably encompasses banded structures (Levina et al., 2008) and simultaneous
row/column sparsity for CUR matrix factorization (Mairal et al., 2011).

3.5.4 REPRESENTATION AND COMPUTATION OF G

The sets of groups described so far can actually be represented in a same form, that lends itself well
to the analysis of the next section. When dealing with a discrete sequence of length l (see Figure 4),
we have

G = {gk−; k ∈ {1, . . . , l−1}}∪{gk+; k ∈ {2, . . . , l}},

= Gleft∪Gright,

with gk− = {i; 1 ≤ i ≤ k} and gk+ = {i; l ≥ i ≥ k}. In other words, the set of groups G can be
rewritten as a partition2 in two sets of nested groups, Gleft and Gright.

The same goes for a two-dimensional grid, with dimensions h×l (see Figure 5 and Figure 6). In
this case, the nested groups we consider are defined based on the following groups of variables

gk," = {(i, j) ∈ {1, . . . , l}×{1, . . . ,h}; cos(")i+ sin(") j ≤ k},

where k ∈ Z is taken in an appropriate range. The nested groups we obtain in this way are therefore
parameterized by an angle3 ", " ∈ (−!;!]. We refer to this angle as an orientation, since it defines
the normal vector

(cos(")
sin(")

)
to the line {(i, j) ∈ R2;cos(")i+ sin(") j = k}. In the example of the

rectangular groups (see Figure 5), we have four orientations, with " ∈ {0,!/2,−!/2,!}. More
generally, if we denote by # the set of the orientations, we have

G =
⋃

"∈#
G",

2. Note the subtlety: the sets G" are disjoint, that is G"∩G"′ = ∅ for " )= "′, but groups in G" and G"′ can overlap.
3. Due to the discrete nature of the underlying geometric structure of G , angles " that are not multiple of !/4 (i.e., such
that tan(") /∈ Z) are dealt with by rounding operations.
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Structured Sparsity Examples

Examples of structured sparsity:

Dictionary learned with non-negative matrix factorization:R. Jenatton, G. Obozinski and F. Bach

Figure 3: Three learned dictionaries of faces with r = 36:
NMF (top), SSPCA (middle) and shared-SSPCA (bottom)
(i.e., SSPCA with |M| = 12 different patterns of size 3).
The dictionary elements are sorted in decreasing order of
explained variance. While NMF gives sparse spatially un-
constrained patterns, SSPCA finds convex areas that cor-
respond to more natural face segments. SSPCA captures
the left/right illuminations and retrieves pairs of symmetric
patterns. Some displayed patterns do not seem to be con-
vex, e.g., nonzero patterns located at two opposite corners
of the grid. However, a closer look at these dictionary el-
ements shows that convex shapes are indeed selected, and
that small numerical values (just as regularizing by !2 norm
may lead to) give the visual impression of having zeroes in
convex nonzero patterns. This also shows that if a noncon-
vex pattern has to be selected, it will be, by considering its
convex hull.

We performed a Wilcoxon signed-rank (Lehmann and Ro-
mano, 2005) between the classification scores of NMF
and SSPCA, and for dictionary sizes greater than 100 (up
to 150), our approach performs better than NMF at the
5% significance level. For smaller dictionaries, NMF and
SSPCA perform similarly. The other methods, including
PCA and SPCA, obtained overall lower scores than NMF
and can also be shown to perform significantly worse than
SSPCA.

As a baseline, we also plot the classification score that we
obtain when we directly apply k-NN on the raw data, with-
out preprocessing. Because of its local dictionary, SSPCA
proves to be more robust to occlusions and therefore out-
performs the other methods on this classification task. On
the other hand, SPCA, that yields sparsity without a struc-
tured prior, performs poorly. Sharing structure across the
dictionary elements (see Section 3.2) seems to help SPCA
for which no structure information is otherwise available.

The goal of our paper is not to compete with state-of-the-art
techniques of face recognition, but to demonstrate the im-
provement obtained between the !1 norm and more struc-
tured norms. We could still improve upon our results using
non-linear classification (e.g., with a SVM) or by refining
our features (e.g., with a Laplacian filter).
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Figure 4: Classification accuracy versus dictionary size:
each dimensionality reduction technique is used with k-NN
to classify occluded faces. SSPCA shows better robustness
to occlusions. The points, lower and upper error bars on
the curves respectively represent the median, first and third
quartile, based on 10 runs.
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Figure 4: Classification accuracy versus dictionary size:
each dimensionality reduction technique is used with k-NN
to classify occluded faces. SSPCA shows better robustness
to occlusions. The points, lower and upper error bars on
the curves respectively represent the median, first and third
quartile, based on 10 runs.
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Fig. 7.3. Left: Example of dictionary with p = 256 elements, learned on a database of natu-

ral 12 × 12 image patches when Ω is the !1-norm. Right: Dictionary with p = 400 elements,

learned with a structured sparsity-inducing penalty Ω (see [88]).

efficient when the number of signals q is large.1 Convex relaxations of

dictionary learning have also been proposed in [14, 26].

7.4 Bayesian Methods

While the focus of this monograph is on frequentist approaches to

sparsity, and particularly on approaches that minimize a regularized

empirical risk, there naturally exist several Bayesian2 approaches to

sparsity.

As a first remark, regularized optimization can be viewed as solving

a maximum a posteriori (MAP) estimation problem if the loss ! (cf.

Section 1.2) defining f can be interpreted as a log-likelihood and the

norm as certain log-prior. Typically, the !1-norm can for instance be

interpreted as the logarithm of a product of independent Laplace priors

on the loading vectors w (see, e.g., [123]). However, the Laplace distri-

bution is actually not a sparse prior, in the sense that it is a continuous

1 Such efficient algorithms are freely available in the open-source software package SPAMS

http://www.di.ens.fr/willow/SPAMS/.
2 Bayesian methods can of course not be reduced to nonconvex optimization, but given

that they are often characterized by multimodality and that corresponding variational

formulations are typically nonconvex, we conveniently discuss them here.
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Examples of structured sparsity:

Tree-structured dictionary with structured sparsity:Proximal Methods for Sparse Hierarchical Dictionary Learning

Figure 4. Example of a topic hierarchy estimated from 1714 NIPS

proceedings papers (from 1988 through 1999). Each node corre-

sponds to a topic whose 5 most important words are displayed.

Single characters such as n, t, r are part of the vocabulary and

often appear in NIPS papers, and their place in the hierarchy is

semantically relevant to children topics.

the topic decomposition. Since the hierarchy is shared by
all documents, the topics located at the top of the tree will
be part of every decomposition, and should therefore corre-
spond to topics common to all documents. Conversely, the
deeper the topics in the tree, the more specific they should
be. It is worth mentioning the extension of LDA that con-
siders hierarchies of topics from a non-parametric Bayesian
viewpoint (Blei et al., 2010). We plan to compare to this
model in future work.

Visualization of NIPS proceedings. We first qualitatively
illustrate our dictionary learning approach on the NIPS pro-
ceedings papers from 1988 through 19998. After removing
words appearing fewer than 10 times, the dataset is com-
posed of 1714 articles, with a vocabulary of 8274 words.
As explained above, we consider D+

1 and take A to be
Rp×n

+ . Figure 4 displays an example of a learned dictio-
nary with 13 topics, obtained by using the !∞ norm in Ω
and selecting manually λ = 2−15. Similarly to Blei et al.
(2010), we interestingly capture the stopwords at the root
of the tree, and the different subdomains of the conference
such as neuroscience, optimization or learning theory.

Posting classification. We now consider a binary clas-
sification task of postings from the 20 Newsgroups data
set9. We classify the postings from the two newsgroups
alt.atheism and talk.religion.misc, following the setting of

8http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
9See http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 5. Binary classification of two newsgroups: classification

accuracy for different dimensionality reduction techniques cou-

pled with a linear SVM classifier. The bars and the errors are

respectively the mean and the standard deviation, based on 10 ran-

dom split of the data set. Best seen in color.

Zhu et al. (2009). After removing words appearing fewer
than 10 times and standard stopwords, these postings form
a data set of 1425 documents over a vocabulary of 13312
words. We compare different dimensionality reduction
techniques that we use to feed a linear SVM classifier,
i.e., we consider (i) LDA (with the code from Blei et al.,
2003), (ii) principal component analysis (PCA), (iii) non-
negative matrix factorization (NMF), (iv) standard sparse
dictionary learning (denoted by SpDL) and (v) our sparse
hierarchical approach (denoted by SpHDL). Both SpDL
and SpHDL are optimized over D+

1 and A = Rp×n
+ , with

the weights wg equal to 1. We proceed as follows: given
a random split into a training/test set of 1000/425 post-
ings, and given a number of topics p (also the number of
components for PCA, NMF, SpDL and SpHDL), we train
a SVM classifier based on the low-dimensional representa-
tion of the postings. This is performed on the training set of
1000 postings, where the parameters, λ∈{2−26, . . . , 2−5}
and/or Csvm ∈ {4−3, . . . , 41} are selected by 5-fold cross-
validation. We report in Figure 5 the average classifica-
tion scores on the test set of 425 postings, based on 10
random splits, for different number of topics. Unlike the
experiment on the image patches, we consider only one
tree structure, namely complete binary trees with depths in
{1, . . . , 5}. The results from Figure 5 show that SpDL and
SpHDL perform better than the other dimensionality reduc-
tion techniques on this task. As a baseline, the SVM classi-
fier applied directly to the raw data (the 13312 words) ob-
tains a score of 90.9±1.1, which is better than all the tested
methods, but without dimensionality reduction (as already
reported by Blei et al., 2003). Moreover, the error bars in-
dicate that, though nonconvex, SpDL and SpHDL do not
seem to suffer much from instability issues. Even if SpDL
and SpHDL perform similarly, SpHDL has the advantage
to give a more interpretable topic mixture in terms of hier-
archy, which standard unstructured sparse coding cannot.
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Examples of structured sparsity:

A linear model with variable interactions:

m(x) = x1 + x2 + x3 + x12 + x13 + x23 + x123.

E.g., Mutations in both gene A and gene B lead to cancer.

We can’t consider all 2P possible interations.
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Where does the sparsity come from?

Unfortunately, all these regularizers are non-smooth.

Consider our problem

min
x∈RP

1
N

N∑

i=1

fi(x) + r(x)

data fitting term + regularizer

A solution must have:
-gradient(data-fitting term) = subgradient(regularizer).

Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization
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Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

Black-box model of large-scale optimization:

Algorithm can use O(P) time to choose an iterate x t .
Algorithm receives the function and subgradient at x t .

How many iterations does it take to reach an accuracy of ε?

With standard subgradient-continuity and curvature assumptions:

Smooth problems can be solved in O(log(1/ε)) iterations.
(polynomial-time)

Non-smooth problems can be solved in O(1/ε) iterations.
(exponential-time)
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Opening Up the Black Box

Bad news:

Any non-smooth method requires Ω(1/ε) in the worst case.
Huge difference in practice between non-smooth and smooth.

Is large-scale L1-regularization not feasible?

No, we don’t have a general non-smooth black-box:

min
x∈RP

1
N
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i=1

f (x) + r(x)

smooth + ‘simple’

Proximal-gradient methods solve these problems in O(log(1/ε)).
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Converge Rate of Gradient Method

To minimize a smooth objective

min
x∈RP

f (x),

the gradient method minimizes the approximation

x t+1 = arg min
x∈RP

f (x t) + f ′(x t)T (x − x t) +
1

2α
‖x − x t‖2.

yielding the iteration

x t+1 = x t − αf ′(x t),

and requiring O(κ log(1/ε)) iterations.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y ] = arg min
x∈RP

r(x) +
1
2
‖x − y‖2.

For L1-regularization, we obtain iterative soft-thresholding:

x+ = softThreshαλ[x − αf ′(x)].

Example with λ = 1:
Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0



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x∈RP

r(x) +
1
2
‖x − y‖2.

For L1-regularization, we obtain iterative soft-thresholding:

x+ = softThreshαλ[x − αf ′(x)].
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Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =





0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − αf ′(x)],

f(x)

x



Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =





0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − αf ′(x)],

f(x)

x



Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =





0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − αf ′(x)],

f(x)

x



Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =





0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − αf ′(x)],

Feasible Set

f(x)

x



Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =





0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − αf ′(x)],

Feasible Set

x - !f’(x)
f(x)

x



Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =





0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − αf ′(x)],

Feasible Set

f(x)

x

x - !f’(x)



Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =





0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − αf ′(x)],

Feasible Set

x+

f(x)

x

x - !f’(x)



Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 One linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

For many problems we can not efficiently compute this operator.
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Inexact Proximal-Gradient Methods

We can efficiently approximate the proximity operator for:

1 Structured sparsity.
2 Penalties on the differences between variables.
3 Regularizers and constraints on the singular values of matrices.
4 Sums of simple functions.

Many recent works use inexact proximal-gradient methods:
Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

Do inexact methods have the O(κ log(1/ε)) rate?

Yes, if the errors are appropriately controlled. [Schmidt et al., 2011]
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Do inexact methods have the O(κ log(1/ε)) rate?

Yes, if the errors are appropriately controlled. [Schmidt et al., 2011]



Inexact Proximal-Gradient Methods

We can efficiently approximate the proximity operator for:
1 Structured sparsity.
2 Penalties on the differences between variables.
3 Regularizers and constraints on the singular values of matrices.
4 Sums of simple functions.

Many recent works use inexact proximal-gradient methods:
Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]
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Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors
{||et ||} and proximal errors {√εt} are in {O((1− κ−1)t)}, then the
inexact proximal-gradient method requires O(κ log(1/ε)) iterations.

Classic result as a special case (constants are good).

The rates degrades gracefully if the errors are larger.

We also showed the O(
√
κ log(1/ε)) accelerated method rate.

We also considered weaker convexity assumptions on f .

Huge improvement in practice over black-box methods.
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Flow Cytometry Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):

Pairwise Threeway HLLM
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Traffic Flow Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):

Pairwise Threeway HLLM
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Discussion

Theoretical justification for what works in practice.

Significantly extends class of tractable problems.

Many subsequent applications with inexact proximal operators:

Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

But, it assumes computing f ′(x) and proxr [x ] have similar cost.

Often f ′(x) is much more expensive:

We may have a large dataset.
Data-fitting term might be complex.

Particularly true for structured output prediction:

Text, biological sequences, speech, images, matchings, graphs.



Discussion

Theoretical justification for what works in practice.

Significantly extends class of tractable problems.

Many subsequent applications with inexact proximal operators:

Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

But, it assumes computing f ′(x) and proxr [x ] have similar cost.

Often f ′(x) is much more expensive:

We may have a large dataset.
Data-fitting term might be complex.

Particularly true for structured output prediction:

Text, biological sequences, speech, images, matchings, graphs.



Discussion

Theoretical justification for what works in practice.

Significantly extends class of tractable problems.

Many subsequent applications with inexact proximal operators:

Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

But, it assumes computing f ′(x) and proxr [x ] have similar cost.

Often f ′(x) is much more expensive:

We may have a large dataset.
Data-fitting term might be complex.

Particularly true for structured output prediction:

Text, biological sequences, speech, images, matchings, graphs.



Motivation: Automatic Brain Tumor Segmentation

Independent pixel classifier ignores correlations.

Conditional random fields (CRFs) generalize logistic regression
to multiple labels.

Data-fitting term is solution of 8-million node graph-cut problem.



Outline

1 Structured sparsity (inexact proximal-gradient method)

2 Learning dependencies (costly models with simple constraints)

3 Fitting a huge dataset (stochastic average gradient)



Motivation: Graphical Model Structure Learning

Discovering the dependencies between variables:

car drive files hockey mac league pc win
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1
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Example: Graphical Model Structure Learning
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Structure Learning with `1-Regularization

X1
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X8
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We want to fit a Markov random field with unknown structure.

Learn a sparse structure by `1-regularization of edge weights.
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Structure Learning with Group `1-Regularization
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In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].

2 Blockwise-sparsity [Duchi et al., 2008].
3 Conditional random fields [Schmidt et al., 2008].
4 Low-rank Edges [Schmidt, 2010].
5 Higher-order models [Schmidt & Murphy, 2010].
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Costly Data-Fitting Term, Simple Regularizer

These problems and many others have the form:

min
x∈RP

1
N
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i=1

fi(x) + r(x)

costly smooth + simple

Different than classic optimization (like linear programming).
(cheap smooth plus complex non-smooth)

Inspiration from the smooth case:

For smooth high-dimensional problems, L-BFGS outperform
accelerated/spectral gradient methods.
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Quasi-Newton Methods

Gradient method for optimizing a smooth f :

x+ = x − αf ′(x).

Newton-like methods alternatively use:

x+ = x − αH−1f ′(x).

H approximates the second-derivative matrix.

L-BFGS is a particular strategy to choose the H values:

Based on gradient differences.
Linear storage and linear time.

http://www.di.ens.fr/˜mschmidt/Software/minFunc.html
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Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO!

f(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO!

f(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO!

f(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)

x1

x2



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x1

x2



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x

x1

x2



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x

x1

x2

x - !f’(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x

x1

x2

x - !f’(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x1

x2
Q(x)

x

x - !f’(x) x+



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x1

x2

xk - !H-1f’(x)
x

x - !f’(x) x+

Q(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x1

x2

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)



Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − αf ′(x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1f ′(x)].

NO! f(x)
Feasible Set

x1

x2

x+

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)



Two-Metric (Sub)Gradient Projection

In some cases, we can modify H to make this work:

Bound constraints.
Probability constraints.
L1-regularization.

Two-metric (sub)gradient projection.
[Gafni & Bertskeas, 1984, Schmidt, 2010].



Comparing to accelerated/spectral/diagonal gradient

Comparing to methods that do not use L-BFGS (sido data):

200 400 600 800 1000 1200 1400 1600 1800 2000

10
−4

10
−2

10
0

10
2

Function Evaluations

O
b

je
c

ti
v

e
 V

a
lu

e
 m

in
u

s 
O

p
ti
m

a
l

 

 
PSSgb

BBSG

BBST

OPG

SPG

DSST

http://www.di.ens.fr/˜mschmidt/Software/L1General.html

http://www.di.ens.fr/~mschmidt/Software/L1General.html


Inexact Proximal-Newton

The broken proximal-Newton method:

x+ = proxαr [x − αH−1f ′(x)],

with the Euclidean proximal operator:

proxr [y ] = arg min
x∈RP

r(x) +
1
2
‖x − y‖2,

where ‖x‖2
H = xT Hx .

Non-smooth Newton-like method

Same convergence properties as smooth case.

But, the prox is expensive even with a simple regularizer.

Solution: use a cheap approximate solution.
(e.g., spectral proximal-gradient)
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Projected Quasi-Newton (PQN) Algorithm

A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

Outer: evaluate f (x) and f ′(x), use L-BFGS to update H.
Inner: spectral proximal-gradient to approximate proximal operator:

Requires multiplication by H (linear-time for L-BFGS).
Requires proximal operator of r (cheap for simple constraints).

For small α, one iteration is sufficient to give descent.

Cheap inner iterations lead to fewer expensive outer iterations.

“Optimizing costly functions with simple constraints”.

“Optimizing costly functions with simple regularizers”.
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Graphical Model Structure Learning with Groups

Comparing PQN to first-order methods on a graphical model
structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].
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Inexact Proximal Newton

The proximal quasi-Newton (PQN) approach:

“The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps
the most elegant and logical extension of quasi-Newton methods,
but it involves solving a sub-iteration.” [Becker and Fadili, 2012].
“PQN is an implementation that uses a limited-memory
quasi-Newton update and has both excellent empirical
performance and theoretical properties.” [Lee et al., 2012].

Proximal-Newton methods are becoming optimization workhorse,
e.g. NIPS 2012:

Becker & Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco & Sudderth.

http://www.di.ens.fr/˜mschmidt/Software/PQN.html
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Proximal-Newton methods are becoming optimization workhorse,
e.g. NIPS 2012:

Becker & Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco & Sudderth.

http://www.di.ens.fr/˜mschmidt/Software/PQN.html

http://www.di.ens.fr/~mschmidt/Software/PQN.html


Motivation: Structure Learning in CRFs

Task: early detection of coronoary heart disease.

Assess motion of heart segments using structured prediction.

Data-fitting function is dynamic program.
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Example: Learning Variable Groupings

Discovering variable groupings:
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Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

If I see that my watch says 11:55, then it’s almost lunch time

If I set my watch so it says 11:55, it doesn’t help
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Example: Modeling Interventional Data

Using structured prediction to model interventions:
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Outline

1 Structured sparsity (inexact proximal-gradient method)

2 Learning dependencies (costly models with simple constraints)

3 Fitting a huge dataset (stochastic average gradient)



Big-N Problems

We want to minimize the sum of a finite set of smooth functions:

min
x∈RP

f (x) :=
1
N

N∑

i=1

fi(x).

We are interested in cases where N is very large.

Simple example is least-squares,

fi(x) := (aT
i x − bi)

2.

Other examples:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
N

∑N
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt f ′(xt) = xt −
αt

N

N∑

i=1

f ′i (xt).

Only requires O(log(1/ε)) iterations.
Iteration cost is linear in N.
Quasi-Newton methods still require O(N).

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of i(t) from {1, 2, . . . ,N}.

xt+1 = xt − αt f ′i(t)(xt ).

Iteration cost is independent of N.
Requires O(1/ε) iterations.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑n
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:
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Motivation for New Methods

DG method requires O(log(1/ε)) with O(N).

SG method requires O(1/ε) iterations with O(1).

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time
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Goal is requiring O(log(1/ε)) iterations with O(1) cost.
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

Step-size strategies, momentum, gradient/iterate averaging

Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov

(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic versions of accelerated and Newton methods

Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),

Martens (2010), Xiao (2010), Duchi et al. (2011)

None of these methods improve on the O(1/ε) rate

Constant step-size SG, accelerated SG

Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)

O(log(1/ε) iterations to reach a fixed tolerance

Hybrid methods, incremental average gradient

Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)

O(log(1/ε)) iterations but eventually requires full passes.
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Stochastic Average Gradient

Can we have O(1) cost but only require O(log(1/ε))
iterations?

YES! The stochastic average gradient (SAG) algorithm:
Randomly select i(t) from {1, 2, . . . , n} and compute f ′i(t)(x

t ).

x t+1 = x t − αt

N

N∑
i=1

f ′i (x
t )

Memory: y t
i = f ′i (x

t ) from the last t where i was selected.

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.
Memory requirements reduced to O(N) for many problems.
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Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of ε is O(max{κ,N} log(1/ε)).

Proof is ‘infamous’, but the constants are good.

Number of f ′i evaluations to reach ε:

Stochastic: O(κ(1/ε)).
Gradient: O(Nκ log(1/ε)).
Accelerated: O(N

√
κ log(1/ε)).

SAG: O(max{N, κ} log(1/ε)).

SAG beats two lower bounds:

Stochastic gradient bound of O(1/ε).
Deterministic gradient bound of O(N

√
κ log(1/ε)) (large N and κ).
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Comparing FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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Discussion

Faster theoretical convergence using only the ‘sum’ structure.

Simple algorithm, empirically better than theory predicts.

Robust stochastic gradient algorithm:

Adaptive step-size, termination criterion.

Various extensions:

Non-uniform sampling.
[Schmidt et al., 2013]

Non-smooth problems.
[Mairal, 2013, Wong et al., 2013, Mairal, 2014, Xiao and Zhang, 2014, Defazio et al.,

2014]

Memory-free methods.
[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and

Richtarik, 2013, Xiao and Zhang, 2014]

Quasi-Newton methods.
[Sohl-Dickstein et al., 2014]
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