Convergence Rate of Proximal-Gradient with a General Step-Size

Mark Schmidt
University of British Columbia

September 12, 2014

Abstract

We extend the previous analysis of Schmidt et al. [2011] to derive the linear convergence rate obtained by the proximal-gradient method under a general step-size scheme, for the problem of optimizing the sum of a smooth strongly-convex function and a simple (but potentially non-smooth) convex function.

1 Overview and Assumptions

We consider minimization problems of the form

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} f(x):=g(x)+h(x), \tag{1.1}
\end{equation*}
$$

where g a is strongly-convex function with parameter μ, g^{\prime} is Lipschitz-continuous with parameter L, and h is only required to be a lower semi-continuous proper convex function. This class includes the elastic-net regularized least-squares problem

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}\|A x-b\|^{2}+\frac{\lambda_{2}}{2}\|x\|^{2}+\lambda_{1}\|x\|_{1},
$$

with $g(x)=\frac{1}{2}\|A x-b\|^{2}+\frac{\lambda_{2}}{2}\|x\|^{2}$ and $h(x)=\lambda_{1}\|x\|_{1}$. In this case, $L=\sigma_{\max }\left(A^{T} A\right)+\lambda_{2}$ and $\mu=\sigma_{\min }\left(A^{T} A\right)+\lambda_{2}$. In this work we'll analyze the proximal-gradient algorithm, which uses iterations of the form

$$
\begin{equation*}
x^{k+1}=\operatorname{prox}\left[x^{k}-\alpha g^{\prime}\left(x^{k}\right)\right], \tag{1.2}
\end{equation*}
$$

where $\alpha>0$ is the step-size and the proximal operator is

$$
\begin{equation*}
\operatorname{prox}(x)=\underset{y \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{2}\|x-y\|^{2}+\alpha h(y) . \tag{1.3}
\end{equation*}
$$

Our prior results in Schmidt et al. [2011, Proposition 3] show that with a step-size of $\alpha=1 / L$ that the iterates of this algorithm have a linear convergence rate,

$$
\left\|x^{k}-x^{*}\right\| \leq\left(1-\frac{\mu}{L}\right)^{k}\left\|x_{0}-x^{*}\right\|
$$

where x^{*} is the optimal solution. In this note show that for a general step-size α we have

$$
\left\|x^{k}-x^{*}\right\| \leq Q(\alpha)^{k}\left\|x_{0}-x^{*}\right\|
$$

where $Q(\alpha)=\max \{|1-\alpha L|,|1-\alpha \mu|\}$. This matches the known rate of the gradient method with a constant step-size for solving strictly-convex quadratic problems [Bertsekas, 1999, Section 1.3], and the rate of the projected-gradient algorithm with a constant step-size for minimizing strictly-convex quadratic functions over convex sets [Bertsekas, 1999, Section 2.3]. This result includes the previous result as a speical case since $Q\left(\frac{1}{L}\right)=1-\frac{\mu}{L}$, and also gives a faster rate if we miniminze Q in terms of α to give $\alpha=\frac{2}{L+\mu}$ which yields $Q\left(\frac{2}{L+\mu}\right)=1-\frac{2 \mu}{L+\mu}=\frac{L-\mu}{L+\mu}$.

2 Useful inequalitites

We note that x^{*} is a fixed-point of the iterations,

$$
\begin{equation*}
x^{*}=\operatorname{prox}\left[x^{*}-\alpha g^{\prime}\left(x^{*}\right)\right] . \tag{2.1}
\end{equation*}
$$

This follows because by the definition of x^{*} is satifies the optimality condition for (1.1),

$$
\begin{equation*}
0 \in g^{\prime}\left(x^{*}\right)+\partial h\left(x^{*}\right) \tag{2.2}
\end{equation*}
$$

The optimality conditions that define the solution to the proximal problem (1.3) are

$$
0 \in-(x-y)+\alpha \partial h(y)
$$

and plugging in $x=x^{*}-\alpha g^{\prime}\left(x^{*}\right)$ we have

$$
0 \in\left(y-x^{*}\right)+\alpha g^{\prime}\left(x^{*}\right)+\alpha \partial h(y),
$$

which in light of (2.2) is solved by setting $y=x^{*}$.
We'll also use that the proximal operator is non-expansive [Combettes and Wajs, 2005],

$$
\|\operatorname{prox}[x]-\operatorname{prox}[y]\|^{2} \leq\langle\operatorname{prox}[x]-\operatorname{prox}[y], x-y\rangle,
$$

which implies by Cauchy-Schwartz that

$$
\begin{equation*}
\|\operatorname{prox}[x]-\operatorname{prox}[y]\| \leq\|x-y\| \tag{2.3}
\end{equation*}
$$

Because g^{\prime} is L-Lipschitz continuous we have

$$
\left\|g^{\prime}(x)-g^{\prime}(y)\right\| \leq L\|x-y\|,
$$

and because g is μ-strongly convex we have

$$
\left\|g^{\prime}(x)-g^{\prime}(y)\right\| \geq \mu\|x-y\|,
$$

so putting these together (noting that $L \geq \mu$) we have for any β (positive or negative) that

$$
\begin{equation*}
\beta\left\|g^{\prime}(x)-g^{\prime}(y)\right\|^{2} \leq \max \left\{\beta L^{2}, \beta \mu^{2}\right\}\|x-y\|^{2} . \tag{2.4}
\end{equation*}
$$

Finally, because g^{\prime} is L-Lipschitz and μ-strongly convex we have [Nesterov, 2004, Theorem 2.1.12]

$$
\begin{equation*}
\left\langle g^{\prime}(x)-g^{\prime}(y), x-y\right\rangle \geq \frac{1}{L+\mu}\left\|f^{\prime}(x)-f^{\prime}(y)\right\|^{2}+\frac{L \mu}{L+\mu}\|x-y\|^{2} \tag{2.5}
\end{equation*}
$$

3 Derivation

$$
\begin{align*}
\left\|x^{k+1}-x^{*}\right\|^{2} & =\left\|\operatorname{prox}\left[x^{k}-\alpha g^{\prime}\left(x^{k}\right)\right]-\operatorname{prox}\left[x^{*}-\alpha g^{\prime}\left(x^{*}\right)\right]\right\|^{2} \tag{1.2}\\
& \leq \|\left(x^{k}-\alpha g^{\prime}\left(x^{k}\right)-\left(x^{*}-\alpha g^{\prime}\left(x^{*}\right)\right) \|^{2}\right. \tag{2.3}\\
& =\left\|\left(x^{k}-x^{*}\right)-\alpha\left(g^{\prime}\left(x^{k}\right)-g^{\prime}\left(x^{*}\right)\right)\right\|^{2} \\
& =\left\|\left(x^{k}-x^{*}\right)\right\|^{2}-2 \alpha\left\langle g^{\prime}\left(x^{k}\right)-g^{\prime}\left(x^{*}\right), x^{k}-x^{*}\right\rangle+\alpha^{2}\left\|g^{\prime}\left(x^{k}\right)-g^{\prime}\left(x^{*}\right)\right\|^{2} \\
& \leq\left\|\left(x^{k}-x^{*}\right)\right\|^{2}-2 \alpha\left(\frac{1}{L+\mu}\left\|g^{\prime}\left(x^{k}\right)+g^{\prime}\left(x^{*}\right)\right\|^{2}+\frac{L \mu}{L+\mu}\left\|x^{k}-x^{*}\right\|^{2}\right)+\alpha^{2}\left\|g^{\prime}\left(x^{k}\right)-g^{\prime}\left(x^{*}\right)\right\|^{2} \tag{2.5}\\
& =\left(1-\frac{2 \alpha L \mu}{L+\mu}\right)\left\|\left(x^{k}-x^{*}\right)\right\|^{2}+\alpha\left(\alpha-\frac{2}{L+\mu}\right)\left\|g^{\prime}\left(x^{k}\right)-g^{\prime}\left(x^{*}\right)\right\|^{2} \\
& \leq\left(1-\frac{2 \alpha L \mu}{L+\mu}\right)\left\|\left(x^{k}-x^{*}\right)\right\|^{2}+\alpha \max \left\{L^{2}\left(\alpha-\frac{2}{L+\mu}\right), \mu^{2}\left(\alpha-\frac{2}{L+\mu}\right)\right\}\left\|x^{k}-x^{*}\right\|^{2} \tag{2.4}\\
& =\max \left\{\left(1-\frac{2 \alpha L \mu}{L+\mu}\right)+\alpha L^{2}\left(\alpha-\frac{2}{L+\mu}\right),\left(1-\frac{2 \alpha L \mu}{L+\mu}\right)+\alpha \mu^{2}\left(\alpha-\frac{2}{L+\mu}\right)\right\}\left\|x^{k}-x^{*}\right\|^{2} \\
& =\max \left\{1-\frac{2 \alpha L(L+\mu)}{L+\mu}+\alpha^{2} L^{2}, 1-\frac{2 \alpha \mu(L+\mu)}{L+\mu}+\alpha^{2} \mu^{2}\right\}\left\|x^{k}-x^{*}\right\|^{2} \\
& =\max \left\{(1-\alpha L)^{2},(1-\alpha \mu)^{2}\right\}\left\|x^{k}-x^{*}\right\|^{2} \\
& =Q^{2}\left\|x^{k}-x^{*}\right\|^{2} .
\end{align*}
$$

Taking the square root and applying it repeatedly gives the result.

References

D. P. Bertsekas. Nonlinear programming. Athena Scientific, 2nd edition, 1999.
P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale Modeling ES Simulation, 4(4):1168-1200, 2005.
Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer Netherlands, 2004.
M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. Neural Information Processing Systems, 2011.

