Tractable Big Data and Big Models

in Machine Learning

Mark Schmidt

University of British Columbia
TAAI 2014

November 2014

Context: Big Data and Big Models

@ We are collecting data at unprecedented rates.

e Seen across many fields of science and engineering.
o Not gigabytes, but terabytes or petabytes (and beyond).

Context: Big Data and Big Models

@ We are collecting data at unprecedented rates.
e Seen across many fields of science and engineering.
o Not gigabytes, but terabytes or petabytes (and beyond).

@ Many important aspects to the ‘big data’ puzzle:

o Distributed data storage and management, parallel computation,
software paradigms, data mining, machine learning, privacy and
security issues, reacting to other agents, power management,
summarization and visualization.

Context: Big Data and Big Models

@ Machine learning uses big data to fit richer statistical models:
e Vision, bioinformatics, speech, natural language, web, social.
e Developping broadly applicable tools.
@ Output of models can be used for further analysis.

Context: Big Data and Big Models

@ Machine learning uses big data to fit richer statistical models:
e Vision, bioinformatics, speech, natural language, web, social.
e Developping broadly applicable tools.
@ Output of models can be used for further analysis.

Context: Big Data and Big Models

@ Machine learning uses big data to fit richer statistical models:
e Vision, bioinformatics, speech, natural language, web, social.
e Developping broadly applicable tools.
@ Output of models can be used for further analysis.

@ Numerical optimization is at the core of many of these models.

Context: Big Data and Big Models

@ Machine learning uses big data to fit richer statistical models:
e Vision, bioinformatics, speech, natural language, web, social.
e Developping broadly applicable tools.
@ Output of models can be used for further analysis.

@ Numerical optimization is at the core of many of these models.
@ But, traditional ‘black-box’ methods have difficulty with:

e the large data sizes.
e the large model complexities.

Two Issues in this Talk

@ The first issue is computation:
e We ‘open up the black box’, by using the structure of machine
models to derive faster large-scale optimization algorithms.
e Can lead to enormous speedups for big data and complex models.

(polynomial vs. exponential)

Two Issues in this Talk

@ The first issue is computation:

e We ‘open up the black box’, by using the structure of machine
models to derive faster large-scale optimization algorithms.
e Can lead to enormous speedups for big data and complex models.

(polynomial vs. exponential)

@ The second issue is modeling:

e By expanding the set of tractable problems, we can propose richer
classes of statistical models that can be efficiently fit.

Two Issues in this Talk

@ The first issue is computation:

e We ‘open up the black box’, by using the structure of machine
models to derive faster large-scale optimization algorithms.
e Can lead to enormous speedups for big data and complex models.

(polynomial vs. exponential)

@ The second issue is modeling:

e By expanding the set of tractable problems, we can propose richer
classes of statistical models that can be efficiently fit.

@ My research tries to alternate between these two.

0 Structured sparsity (inexact proximal-gradient method)

Motivation: Automatic Brain Tumor Segmentation

@ Task: Segmentation of Multi-Modality MRI Data

Motivation: Automatic Brain Tumor Segmentation

@ Task: Segmentation of Multi-Modality MRI Data

@ Applications:

image-guided surgery

radiation target planning.
quantifying treatment response.
mining growth patterns.

Motivation: Automatic Brain Tumor Segmentation

@ Task: Segmentation of Multi-Modality MRI Data

@ Applications:

image-guided surgery

radiation target planning.
quantifying treatment response.
mining growth patterns.

@ Challenges:

e variety of tumor appearances.
e similarity to normal tissue.

Motivation: Automatic Brain Tumor Segmentation

@ Solution strategy:

@ |Incorporate prior knowledge by registration with template.
@ Pixel-level classifier using image- and template-based features.

Motivation: Automatic Brain Tumor Segmentation

@ Best performance with logistic regression:

Motivation: Automatic Brain Tumor Segmentation

@ Best performance with logistic regression:

N
1
min, 2 0

@ Problem 1: Estimating x is slow:

@ 8 million voxels per volume.
e Later in this talk: Big-N problems.

Motivation: Automatic Brain Tumor Segmentation

@ Best performance with logistic regression:

N
1
min, & 2_).

@ Problem 1: Estimating x is slow:

@ 8 million voxels per volume.
e Later in this talk: Big-N problems.

@ Problem 2: Designing features.

e Lots of possible candidate features.
@ Using all features leads to over-fitting.

@ Due to slow training time: manual feature selection.

Adding Regularization

@ Strange idea: try all features with L2-Regularization:

N P
o1 5
Ek@ﬁ;ﬁ(X)JFA;X"

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Adding Regularization

@ Strange idea: try all features with L2-Regularization:

N P
o1 5
g%rlﬁ;ﬁ(x)nLA;x, .
e Reduces over-fitting.

e As good as best selected features.

@ Smooth function, so we can compute this on large datasets:

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Adding Regularization

@ Strange idea: try all features with L2-Regularization:

N P
o1 5
gi{rlﬁ;ﬁ(x)nLA;x, .
Reduces over-fitting.

As good as best selected features.

Smooth function, so we can compute this on large datasets:

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

But, uses all features so slow to segment new images.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Adding Regularization

@ Strange idea: try all features with L2-Regularization:

N P
o1 5
g%rlﬁ;ﬁ(x)nLA;x, .
e Reduces over-fitting.

e As good as best selected features.

@ Smooth function, so we can compute this on large datasets:

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

e But, uses all features so slow to segment new images.
@ Another strange idea: try all features with L1-Regularization:

N

mln Z +)\Z\x,

e Still reduces over-fitting.
o But, solution x is SPARSE (some x; = 0).
e Feature selection by only training once.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Feature Selection with L1-Regularization (Binary)

@ Binary case:

e Setting variable x; = 0 removes the feature g;.

X1 Xo X3 Xa Xs} as

Feature Selection with L1-Regularization (Binary)

@ Binary case:

e Setting variable x; = 0 removes the feature g;.

@ Because we classify using the sign of x” a:

a
ap
0 X 0 x4 O} a | =x'a
ay
as

Variable Selection with L1-Regularization

@ C-class case:

e Setting variable x; = 0 may not remove the feature g;.

@ Because we classify using the maximum of x[a:

a T
X11 X122 X313 X14 Xi5 a Xy a
Xo1 Xoo Xo3 Xos4 Xos a | = X2T a
X31 X32 X33 X34 X35 a X3T a
X441 X42 Xa3 X44 X45 Xg,T a

as

Variable Selection with L1-Regularization

@ C-class case:

e Setting variable x; = 0 may not remove the feature g;.

@ Because we classify using the maximum of x[a:

0
0
X31
0

X12
X22

X32
0

0
X23
0
0

X14
X24
X34
Xa4

o O O ©o

x{ a
T
Xj a
T
X] a

.
x]a

Feature Selection with Group L1-Regularization

@ C-class case:

e Setting group {xij, Xz;, X3}, Xaj, Xs;} = O removes the feature g;.

@ Because we classify using the maximum of x[a:

o O O O

X12
X22
X32
Xa2

O O O o

X14
X24
X34
Xa4

o O O o

a
a
as
as
as

x{ a
T
Xj a
T
X] a

.
x{a

Group L1-Regularization

@ L1-Regularization encourages sparsity in variables x;.

N P
.1
min 21: fi(x) + /\2 X
1= 1=

Group L1-Regularization

@ L1-Regularization encourages sparsity in variables x;.

N P
.1
min 21: fi(x) + /\2 X
1= 1=

@ Group L1-regularization encourages sparsity in groups xg:

N

1
min 2)+ 2 Ixll-
=

9g€eg

Group L1-Regularization

@ L1-Regularization encourages sparsity in variables x;.

N P
.1
min 21: fi(x) + /\2 X
1= 1=

@ Group L1-regularization encourages sparsity in groups xg:

N

1
min 2)+ 2 Ixll-
=

9g€eg

@ Structured sparsity generalizes groups to other structures.

0
Q
o
S
©
>
L
>
5=
(%)
—
®
Q.
n
©
o
o
>
e
(®)
>
-
—
n

@ Examples of structured sparsity:

Structured sparsity to select convex regions:

anll,

WY
AN

N
N NN
N A\ AW

N\
N
N
N
N\

Structured Sparsity Examples

@ Examples of structured sparsity:

Dictionary learned with non-negative matrix factorization:

T VIANEHER
AEF4EFENE
niZdPEUNS
RENENASEE

Structured Sparsity Examples

@ Examples of structured sparsity:

Dictionary learned with structured sparsity:

JCAFNYERS
ERENREEEN
HERRNRENN

Structured Sparsity Examples

@ Examples of structured sparsity:

Structured Sparsity Examples

@ Examples of structured sparsity:

Tree-structured dictionary with structured sparsity:

hidden
units theorem
layer proof
training let
trained class
T bounded
cells connection 1
cell patterns would state
fiing p— pattern way states
response neurons what — control
stimulus system do current
does reinforcement
probability matrix
likelihood n performance circuit
distribution =1 t test analog
~models vector experiments [— chip
distributions r table implemented
1 performed implementation
optimal T
optimization image
error images
minimum visual
algorithm object
objects

Structured Sparsity Examples

@ Examples of structured sparsity:

@ A linear model with variable interactions:
m(x) = x1 + X2 + X3 + X12 + X13 + Xo3 + X123.

e E.g., Mutations in both gene A and gene B lead to cancer.

Structured Sparsity Examples

@ Examples of structured sparsity:

@ A linear model with variable interactions:
m(x) = x1 + X2 + X3 + X12 + X13 + Xo3 + X123.

e E.g., Mutations in both gene A and gene B lead to cancer.
e We can’t consider all 27 possible interations.

Structured Sparsity Examples

@ Examples of structured sparsity:

@ A linear model with variable interactions:
m(x) = x1 + X2 + X3 + X12 + X13 + Xo3 + X123.

e E.g., Mutations in both gene A and gene B lead to cancer.
e We can’t consider all 27 possible interations.
e Structured sparsity on the hierarchical models.

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

XeRP

1 N
min NZf/(X) + r(x)
i—

data fitting term + regularizer

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

N
, 1
min N;ﬁ(x) + r(x)
data fitting term + regularizer

@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).
@ Non-smoothness at zero ‘catches’ many solution:

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

1 N
min NZf/(X) + r(x)
i—

X€ERP
data fitting term + regularizer
@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).
@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

f(x)

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

1 N
min NZf/(X) + r(x)
i—

XERP
data fitting term + regularizer
@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).
@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

f(x)

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

1 N
min NZf/(X) + r(x)
i—

X€ERP
data fitting term + regularizer
@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).
@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

N
o
min N;ﬁ(x) + r(x)

data fitting term + regularizer

@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).

@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

N
o
min N;ﬁ(x) + r(x)

data fitting term + regularizer

@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).

@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

data fitting term + regularizer

@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).

@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

data fitting term + regularizer

@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).

@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

Where does the sparsity come from?

@ Unfortunately, all these regularizers are non-smooth.
@ Consider our problem

XeRP

N
. 1
min 5 ; filx) + r(x)
data fitting term + regularizer
@ A solution must have:
e -gradient(data-fitting term) = subgradient(regularizer).

@ Non-smoothness at zero ‘catches’ many solution:
L2-regularization L1-regularization

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

@ Black-box model of large-scale optimization:

e Algorithm can use O(P) time to choose an iterate x'.
e Algorithm receives the function and subgradient at x'.

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?
@ Black-box model of large-scale optimization:

e Algorithm can use O(P) time to choose an iterate x'.
e Algorithm receives the function and subgradient at x'.

@ How many iterations does it take to reach an accuracy of €?

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

@ Black-box model of large-scale optimization:

e Algorithm can use O(P) time to choose an iterate x'.
e Algorithm receives the function and subgradient at x'.

@ How many iterations does it take to reach an accuracy of €?

@ With standard subgradient-continuity and curvature assumptions:
@ Smooth problems can be solved in O(log(1/e¢)) iterations.

(polynomial-time)

Black-Box Smooth and Non-Smooth Optimization

Can we solve huge-dimensional non-smooth optimization problems?

@ Black-box model of large-scale optimization:

e Algorithm can use O(P) time to choose an iterate x'.
e Algorithm receives the function and subgradient at x'.

@ How many iterations does it take to reach an accuracy of €?

@ With standard subgradient-continuity and curvature assumptions:
@ Smooth problems can be solved in O(log(1/e¢)) iterations.
(polynomial-time)
@ Non-smooth problems can be solved in O(1/¢) iterations.

(exponential-time)

Opening Up the Black Box

@ Bad news:

e Any non-smooth method requires Q(1/¢) in the worst case.
e Huge difference in practice between non-smooth and smooth.

Opening Up the Black Box

@ Bad news:

e Any non-smooth method requires Q(1/¢) in the worst case.
e Huge difference in practice between non-smooth and smooth.

@ Is large-scale L1-regularization not feasible?

Opening Up the Black Box

@ Bad news:

e Any non-smooth method requires Q(1/¢) in the worst case.
e Huge difference in practice between non-smooth and smooth.

@ Is large-scale L1-regularization not feasible?
e No, we don’t have a general non-smooth black-box:

min NZf + r(x)

XERP

smooth + ’‘simple’

Opening Up the Black Box

@ Bad news:

e Any non-smooth method requires Q(1/¢) in the worst case.
e Huge difference in practice between non-smooth and smooth.

@ Is large-scale L1-regularization not feasible?
e No, we don’t have a general non-smooth black-box:

min NZf + r(x)

XERP

smooth + ’‘simple’

@ Proximal-gradient methods solve these problems in O(log(1/¢)).

Converge Rate of Gradient Method

@ To minimize a smooth objective

min f(x
xe]IRP ()’

the gradient method minimizes the approximation

’
x*1 = argmin f(x!) + ' (x")T(x — x!) + —||x — x*|)2.
by 2c

Converge Rate of Gradient Method

@ To minimize a smooth objective
min f(x
XERP ()’

the gradient method minimizes the approximation

x"*1 = argmin f(x!) + £/ (x")T(x — x') + L”X - x'|%.
by 2c

yielding the iteration
xH = xt —af (xh),

and requiring O(x log(1/¢)) iterations.

Converge Rate of Gradient Method

@ To minimize a smooth objective
min f(x
XERP ()’

the gradient method minimizes the approximation

x"*1 = argmin f(x!) + £/ (x")T(x — x') + L||X - x'|%.
by 2c

yielding the iteration
x* = x!' — af'(x1),

and requiring O(x log(1/¢)) iterations.

Converge Rate of Gradient Method

@ To minimize a smooth objective
min f(x),

X€ERP

the gradient method minimizes the approximation

X" = argmin f(x") + F/(x")T(x — x") + LHX - x'|2.
CeRP 20

yielding the iteration
xH = xt —af'(x"),

and requiring O(x log(1/¢)) iterations.

Converge Rate of Gradient Method

@ To minimize a smooth objective

in f
min f(x),

the gradient method minimizes the approximation
1
x"*1 = argmin f(x) + f'(x")T(x — x') + = ||x — x'|)2.
X€ERP 20

yielding the iteration
xH = xt —af'(x"),

and requiring O(x log(1/¢)) iterations.
@ Accelerated gradient method requires O(v/x log(1/¢)).

@ Spectral gradient method is faster in practice.

Converge Rate of Gradient Method

@ To minimize a smooth objective

in f
min f(x),

the gradient method minimizes the approximation
1
x"*1 = argmin f(x) + f'(x")T(x — x') + = ||x — x'|)2.
X€ERP 20

yielding the iteration
xH = xt —af'(x"),

and requiring O(x log(1/¢)) iterations.
@ Accelerated gradient method requires O(v/x log(1/¢)).

@ Spectral gradient method is faster in practice.

Converge Rate of Gradient Method

@ To minimize a smooth plus simple objective

)[E]IRQ’ f(x)+r(x),

the gradient method minimizes the approximation
1
x"*1 = argmin f(x) + f/(x") T (x — x') + —||x — x*|)2.
X€ERP 20

yielding the iteration
xH = xt —af'(x"),

and requiring O(x log(1/¢)) iterations.
@ Accelerated gradient method requires O(v/x log(1/¢)).

@ Spectral gradient method is faster in practice.

Converge Rate of Gradient Method

@ To minimize a smooth plus simple objective

)[E]IRQ’ f(x)+r(x),

the proximal-gradient method minimizes the approximation
x"*1 = argmin f(x) + f'(x")T(x — x) + LHX — XY2+r(x).
XERP 20
yielding the iteration

t

X1 = prox,, [x! — af (x1)],

and requiring O(x log(1/¢)) iterations.
@ Accelerated gradient method requires O(v/x log(1/¢)).

@ Spectral gradient method is faster in practice.

Converge Rate of Gradient Method

@ To minimize a smooth plus simple objective

)[E]IRQ’ f(x)+r(x),

the proximal-gradient method minimizes the approximation
x"*1 = argmin f(x) + f'(x")T(x — x) + LHX — XY2+r(x).
XERP 20
yielding the iteration

t

X1 = prox,, [x! — af (x1)],

and still requiring O(«x log(1/¢)) iterations.
@ Accelerated gradient method requires O(v/x log(1/¢)).

@ Spectral gradient method is faster in practice.

Converge Rate of Gradient Method

@ To minimize a smooth plus simple objective

)[E]IRQ’ f(x)+r(x),

the proximal-gradient method minimizes the approximation
x"*1 = argmin f(x) + f'(x")T(x — x) + LHX — XY2+r(x).
XERP 20
yielding the iteration

t

X1 = prox,, [x! — af (x1)],

and still requiring O(«x log(1/¢)) iterations.
@ Accelerated proximal-gradient method requires O(+/x log(1/¢)).

@ Spectral proximal-gradient method is faster in practice.

Converge Rate of Gradient Method

@ To minimize a smooth plus simple objective

)[E]IRQ’ f(x)+r(x),

the proximal-gradient method minimizes the approximation
x"*1 = argmin f(x) + f'(x")T(x — x) + LHX — XY2+r(x).
XERP 20
yielding the iteration

t

X1 = prox,, [x! — af (x1)],

and still requiring O(«x log(1/¢)) iterations.
@ Accelerated proximal-gradient method requires O(+/x log(1/¢)).
@ Spectral proximal-gradient method is faster in practice.

@ Non-smooth optimization at the speed of smooth optimization.

Proximal Operator, lterative Soft Thresholding

@ The proximal operator is the solution to

. 1
prox,[y] = argmin r(x) + §||x —y|2
XERP

Proximal Operator, lterative Soft Thresholding

@ The proximal operator is the solution to

. 1
prox,[y] = argmin r(x) + §||x —y|2
XERP

@ For L1-regularization, we obtain iterative soft-thresholding:

xT = softThresh,[x — af'(x)].

Proximal Operator, lterative Soft Thresholding

@ The proximal operator is the solution to

. 1
prox,[y] = argmin r(x) + §||x —y|2
XERP

@ For L1-regularization, we obtain iterative soft-thresholding:
xT = softThresh,[x — af'(x)].

@ Example with A = 1:
Input Threshold Soft-Threshold

0.6715
—1.2075
0.7172
1.6302
0.4889

Proximal Operator, lterative Soft Thresholding

@ The proximal operator is the solution to

. 1
prox,[y] = argmin r(x) + §||x —y|2
XERP

@ For L1-regularization, we obtain iterative soft-thresholding:
xT = softThresh,[x — af'(x)].

@ Example with A = 1:

Input Threshold Soft-Threshold
0.6715 0
—1.2075 —1.2075
0.7172 0
1.6302 1.6302

0.4889 0

Proximal Operator, lterative Soft Thresholding

@ The proximal operator is the solution to

. 1
prox,[y] = argmin r(x) + §||x —y|2
XERP

@ For L1-regularization, we obtain iterative soft-thresholding:
xT = softThresh,[x — af'(x)].

@ Example with A = 1:

Input Threshold Soft-Threshold

0.6715 0 0
—1.2075 —1.2075 —0.2075

0.7172 0 0

1.6302 1.6302 0.6302

0.4889 0 0

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(X):)
oo ifxé¢c

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(X):)
oo ifxé¢c

ives
9 xT = project.[x — af'(x)],

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:
0 ifxeC
O R
oo ifxé¢c

ives
g xT = project.[x — af'(x)],

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(x) = ;
oo ifx¢cC

ives
g x* = project.[x — af'(x)],

N

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(x) = ;
oo ifx¢cC

ives
9 x* = project.[x — af'(x)],

@

‘easible Set

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
f'(X):)
oo ifx¢c

ives
g x* = project.[x — af'(x)],

Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 ifxecC
r(x) = ;
oo ifx¢c

ives
9 x* = project.[x — af'(x)],

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:
@ L1-Regularization.

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

@ L1-Regularization.
@ Group ¢1-Regularization.

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

@ L1-Regularization.
@ Group ¢1-Regularization.
© Lower and upper bounds.

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:
@ L1-Regularization.
@ Group ¢1-Regularization.
© Lower and upper bounds.
@ One linear constraint.

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

@ L1-Regularization.

@ Group ¢1-Regularization.
© Lower and upper bounds.
@ One linear constraint.

©@ Probability constraints.

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

@ L1-Regularization.

@ Group ¢1-Regularization.

© Lower and upper bounds.

@ One linear constraint.

©@ Probability constraints.

@ A few other simple regularizers/constraints.

Exact Proximal-Gradient Methods

@ For what problems can we apply these methods?
@ We can efficiently compute the proximity operator for:

@ L1-Regularization.

@ Group ¢1-Regularization.

© Lower and upper bounds.

@ One linear constraint.

©@ Probability constraints.

@ A few other simple regularizers/constraints.

@ For many problems we can not efficiently compute this operator.

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:
@ Structured sparsity.

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:

@ Structured sparsity.
© Penalties on the differences between variables.

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:
@ Structured sparsity.
© Penalties on the differences between variables.
© Regularizers and constraints on the singular values of matrices.

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:

@ Structured sparsity.

@ Penalties on the differences between variables.

© Regularizers and constraints on the singular values of matrices.
© Sums of simple functions.

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:

@ Structured sparsity.

@ Penalties on the differences between variables.

© Regularizers and constraints on the singular values of matrices.
© Sums of simple functions.

@ Many recent works use inexact proximal-gradient methods:
Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:
@ Structured sparsity.
© Penalties on the differences between variables.
© Regularizers and constraints on the singular values of matrices.
© Sums of simple functions.
@ Many recent works use inexact proximal-gradient methods:
Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

@ Do inexact methods have the O(x log(1/¢)) rate?

Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximity operator for:

@ Structured sparsity.

© Penalties on the differences between variables.

© Regularizers and constraints on the singular values of matrices.

© Sums of simple functions.
@ Many recent works use inexact proximal-gradient methods:

Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011], Ma et al. [2011]

@ Do inexact methods have the O(x log(1/¢)) rate?

e Yes, if the errors are appropriately controlled. [Schmidt et al., 2011]

Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors
{|le:||} and proximal errors {,/z;} are in {O((1 — x~")!)}, then the
inexact proximal-gradient method requires O(x log(1/¢)) iterations.

Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors
{|le:||} and proximal errors {,/z;} are in {O((1 — x~")!)}, then the
inexact proximal-gradient method requires O(x log(1/¢)) iterations.

@ Classic result as a special case (constants are good).

@ The rates degrades gracefully if the errors are larger.

Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient errors
{|le:||} and proximal errors {,/z;} are in {O((1 — x~")!)}, then the
inexact proximal-gradient method requires O(x log(1/¢)) iterations.

@ Classic result as a special case (constants are good).

@ The rates degrades gracefully if the errors are larger.

@ We also showed the O(v/rx log(1/¢)) accelerated method rate.
@ We also considered weaker convexity assumptions on f.

@ Huge improvement in practice over black-box methods.

Flow Cytometry Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):

=
+ 4

o
©
T

Pairwise Threeway HLLM |

o o
N
T T

I

o
o
T
I

o o
w o
T T

L

é |

L2 L1 L2 L1 L1

test set relative negative log-likelihood
o o
N (6}

o
T

(=]
T

Traffic Flow Data

Using structured sparsity to fit a hierarchical log-linear model (HLLM):

08l Pairwise hreeway HLLM |
1

0.7 - g

=M

0.5- B

0.2 B

0.1F B

test set relative negative log-pseudo-likelihood

L2 L1 L2 L1 L1

Discussion

@ Theoretical justification for what works in practice.
@ Significantly extends class of tractable problems.

@ Many subsequent applications with inexact proximal operators:

e Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

Discussion

@ Theoretical justification for what works in practice.
@ Significantly extends class of tractable problems.

@ Many subsequent applications with inexact proximal operators:

e Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

@ But, it assumes computing f/(x) and prox,[x] have similar cost.

Discussion

@ Theoretical justification for what works in practice.
@ Significantly extends class of tractable problems.

@ Many subsequent applications with inexact proximal operators:

e Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

@ But, it assumes computing f/(x) and prox,[x] have similar cost.
@ Often f'(x) is much more expensive:

e We may have a large dataset.
e Data-fitting term might be complex.

@ Particularly true for structured output prediction:
e Text, biological sequences, speech, images, matchings, graphs.

Motivation: Automatic Brain Tumor Segmentation

@ Independent pixel classifier ignores correlations.

@ Conditional random fields (CRFs) generalize logistic regression
to multiple labels.

@ Data-fitting term is solution of 8-million node graph-cut problem.

9 Learning dependencies (costly models with simple constraints)

Motivation: Graphical Model Structure Learning

Discovering the dependencies between variables:

car | drive | files | hockey | mac | league | pc | win
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Motivation: Graphical Model Structure Learning

Discovering the dependencies between variables:

car | drive | files | hockey | mac | league | pc | win
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Example: Graphical Model Structure Learning

\(w)

Structure Learning with /{-Regularization

@ We want to fit a Markov random field with unknown structure.

Structure Learning with /{-Regularization

@ We want to fit a Markov random field with unknown structure.

Structure Learning with /{-Regularization

@ We want to fit a Markov random field with unknown structure.

Structure Learning with /{-Regularization

@ We want to fit a Markov random field with unknown structure.

@ Learn a sparse structure by ¢¢-regularization of edge weights.

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:
@ Multi-class variables [Lee et al., 20086].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:
@ Multi-class variables [Lee et al., 20086].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:

@ Multi-class variables [Lee et al., 20086].
© Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:

@ Multi-class variables [Lee et al., 20086].
© Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:

@ Multi-class variables [Lee et al., 20086].
© Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:

@ Multi-class variables [Lee et al., 20086].
© Blockwise-sparsity [Duchi et al., 2008].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:
@ Multi-class variables [Lee et al., 20086].
@ Blockwise-sparsity [Duchi et al., 2008].
© Conditional random fields [Schmidt et al., 2008].

Structure Learning with Group ¢{-Regularization

I R B X9
- oo

@ In some cases, we want sparsity in groups of parameters:
@ Multi-class variables [Lee et al., 20086].
@ Blockwise-sparsity [Duchi et al., 2008].
© Conditional random fields [Schmidt et al., 2008].
© Low-rank Edges [Schmidt, 2010].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:
@ Multi-class variables [Lee et al., 20086].
@ Blockwise-sparsity [Duchi et al., 2008].
© Conditional random fields [Schmidt et al., 2008].
© Low-rank Edges [Schmidt, 2010].
© Higher-order models [Schmidt & Murphy, 2010].

Structure Learning with Group ¢{-Regularization

@ In some cases, we want sparsity in groups of parameters:
@ Multi-class variables [Lee et al., 20086].
@ Blockwise-sparsity [Duchi et al., 2008].
© Conditional random fields [Schmidt et al., 2008].
© Low-rank Edges [Schmidt, 2010].
© Higher-order models [Schmidt & Murphy, 2010].

Costly Data-Fitting Term, Simple Regularizer

@ These problems and many others have the form:

X€RP

;N
min NZf,(x) + r(x)
i—

costly smooth + simple

Costly Data-Fitting Term, Simple Regularizer

@ These problems and many others have the form:

N
1
min — > fi(x r(x
RS WO

costly smooth + simple

@ Different than classic optimization (like linear programming).

(cheap smooth plus complex non-smooth)

Costly Data-Fitting Term, Simple Regularizer

@ These problems and many others have the form:

;N
min NZ)‘,(X) + r(x)
i—

X€RP

costly smooth + simple

@ Different than classic optimization (like linear programming).
(cheap smooth plus complex non-smooth)
@ Inspiration from the smooth case:

e For smooth high-dimensional problems, L-BFGS outperform
accelerated/spectral gradient methods.

Quasi-Newton Methods

@ Gradient method for optimizing a smooth f:

xt =x—af'(x).

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Quasi-Newton Methods

@ Gradient method for optimizing a smooth f:
xt =x—af'(x).
@ Newton-like methods alternatively use:
xT =x—aH'f'(x).

@ H approximates the second-derivative matrix.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Quasi-Newton Methods

@ Gradient method for optimizing a smooth f:
xt =x—af'(x).
@ Newton-like methods alternatively use:
xT =x—aH'f'(x).

@ H approximates the second-derivative matrix.
@ L-BFGS is a particular strategy to choose the H values:

e Based on gradient differences.
o Linear storage and linear time.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

Gradient Method and Newton’s Method

Gradient Method and Newton’s Method

f(x)

Gradient Method and Newton’s Method

x - of’(x)

Gradient Method and Newton’s Method

Gradient Method and Newton’s Method

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:

xT = prox, [x — af (x)].

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f'(x)].

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?
xt = prox,,[x — aH™'f'(x)].

o NO!

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:

xT = prox, [x — af (x)].

@ Can we just plug in the Newton-like step?

o NO!

xt = prox,,[x — aH™'f'(x)].

f(x)

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:

xt = prox,,[x

— af' (x)].

@ Can we just plug in the Newton-like step?

o NO!

xT = prox,,[x —

aH= 1 (x)].

f(x)

J

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xt = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f/(x)].

o NO!

Feasible Set

J

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xt = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f/(x)].

@ NO!

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f(x)].

o NO!

Feasible Set

x - af’(x)

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f'(x)].

o NO!

Feasible Set

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xt = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f/(x)].

o NO!

Feasible Set

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f(x)].

o NO!

Feasible Set

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f'(x)].

o NO!

Feasible Set

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f'(x)].

o NO!

Feasible Set

Naive Proximal Quasi-Newton Method

@ Proximal-gradient method:
xT = prox, [x — af (x)].
@ Can we just plug in the Newton-like step?

xt = prox,,[x — aH™'f'(x)].

o NO!

Feasible Set

Two-Metric (Sub)Gradient Projection

@ In some cases, we can modify H to make this work:
e Bound constraints.
e Probability constraints.
@ L1-regularization.
@ Two-metric (sub)gradient projection.
[Gafni & Bertskeas, 1984, Schmidt, 2010].

Comparing to accelerated/spectral/diagonal gradient

Comparing to methods that do not use L-BFGS (sido data):

m— PSSgb
= = =BBSG
== BBST
OPG (L
= = =SPG
s DSST |

Objective Value minus Optimal

T T T T T T T T T
200 400 600 800 1000 1200 1400 1600 1800 2000
Function Evaluations

http://www.di.ens.fr/~mschmidt/Software/LlGeneral.html

http://www.di.ens.fr/~mschmidt/Software/L1General.html

Inexact Proximal-Newton

@ The broken proximal-Newton method:
xt = prox,,[x — aH 'f'(x)],
with the Euclidean proximal operator:

. 1
prox [y] = argmin r(x) + Z|x — v,
XERP

Inexact Proximal-Newton

@ The fixed proximal-Newton method:
xt = prox,,[x — aH "' (X)]y,
with the Euclidean proximal operator:

. 1
prox [y] = argmin r(x) + Z|x — v,
XERP

Inexact Proximal-Newton

@ The fixed proximal-Newton method:
xt = prox,,[x — aH "' (X)]y,
with the non-Euclidean proximal operator:

. 1
prox,[yln = argmin r(x) + 5 |x — y|%,
XERP 2

where || x||2, = xTHx.

Inexact Proximal-Newton

@ The fixed proximal-Newton method:
xt = prox,,[x — aH "' (X)]y,
with the non-Euclidean proximal operator:

. 1
prox,[yln = argmin r(x) + 5 |x — y|%,
XERP 2

where || x||2, = xTHx.
@ Non-smooth Newton-like method

@ Same convergence properties as smooth case.

Inexact Proximal-Newton

@ The fixed proximal-Newton method:
xt = prox,,[x — aH "' (X)]y,

with the non-Euclidean proximal operator:

. 1
prox,[yln = argmin r(x) + 5 |x — y|%,
XERP 2

where || x||2, = xTHx.
@ Non-smooth Newton-like method
@ Same convergence properties as smooth case.

@ But, the prox is expensive even with a simple regularizer.

Inexact Proximal-Newton

@ The fixed proximal-Newton method:
xt = prox,,[x — aH "' (X)]y,
with the non-Euclidean proximal operator:

. 1
prox,[yln = argmin r(x) + 5 |x — y|%,
XERP 2

where || x||2, = xTHx.
@ Non-smooth Newton-like method
@ Same convergence properties as smooth case.
@ But, the prox is expensive even with a simple regularizer.

@ Solution: use a cheap approximate solution.

(e.g., spectral proximal-gradient)

Inexact Projected Newton

e
fx)

Inexact Projected Newton

Ve

Feasible Set

AN
N

Inexact Projected Newton

Feasible Set

N\
N

Inexact Projected Newton

Feasible Set

AN
N

Inexact Projected Newton

e

Feasible Set|

Inexact Projected Newton

Ve

Feasible Set

N\

Inexact Projected Newton

y'=x

Feasible Set|*/

Inexact Projected Newton

Feasible Set /.

Inexact Projected Newton

fid

yo=x \

Feasible Sef‘

Inexact Projected Newton

/
fis

o

yl=x \

Feasible Sef"*-

Inexact Projected Newton

/
fid

yo=x \

Feasible Set|*

AN

Inexact Projected Newton

y'=x

Feasible Sef"*-

Inexact Projected Newton

/
15

Feasible Set

N\

Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

e Outer: evaluate f(x) and f'(x), use L-BFGS to update H.

Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
e Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
e Inner: spectral proximal-gradient to approximate proximal operator:

@ Requires multiplication by H (linear-time for L-BFGS).
@ Requires proximal operator of r (cheap for simple constraints).

Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
e Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
e Inner: spectral proximal-gradient to approximate proximal operator:
@ Requires multiplication by H (linear-time for L-BFGS).
@ Requires proximal operator of r (cheap for simple constraints).

e For small «, one iteration is sufficient to give descent.

Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]
e Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
e Inner: spectral proximal-gradient to approximate proximal operator:
@ Requires multiplication by H (linear-time for L-BFGS).
@ Requires proximal operator of r (cheap for simple constraints).

e For small «, one iteration is sufficient to give descent.

@ Cheap inner iterations lead to fewer expensive outer iterations.

Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

e Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
e Inner: spectral proximal-gradient to approximate proximal operator:

@ Requires multiplication by H (linear-time for L-BFGS).
@ Requires proximal operator of r (cheap for simple constraints).

e For small «, one iteration is sufficient to give descent.
@ Cheap inner iterations lead to fewer expensive outer iterations.

@ “Optimizing costly functions with simple constraints”.

Projected Quasi-Newton (PQN) Algorithm

@ A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

e Outer: evaluate f(x) and f'(x), use L-BFGS to update H.
e Inner: spectral proximal-gradient to approximate proximal operator:

@ Requires multiplication by H (linear-time for L-BFGS).
@ Requires proximal operator of r (cheap for simple constraints).

e For small a, one iteration is sufficient to give descent.
@ Cheap inner iterations lead to fewer expensive outer iterations.
@ “Optimizing costly functions with simple constraints”.

@ “Optimizing costly functions with simple regularizers”.

Graphical Model Structure Learning with Groups

Comparing PQN to first-order methods on a graphical model
structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].

1 1 1 1
-280 = pmmmmmmmm—-- u
. l‘: P e
~300- i L
4

S g
5 -320] A -
> “
2 340 g -
= ¢ -
3 %
D 360+ i -
Q od
O 'S

-380+ " s o

0y s PQN
-4004 :! ===pPC |
P X SPG
1 1
T T T T
200 400 600 800 1000

Function Evaluations

Inexact Proximal Newton

@ The proximal quasi-Newton (PQN) approach:
@ “The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps
the most elegant and logical extension of quasi-Newton methods,
but it involves solving a sub-iteration.” [Becker and Fadili, 2012].
e “PQN is an implementation that uses a limited-memory
quasi-Newton update and has both excellent empirical
performance and theoretical properties.” [Lee et al., 2012].

http://www.di.ens.fr/~mschmidt/Software/PQN.html

Inexact Proximal Newton

@ The proximal quasi-Newton (PQN) approach:
@ “The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps
the most elegant and logical extension of quasi-Newton methods,
but it involves solving a sub-iteration.” [Becker and Fadili, 2012].
e “PQN is an implementation that uses a limited-memory
quasi-Newton update and has both excellent empirical

performance and theoretical properties.” [Lee et al., 2012].
e Proximal-Newton methods are becoming optimization workhorse,
e.g. NIPS 2012:

@ Becker & Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco & Sudderth.

@ http://www.di.ens.fr/~mschmidt/Software/PQN.html

http://www.di.ens.fr/~mschmidt/Software/PQN.html

Motivation: Structure Learning in CRFs

@ Task: early detection of coronoary heart disease.

Motivation: Structure Learning in CRFs

@ Task: early detection of coronoary heart disease.

@ Assess motion of heart segments using structured prediction.

@ Data-fitting function is dynamic program.

Example: Learning Variable Groupings

Discovering variable groupings:
= @

Example: Learning Variable Groupings

....@

LA

Known GL12 GL1

Discovering variable groupings:

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:

@ If | see that my watch says 11:55, then it's almost lunch time

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:
@ If | see that my watch says 11:55, then it's almost lunch time

@ If I set my watch so it says 11:55, it doesn’t help

Example: Modeling Interventional Data

Conditioning by observation vs. conditioning by intervention:
@ If | see that my watch says 11:55, then it's almost lunch time

@ If I set my watch so it says 11:55, it doesn’t help

1

B2cAMP

AKT Inh

G06976

Psitect

Data Point
uonuanIdu|

uU0126

raf meki2 plcy pip2 pip3 ek akt pka pkc p38 jnk
Observed Biomolecule

Example: Modeling Interventional Data

Using structured prediction to model interventions:

3 G-B’EI =
£ 66f = * |_-:r_|
= .
Q
5 6.4}
) 6.2l Ignore Independent = Conditional Perfect]
S -
2 6
>
=
o 5.8}
2
o 5.6
g
= 541 o
o
> -
< 52 = 1 B < I%'I
Sl s I =
5,
= c o = c = c o o
> > >
= g 3 = g = ¢ 7§ 3

e Fitting a huge dataset (stochastic average gradient)

Big-N Problems

@ We want to minimize the sum of a finite set of smooth functions:

min f(x fi(x
xe]IRF’ Z

Big-N Problems

@ We want to minimize the sum of a finite set of smooth functions:

min f(x fi(x
xe]IRF’ Z

@ We are interested in cases where N is very large.

Big-N Problems

@ We want to minimize the sum of a finite set of smooth functions:

min f(x fi(x
XERP Z
@ We are interested in cases where N is very large.
@ Simple example is least-squares,
fi(x) := (a] x — b))2.

@ Other examples:
@ logistic regression, Huber regression, smooth SVMs, CRFs, etc.

Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing f(x) = %Zf; fi(x).

Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing f(x) = %Zf; fi(x).

@ Deterministic gradient method [Cauchy, 1847]:
N
Xes1 = Xt — ouf' (%) *%Z
@ Only requires O(log(1/¢)) iterations.

e lteration cost is linear in .
e Quasi-Newton methods still require O(N).

Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing f(x) = %Zf; fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

N
ay
Xep1 = Xp — ouf'(Xt) *NZ

e Only requires O(log(1/e)) iterations.
e lteration cost is linear in .
e Quasi-Newton methods still require O(N).

@ Stochastic gradient method [Robbins & Monro, 1951]:
e Random selection of i(t) from {1,2,..., N}.

X1 = Xt — Oétf//(r)(Xt).

e lteration cost is independent of N.
o Requires O(1/¢) iterations.

Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing g(x) = 4 >7_; fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:

Motivation for New Methods

@ DG method requires O(log(1/¢)) with O(N).
@ SG method requires O(1/¢) iterations with O(1).

L

\

stochastic

deterministic

log(excess cost)

Y

time

Motivation for New Methods

@ DG method requires O(log(1/¢)) with O(N).
@ SG method requires O(1/e¢) iterations with O(1).

A

stochastic

deterministic

log(excess cost)

hybrid

Y

time

@ Goal is requiring O(log(1/¢)) iterations with O(1) cost.

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:
@ Step-size strategies, momentum, gradient/iterate averaging
@ Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov
(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)
@ Stochastic versions of accelerated and Newton methods

@ Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
Martens (2010), Xiao (2010), Duchi et al. (2011)

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:
@ Step-size strategies, momentum, gradient/iterate averaging

@ Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov
(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

@ Stochastic versions of accelerated and Newton methods

@ Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
Martens (2010), Xiao (2010), Duchi et al. (2011)

@ None of these methods improve on the O(1/¢) rate

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:
@ Step-size strategies, momentum, gradient/iterate averaging

@ Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov
(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

@ Stochastic versions of accelerated and Newton methods
@ Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
Martens (2010), Xiao (2010), Duchi et al. (2011)
@ None of these methods improve on the O(1/¢) rate
@ Constant step-size SG, accelerated SG

@ Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
@ O(log(1/e) iterations to reach a fixed tolerance

Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:
@ Step-size strategies, momentum, gradient/iterate averaging

@ Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov
(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

@ Stochastic versions of accelerated and Newton methods
@ Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
Martens (2010), Xiao (2010), Duchi et al. (2011)
@ None of these methods improve on the O(1/¢) rate
@ Constant step-size SG, accelerated SG

@ Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
@ O(log(1/e) iterations to reach a fixed tolerance

@ Hybrid methods, incremental average gradient

@ Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
e O(log(1/e)) iterations but eventually requires full passes.

Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))
iterations?

Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))
iterations?
o YES!

Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))
iterations?
e YES! The stochastic average gradient (SAG) algorithm:
@ Randomly select i(t) from {1,2,...,n} and compute f,.’(t)(x’).

t N
tHl b & t
X —X*N;:fi/(x)

Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))
iterations?
e YES! The stochastic average gradient (SAG) algorithm:
@ Randomly select i(t) from {1,2,...,n} and compute f,.’(t)(x’).

t N
tHl b & t
X —X*N;:f/(x)

Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))
iterations?
e YES! The stochastic average gradient (SAG) algorithm:
@ Randomly select i(t) from {1,2,...,n} and compute f (h.

Xt xf—Zy,

@ Memory: y! = f/(x") from the last t where i was selected.

Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))
iterations?
e YES! The stochastic average gradient (SAG) algorithm:
@ Randomly select i(t) from {1,2,...,n} and compute f,.’(t)(x’).

t N
t+1 t @ t
X :x——§ Y

NH

@ Memory: y! = f/(x") from the last t where i was selected.

e Stochastic variant of increment average gradient (I1AG).
[Blatt et al., 2007]

Stochastic Average Gradient

@ Can we have O(1) cost but only require O(log(1/¢))

iterations?
e YES! The stochastic average gradient (SAG) algorithm:
@ Randomly select i(t) from {1,2,...,n} and compute f,.’(t)(x’).

t N
t+1 t @ t
X :x——E Y

NH

@ Memory: y! = f/(x") from the last t where i was selected.

Stochastic variant of increment average gradient (IAG).

[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x'*' — x|| — 0.
Memory requirements reduced to O(N) for many problems.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.
@ Number of f/ evaluations to reach e:

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.
@ Number of f/ evaluations to reach e:
e Stochastic: O(x(1/¢)).

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.
@ Number of f/ evaluations to reach e:

e Stochastic: O(x(1/¢)).

e Gradient: O(Nklog(1/€)).

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.
@ Number of f/ evaluations to reach e:

e Stochastic: O(x(1/¢)).

o Gradient: O(Nk log(1/e)).

e Accelerated: O(Ny/klog(1/¢)).

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.
@ Number of f/ evaluations to reach e:

e Stochastic: O(x(1/¢)).

o Gradient: O(Nk log(1/e)).

e Accelerated: O(Ny/klog(1/¢)).

e SAG: O(max{N, x}log(1/e¢)).

Convergence Rate of SAG

Theorem [Schmidt et al., 2013] The expected number of SAG
iterations to reach an accuracy of e is O(max{x, N} log(1/¢)). J

@ Proof is ‘infamous’, but the constants are good.
@ Number of f/ evaluations to reach e:

e Stochastic: O(x(1/¢)).

o Gradient: O(Nk log(1/e)).

e Accelerated: O(Ny/klog(1/¢)).

e SAG: O(max{N, x}log(1/e¢)).

@ SAG beats two lower bounds:

e Stochastic gradient bound of O(1/e).
o Deterministic gradient bound of O(N+/klog(1/¢)) (large N and x).

Comparing FG and SG Methods

@ quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

10° 4

Objective minus Optimum

Effective Passes Effective Passes

SAG Compared to FG and SG Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641, p = 47236)

KT

Objective minus Optimum
S
Il

Objective minus Optimum

Effective Passes Effective Passes

Discussion

@ Faster theoretical convergence using only the ‘sum’ structure.

Discussion

@ Faster theoretical convergence using only the ‘sum’ structure.

@ Simple algorithm, empirically better than theory predicts.

Discussion

@ Faster theoretical convergence using only the ‘sum’ structure.
@ Simple algorithm, empirically better than theory predicts.

@ Robust stochastic gradient algorithm:

o Adaptive step-size, termination criterion.

Discussion

@ Faster theoretical convergence using only the ‘sum’ structure.
@ Simple algorithm, empirically better than theory predicts.
@ Robust stochastic gradient algorithm:
o Adaptive step-size, termination criterion.
@ Various extensions:
@ Non-uniform sampling.
[Schmidt et al., 2013]
@ Non-smooth problems.
[Mairal, 2013, Wong et al., 2013, Mairal, 2014, Xiao and Zhang, 2014, Defazio et al.,
2014]
e Memory-free methods.
[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and
Richtarik, 2013, Xiao and Zhang, 2014]
@ Quasi-Newton methods.
[Sohl-Dickstein et al., 2014]

	Structured sparsity (inexact proximal-gradient method)
	Learning dependencies (costly models with simple constraints)
	Fitting a huge dataset (stochastic average gradient)

