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Multi-Class Logistic Regression

y = |3] y Now y € {1,2,3,...,5}.

T

Classify by maximizing w;

I over S

[ —1.7491 1.7411
1.1326  0.4868
0 1.0488
—0.7938 1.4886
| 0.3149  1.2705

Usually we use the same
features across classes.

h This is ws
p(y = slz, w) o« exp(wg x)

For ordered classes, use ordinal logistic regression.
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Multi-Label Logistic Regression

We now have multiple labels vy,

Challenges:
share information across the w,,
model in correlations in the y,,
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CRFs model ¢ n the y,
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@ Conditional Random Fields Q

CRFs model correlation in the y,,

]

X

Can have special potentials on start/é dges can depend on the features

We often tie parameters (but can have node/ s) We can have global features
Could also share information through reg tion




Q Conditional Random Fields Q

CRFs model correlation in the y,,

p(y = slz,w) o< | [ exp(wl z) [ | exp(vs,, s,01)
n=1 n=0




General Conditional Random Fields

We can have any graph structure on the vy,

p(y = s|r,w) x H eXp(wZ;a:i)
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General Conditional Random Fields

Tasks involving states s:
e Decoding: argmax, p(y = s|z,w)
o Inference: )  p(y = s|lz,w) and ) . _.p(y = s|z,w)

e Sampling: generate s ~ p(y = s|z,w)

For chain structured data:
e Decode using Viterbi
e Inference using Forward-Backward

e Sampling using Forward-Filter, Backward-Sample
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General Conditional Random Fields

Exact methods:

e Cutset conditioning

— Exponential in tree-width
e Super nodes

e Junction tree

e Graph cuts (for decoding of binary associative)

Approxjmate methOdS' Use one task to perform the other:

e Inference wtih sampling: counting

e Decode using local search

Inference with decoding: Viterbi approximation
Decoding with inference: max-product

e Inference using variational

Decoding with sampling: simulated annealing

o Sample using MCMC Sampling with inference: variational MCMC

Sampling with decoding: herding




General Conditional Random Fields

Estimation methods to find w:

e Inference: maximum likelihood and regularized maximum likelihood
e Decoding: perceptron and max-margin Markov networks

e Sampling: contrastive divergence and stochastic maximum likelihood

e None: pseudo-likelihood and composite likelihoods
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Higher-Order CRF

Add 2nd- or higher-order dependencies

Inference with super nodes:
e Ist-order: O(INS?)
e 2nd-order: O(45 54

)
e ith-order: O(£5%)
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Track multiple variables with repeated structure
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Dynamic CRFs

Track multiple variables with repeated structure

Inference with super-nodes
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Semi-Markov CRF

Add dependency on length of segment
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Semi-Markov CRF

Add dependency on length of segment

Can also have small number of global dependencies:
‘at least one verb’




Skip-Chain CRF

Encourage repeated words to receive the same label




Skip-Chain CRF

Encourage repeated words to receive the same label
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Missing Labels

()

p(yr:2 = s1:2,h = s3,yanv = san|z,w) o< | [ exp(wl zn) || exp(vs, s,00) | =

n=1 n=0

o) = T — th(yah/)
p(y‘ ; ) ;p(y,h\ ; ) Zy’,h’f(y,7h/)

If all variables hidden, cancels out

Numerator leads to non-convex optimization
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Latent Logistic Regression

Latent logistic: class variables
)’ have unknown sub-classes

<> he{l,2,3,4,56,7,8,9)
h —— N N~

Class 1 Class 2 Class 3
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Hidden CRF

An HMM with a supervised label |



Latent Dynamic CRF




Latent Dynamic CRF

Hidden dependency structure among sub-classes



Latent Logistic Regression
and Neural Networks

Latent logistic: class variables
have unknown sub-classes
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Latent Logistic Regression
and Neural Networks

Latent logistic: class variables Neural network: combine non-linear
have unknown sub-classes transformations to binary variables
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Latent Logistic Regression
and Neural Networks

Latent logistic: class variables Neural network: combine non-linear
have unknown sub-classes transformations to binary variables
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p(y = slz,w) o< Y exp(wj )
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@ p(y = s|z, w) < exp <
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Hidden-Unit CREF,
Conditional Neural Field (CNF)
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A standard CRF where we learn the features

Related to earlier support vector random fields



Latent Dynamic CNF




