Conditional Random Fields with Latent Variables

Mark Schmidt, June 2014
(e-mail me for references)

Outline

- Overview of General Conditional Random Fields
- Conditional Random Fields with Latent Variables

Binary Logistic Regression

Binary Logistic Regression

$$
y=[-1]
$$

Binary Logistic Regression

$$
y=[-1]
$$

Classify using $y=\operatorname{sign}\left(w^{T} x\right)$.

Binary Logistic Regression

Binary Logistic Regression

$$
y=[-1]
$$

Classify using $y=\operatorname{sign}\left(w^{T} x\right)$.

Multi-Class Logistic Regression

Multi-Class Logistic Regression

$$
y=[3] \text { Now } y \in\{1,2,3, \ldots, S\} \text {. }
$$

Multi-Class Logistic Regression

Classify by maximizing $w_{s}^{T} x_{s}$ over s

$$
\square \mathbf{W} w=\left[\begin{array}{ccc}
-1.7491 & 1.7411 & 0.8106 \\
1.1326 & 0.4868 & 0.6985 \\
0 & 1.0488 & -0.4016 \\
-0.7938 & 1.4886 & 1.2688 \\
0.3149 & 1.2705 & -0.7836
\end{array}\right]
$$

Multi-Class Logistic Regression

$$
y=[3] \bigcirc \mathrm{y} \text { Now } y \in\{1,2,3, \ldots, S\} \text {. }
$$

Classify by maximizing $w_{s}^{T} x_{s}$ over s

Multi-Class Logistic Regression

Classify by maximizing $w_{s}^{T} x$ over s

Usually we use the same features across classes.

$$
w=\left[\begin{array}{cc}
-1.7491 & 1.7411 \\
1.1326 & 0.4868 \\
0 & 1.0488 \\
-0.7938 & 1.4886 \\
0.3149 & 1.2705
\end{array}\right]
$$

Multi-Class Logistic Regression

$$
y=[3] \curvearrowright \mathbf{y} \text { Now } y \in\{1,2,3, \ldots, S\} .
$$

Classify by maximizing $w_{s}^{T} x$ over s

Usually we use the same features across classes.

$$
\begin{gathered}
w=\left[\begin{array}{cccc}
-1.7491 & 1.7411 & 0.8106 \\
1.1326 & 0.4868 & 0.6985 \\
0 & 1.0488 & -0.416 \\
-0.7938 & 1.4886 & 1.2688 \\
0.3149 & 1.2705 & -0.7836
\end{array}\right] \\
p(y=s \mid x, w) \propto \exp \left(w_{s}^{T} x\right)
\end{gathered}
$$

Multi-Class Logistic Regression

$$
y=[3] \curvearrowright \mathbf{y} \text { Now } y \in\{1,2,3, \ldots, S\} .
$$

Classify by maximizing $w_{s}^{T} x$ over s

Usually we use the same features across classes.

$$
\begin{aligned}
& w=\left[\begin{array}{cc|c}
-1.7491 & 1.7411 & 0.8106 \\
1.1326 & 0.4868 & 0.6985 \\
0 & 1.0488 & -0.4016 \\
-0.7938 & 1.4886 & 1.2688 \\
0.3149 & 1.2705 & -0.7836
\end{array}\right] \\
& p(y=s \mid x, w) \propto \exp \left(w_{s}^{T} x\right)
\end{aligned}
$$

For ordered classes, use ordinal logistic regression.

Multi-Label Logistic Regression

We now have multiple labels y_{n}

Multi-Label Logistic Regression

We now have multiple labels y_{n}

$$
p(y=s \mid x, w) \propto \prod_{n=1}^{N} \exp \left(w_{n, s_{n}}^{T} x_{n}\right)
$$

Challenges: share information across the w_{n} model in correlations in the y_{n}

Conditional Random Fields

CRFs model correlation in the y_{n}

Can have special potentials on start/end

Can have special potentials on start/end We often tie parameters (but can have node/edge types)

Can have special potentials on start/end
We often tie parameters (but can have node/edge types) Could also share information through regularization

Can have special potentials on start/end Edges can depend on the features We often tie parameters (but can have node/edge types) Could also share information through regularization
 We often tie parameters (but can have node/ $\boldsymbol{\sim}$ s) We can have global features Could also share information through regutarization

General Conditional Random Fields

We can have any graph structure on the y_{n}

General Conditional Random Fields

We can have any graph structure on the y_{n}

$$
p(y=s \mid x, w) \propto \prod_{i \in N} \exp \left(w_{s_{i}}^{T} x_{i}\right) \prod_{i, j \in E}^{N} \exp \left(v_{s_{i}, s_{j}}\right)
$$

General Conditional Random Fields

Tasks involving states s :

- Decoding: $\arg \max _{s} p(y=s \mid x, w)$
- Inference: $\sum_{s} p(y=s \mid x, w)$ and $\sum_{s \mid s_{i}=c} p(y=s \mid x, w)$
- Sampling: generate $s \sim p(y=s \mid x, w)$

For chain structured data:

- Decode using Viterbi
- Inference using Forward-Backward
- Sampling using Forward-Filter, Backward-Sample

General Conditional Random Fields

Exact methods:

- Cutset conditioning
- Super nodes
- Junction tree
- Graph cuts (for decoding of binary associative)

General Conditional Random Fields

Exact methods:

- Cutset conditioning
- Super nodes
- Junction tree
- Graph cuts (for decoding of binary associative)

General Conditional Random Fields

Exact methods:

- Cutset conditioning
- Super nodes
- Junction tree
- Graph cuts (for decoding of binary associative)

Approximate methods:

- Decode using local search
- Inference using variational
- Sample using MCMC

General Conditional Random Fields

Exact methods:

- Cutset conditioning
- Super nodes
- Junction tree
- Graph cuts (for decoding of binary associative)

Approximate methods:

- Decode using local search
- Inference using variational
- Sample using MCMC

Use one task to perform the other:

- Inference wtih sampling: counting
- Inference with decoding: Viterbi approximation
- Decoding with inference: max-product
- Decoding with sampling: simulated annealing
- Sampling with inference: variational MCMC
- Sampling with decoding: herding

General Conditional Random Fields

Estimation methods to find w :

- Inference: maximum likelihood and regularized maximum likelihood
- Decoding: perceptron and max-margin Markov networks
- Sampling: contrastive divergence and stochastic maximum likelihood
- None: pseudo-likelihood and composite likelihoods

Higher-Order CRF

Add 2nd- or higher-order dependencies

Higher-Order CRF

Add 2nd- or higher-order dependencies

Higher-Order CRF

Add 2nd- or higher-order dependencies
Inference with super nodes:

- 1st-order: $O\left(N S^{2}\right)$
- 2nd-order: $O\left(\frac{N}{2} S^{4}\right)$
- ith-order: $O\left(\frac{N}{i} S^{2 i}\right)$

Dynamic CRFs

Track multiple variables with repeated structure

Dynamic CRFs

Track multiple variables with repeated structure

Dynamic CRFs

Track multiple variables with repeated structure

Dynamic CRFs

Track multiple variables with repeated structure
Inference with super-nodes

Semi-Markov CRF

Add dependency on length of segment

Semi-Markov CRF

Add dependency on length of segment

Semi-Markov CRF

Add dependency on length of segment

Can also have small number of global dependencies: 'at least one verb'

Skip-Chain CRF

Encourage repeated words to receive the same label

Skip-Chain CRF

Encourage repeated words to receive the same label

Outline

- Overview of General Conditional Random Fields
- Conditional Random Fields with Latent Variables

Missing Labels

Missing Labels

Missing Labels

Missing Labels

Numerator leads to non-convex optimization

Latent Logistic Regression

Latent logistic: class variables
have unknown sub-classes

Latent Logistic Regression

Latent Logistic Regression

Hidden CRF

Hidden CRF

An HMM with a supervised label

Latent Dynamic CRF

Latent Dynamic CRF

Latent Logistic Regression and Neural Networks

Latent logistic: class variables
have unknown sub-classes

Latent Logistic Regression and Neural Networks

Latent logistic: class variables have unknown sub-classes

Neural network: combine non-linear transformations to binary variables

Latent Logistic Regression and Neural Networks

Latent logistic: class variables have unknown sub-classes

$$
p(y=s \mid x, w) \propto \sum_{h \in s} \exp \left(w_{h}^{T} x\right)
$$

Neural network: combine non-linear transformations to binary variables

$$
p(y=s \mid x, w) \propto \exp \left(\sum_{i=1}^{H} v_{i, s} g_{i}\left(w_{i}^{T} x\right)\right)
$$

Hidden-Unit CRF, Conditional Neural Field (CNF)

Hidden-Unit CRF, Conditional Neural Field (CNF)

A standard CRF where we learn the features
Related to earlier support vector random fields

Latent Dynamic CNF

