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Abstract

We extend the previous analysis of Schmidt et al. [2011] to derive the linear convergence rate
obtained by the proximal-gradient method under a general step-size scheme, for the problem of
optimizing the sum of a smooth strongly-convex function and a simple (but potentially non-smooth)
convex function.

1 Overview and Assumptions
We consider minimization problems of the form

min f(z) := g(z) + h(z), (1.1)
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where g a is strongly-convex function with parameter p, ¢’ is Lipschitz-continuous with parameter
L, and h is only required to be a lower semi-continuous proper convex function. This class includes
the elastic-net regularized least-squares problem
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with g(z) = 3||Az —b||> + 22||z||* and h(z) = Ailz|,. In this case, L = omax(A"A) + X2 and
= Umin(ATA)+)\2. In this work we’ll analyze the proximal-gradient algorithm, which uses iterations
of the form

2" = prox[z* — ag/(z")], (1.2)

where a > 0 is the step-size and the proximal operator is

.1
prox(z) = argmin = ||z — y||> 4+ ah(y). (1.3)
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Our prior results in Schmidt et al. [2011, Proposition 3] show that with a step-size of & = 1/L that
the iterates of this algorithm have a linear convergence rate,

k
< (1=5) oo - 271,

where z* is the optimal solution. In this note show that for a general step-size « we have
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where Q(a) = max{|l — aL|, |1 — au|}. This matches the known rate of the gradient method with a
constant step-size for solving strictly-convex quadratic problems [Bertsekas, 1999, Section 1.3], and
the rate of the projected-gradient algorithm with a constant step-size for minimizing strictly-convex
quadratic functions over convex sets [Bertsekas, 1999, Section 2.3]. This result includes the previous

result as a speical case since Q(%) =1-— £, and also gives a faster rate if we miniminze Q in terms
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of o to give & = —— which yields Q (Li-w) =1- Tt = Ta
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2 Useful inequalitites

We note that ™ is a fixed-point of the iterations,

" = prox[z” — ag'(z")]. (2.1)
This follows because by the definition of 2™ is satifies the optimality condition for (1.1),

0€ g'(z") + Oh(x"). (2.2)

The optimality conditions that define the solution to the proximal problem (1.3) are

0 € —(z —y) + adh(y),
and plugging in z = =* — ag’(z*) we have

0€ (y—a") +ag (z") + adh(y),

which in light of (2.2) is solved by setting y = z*.
We'll also use that the proximal operator is non-expansive [Combettes and Wajs, 2005],

[[prox[z] — prox[y]||* < (prox[z] — prox[y, = — y),
which implies by Cauchy-Schwartz that
[[prox[z] — prox[y][| < [lz — y], (2.3)
Because ¢’ is L-Lipschitz continuous we have
|¢'@) = d'(v)|| < Lllx -y,
and because g is u-strongly convex we have
|9/ () = g'W)|| = ullz - yll,
so putting these together (noting that L > 1) we have for any 8 (positive or negative) that
2
Bllg' (@) — g W)||” < max{BL?, Bu*}|x — y]*. (2.4)

Finally, because g’ is L-Lipschitz and p-strongly convex we have [Nesterov, 2004, Theorem 2.1.12]

(6@ =g 0o =) 2 7= 7@ = W+ Tl = ol (2.5)

3 Derivation
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Taking the square root and applying it repeatedly gives the result.

(1.2), (2.1)

(2.4)
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