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1 Binary
Classify using y = sign(wT x).

y = [−1]

w =





−1.7491
1.1326

0
−0.7938
0.3149





x =





1
0
0
1
1





p(y = 1|x, w) = exp(ywT x)
exp(wT x) + exp(−wT x)

= exp(ywT x)�
y� exp(ywT x)

p(y = s|x, w) ∝ exp(swT x)

2 Multi-Class
Now y ∈ {1, 2, 3, . . . , S}.

y = [3]

x =





1 0 1
0 1 0
0 0 1
1 0 0
1 0 1





w =





−1.7491 1.7411 0.8106
1.1326 0.4868 0.6985

0 1.0488 −0.4016
−0.7938 1.4886 1.2688
0.3149 1.2705 −0.7836
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11 Neural Network
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8 Semi-Markov CRFs
Add dependency on length of segment

Small number of other tricks are possible: sentence must have one verb

4



Semi-Markov CRF

x1

y1,s,e

x2 x3 x4 x5 x6

6 Higher-Order CRF
Add 2nd- or higher-order dependencies

Inference with super nodes:

• 1st-order: O(NS2)

• 2nd-order: O( N
2 S4)

• ith-order: O( N
i S2i)

7 Dynamic CRFs
Track multiple variables with repeated structure

Inference with super-nodes

8 Semi-Markov CRFs
Add dependency on length of segment

Small number of other tricks are possible: sentence must have one verb

4

y2,s,e y3,s,e y4,s,e y5,s,e y6,s,e



Semi-Markov CRF

x1

y1,s,e

x2 x3 x4 x5 x6

6 Higher-Order CRF
Add 2nd- or higher-order dependencies

Inference with super nodes:

• 1st-order: O(NS2)

• 2nd-order: O( N
2 S4)

• ith-order: O( N
i S2i)

7 Dynamic CRFs
Track multiple variables with repeated structure

Inference with super-nodes

8 Semi-Markov CRFs
Add dependency on length of segment

Small number of other tricks are possible: sentence must have one verb

4

y2,s,e y3,s,e y4,s,e y5,s,e y6,s,e

6 Higher-Order CRF
Add 2nd- or higher-order dependencies

Inference with super nodes:

• 1st-order: O(NS2)

• 2nd-order: O( N
2 S4)

• ith-order: O( N
i S2i)

7 Dynamic CRFs
Track multiple variables with repeated structure

Inference with super-nodes

8 Semi-Markov CRFs
Add dependency on length of segment
Can also have small number of global dependencies:
‘at least one verb’

4



Skip-Chain CRF

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x1

y6

11 Neural Network

Neural network: combine non-linear

transformations to binary variables

gi ∈ [0, 1]

p(y = s|x, w) ∝ exp
�

H�

i=1
vi,sgi(wT

i
x)

�

12 Hidden CRF

For entire-sequence classification

An HMM with a supervised label

�
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

�
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13 LDCRF

For sequence labeling

Hidden dependency structure among sub-classes
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14 CNF

A standard CRF where we learn the features

Related to earlier support vector random fields

15 LDCNF

Also learn mapping from h to y

16 Skip-Chain CRF

Encourage repeated words to receive the same label

5



Skip-Chain CRF

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x1

y6

11 Neural Network

Neural network: combine non-linear

transformations to binary variables

gi ∈ [0, 1]

p(y = s|x, w) ∝ exp
�

H�

i=1
vi,sgi(wT

i
x)

�

12 Hidden CRF

For entire-sequence classification

An HMM with a supervised label

�
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

�





∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗





13 LDCRF

For sequence labeling

Hidden dependency structure among sub-classes





∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗





14 CNF

A standard CRF where we learn the features

Related to earlier support vector random fields

15 LDCNF

Also learn mapping from h to y

16 Skip-Chain CRF

Encourage repeated words to receive the same label

5



Outline

• Overview of General Conditional Random Fields

• Conditional Random Fields with Latent Variables



Missing Labels

x1

y1

x2

y2

x3

h

x4

y4

x5

y5

x6

y6



Missing Labels

x1

y1

x2

y2

x3 x4

y4

x5

y5

x6

y6

6 Higher-Order CRF
Add 2nd- or higher-order dependencies

Inference with super nodes:

• 1st-order: O(NS2)

• 2nd-order: O( N
2 S4)

• ith-order: O( N
i S2i)

7 Dynamic CRFs
Track multiple variables with repeated structure

Inference with super-nodes

8 Semi-Markov CRFs
Add dependency on length of segment
Can also have small number of global dependencies:
‘at least one verb’

9 Missing Labels

p(y, h|x, w) ∝ exp(wT
h x3) exp(vy2,h) exp(vh,y4)

�

n �=3
exp(wT

yn
xn)

�

n �=2,3
exp(vyn,yn+1) = f(y, h)�

y�,h f(y�, h)

p(y1:2 = s1:2, h = s3, y4:N = s4:N |x, w) ∝
N�

n=1
exp(wT

sn
xn)

N�

n=0
exp(vsn,sn+1) = f(y, h)�

y�,h f(y�, h)

p(y|x, w) =
�

h

p(y, h|x, w) =
�

h f(y, h�)�
y�,h� f(y�, h�)

Numerator leads to non-convex optimization.
If all variables hidden, cancels out.
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12 Hidden CRF

For entire-sequence classification

An HMM with a supervised label
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13 LDCRF

For sequence labeling

Hidden dependency structure among sub-classes
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14 CNF

A standard CRF where we learn the features
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14 CNF

A standard CRF where we learn the features

Related to earlier support vector random fields
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