Opening up the Black Box: Fast Non-Smooth and Big-Data Optimization

Mark Schmidt

Natural Language Laboratory School of Computing Science Simon Fraser University

February 2014

• Task: Segmentation of Multi-Modality MRI Data

Task: Segmentation of Multi-Modality MRI Data

- Various applications:
 - radiation therapy target planning.
 - quantifying growth or treatment response.
 - image-guided surgery.

Task: Segmentation of Multi-Modality MRI Data

- Various applications:
 - radiation therapy target planning.
 - quantifying growth or treatment response.
 - image-guided surgery.
- Challenges:
 - image noise and intensity inhomogeneity.
 - similarity between tumor and normal tissue.

- Solution strategy:
 - Explicit correction of image inhomogeneities.
 - Spatial alignment with template.
 - Image and template-based features.
 - Pixel-level classifier.

• Best performance with logistic regression:

$$\min_{x}\sum_{i=1}^{N}f_{i}(x).$$

Best performance with logistic regression:

$$\min_{x}\sum_{i=1}^{N}f_{i}(x).$$

- Problem 1: Estimating x is slow:
 - 8 million voxels per volume.
 - Last part of talk: Big-N problems.

Best performance with logistic regression:

$$\min_{x}\sum_{i=1}^{N}f_{i}(x).$$

- Problem 1: Estimating x is slow:
 - 8 million voxels per volume.
 - Last part of talk: Big-N problems.
- Problem 2: Designing features.
 - Lots of possible candidate features.
 - Using all features leads to over-fitting.
 - First part of talk: Feature Selection.

Training time is too slow for automatic feature selection:

• forced to use manual feature selection

Optimizing with ℓ_1 -Regularzation

• Last day of Master's: try all features with ℓ_2 -Regularization:

$$\min_{x} f(x) + \lambda \|x\|^2.$$

- Reduces over-fitting.
- As good as best selected features.
- But, very slow to segment new image.

Optimizing with ℓ_1 -Regularzation

• Last day of Master's: try all features with ℓ_2 -Regularization:

$$\min_{x} f(x) + \lambda \|x\|^2.$$

- Reduces over-fitting.
- As good as best selected features.
- But, very slow to segment new image.
- Reading on way to Ph.D.: all features with ℓ_1 -Regularization:

$$\min_{x} f(x) + \lambda \|x\|_1.$$

- Still reduces over-fitting.
- But, solution *x* is SPARSE (some $x_j = 0$).
- Feature selection by only training once.

Optimizing with ℓ_1 -Regularzation

• Last day of Master's: try all features with ℓ_2 -Regularization:

$$\min_{x} f(x) + \lambda \|x\|^2.$$

- Reduces over-fitting.
- As good as best selected features.
- But, very slow to segment new image.
- Reading on way to Ph.D.: all features with ℓ_1 -Regularization:

$$\min_{x} f(x) + \lambda \|x\|_1.$$

- Still reduces over-fitting.
- But, solution *x* is SPARSE (some $x_j = 0$).
- Feature selection by only training once.
- Amazing! But non-smooth, how do we solve this problem?

• We can re-write the regularized problem

 $\min_{x} f(x) + \lambda \|x\|_{p}$

as a constrained problem

 $\min_{\|x\|_{\rho}\leq\tau}f(x).$

• Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

• Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

• When *F* is convex and smooth,

its minimizer x^* has gradient $F'(x^*) = 0$.

Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

 When F is convex and smooth, its minimizer x* has gradient F'(x*) = 0. When r(x) = λ||x||²:

• We need
$$f'(x) = -\lambda x$$
.

Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

 When *F* is convex and smooth, its minimizer *x** has gradient *F*'(*x**) = 0.
When *r*(*x*) = λ||*x*||²:

- We need $f'(x) = -\lambda x$.
- When F is convex and smooth,

its minimizer x^* has a subgradient d = 0.

Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

 When *F* is convex and smooth, its minimizer *x** has gradient *F*'(*x**) = 0. When *r*(*x*) = λ||*x*||²:

- We need $f'(x) = -\lambda x$.
- When F is convex and smooth,

its minimizer x^* has a subgradient d = 0. When $r(x) = \lambda ||x||_1$:

Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

 When *F* is convex and smooth, its minimizer *x** has gradient *F*'(*x**) = 0. When *r*(*x*) = λ||*x*||²:

- We need $f'(x) = -\lambda x$.
- When F is convex and smooth,

its minimizer x^* has a subgradient d = 0. When $r(x) = \lambda ||x||_1$:

Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

 When *F* is convex and smooth, its minimizer *x** has gradient *F*'(*x**) = 0. When *r*(*x*) = λ||*x*||²:

- We need $f'(x) = -\lambda x$.
- When F is convex and smooth,

its minimizer x^* has a subgradient d = 0. When $r(x) = \lambda ||x||_1$:

Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

 When *F* is convex and smooth, its minimizer *x** has gradient *F*'(*x**) = 0. When *r*(*x*) = λ||*x*||²:

- We need $f'(x) = -\lambda x$.
- When F is convex and smooth,

its minimizer x^* has a subgradient d = 0. When $r(x) = \lambda ||x||_1$:

Consider our problem

$$\min_{x} F(x) = f(x) + r(x).$$

 When *F* is convex and smooth, its minimizer *x** has gradient *F*'(*x**) = 0. When *r*(*x*) = λ||*x*||²:

- We need $f'(x) = -\lambda x$.
- When F is convex and smooth,

its minimizer x^* has a subgradient d = 0. When $r(x) = \lambda ||x||_1$:

 $\min_{x} f(x) + \lambda \|x\|_{1}.$

 $\min_{x} f(x) + \lambda \|x\|_{1}.$

• With ℓ_2 -Regularization, can use quasi-Newton methods.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

 $\min_{x} f(x) + \lambda \|x\|_1.$

• With ℓ_2 -Regularization, can use quasi-Newton methods.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

• The non-smooth ℓ_1 -regularizer breaks these methods.

 $\min_{x} f(x) + \lambda \|x\|_1.$

• With ℓ_2 -Regularization, can use quasi-Newton methods.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

- The non-smooth ℓ_1 -regularizer breaks these methods.
- But the regularizer is separable: $||x||_1 = \sum_j |x_j|$.

 $\min_{x} f(x) + \lambda \|x\|_1.$

• With ℓ_2 -Regularization, can use quasi-Newton methods.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

- The non-smooth ℓ_1 -regularizer breaks these methods.
- But the regularizer is separable: $||x||_1 = \sum_j |x_j|$.
- Can we extend quasi-Newton methods using this property?

Converting to a Bound-Constrained Problem

• Consider splitting each variable into a positive and negative part:

$$x = x^+ - x^-$$
, with $x^+ \ge 0, x^- \ge 0$.

Converting to a Bound-Constrained Problem

• Consider splitting each variable into a positive and negative part:

$$x = x^+ - x^-$$
, with $x^+ \ge 0, x^- \ge 0$.

• We can re-write the non-smooth objective

 $\min_{x} f(x) + \lambda \|x\|_{1},$

as a smooth objective with non-negative constraints:

$$\min_{x^+ \ge 0, x^- \ge 0} F(x) = f(x^+ - x^-) + \lambda \sum_{j} [x_j^+ + x_j^-]$$

Converting to a Bound-Constrained Problem

Consider splitting each variable into a positive and negative part:

$$x = x^+ - x^-$$
, with $x^+ \ge 0, x^- \ge 0$.

• We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \|x\|_{1},$$

as a smooth objective with non-negative constraints:

$$\min_{x^+ \ge 0, x^- \ge 0} F(x) = f(x^+ - x^-) + \lambda \sum_{j} [x_j^+ + x_j^-]$$

• Use methods for smooth bound-constrained optimization.

$$x^{k+1} \leftarrow [x^k - \alpha F'(x^k)]^+.$$

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha F'(\mathbf{x}^k)]^+.$$

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha F'(\mathbf{x}^k)]^+.$$

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha \mathbf{F}'(\mathbf{x}^k)]^+.$$

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha F'(\mathbf{x}^k)]^+.$$

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha \mathbf{F}'(\mathbf{x}^k)]^+.$$

Gradient Projection

• Classic bound-constrained optimizer is gradient projection:

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha \mathbf{F}'(\mathbf{x}^k)]^+.$$

Gradient Projection

• Classic bound-constrained optimizer is gradient projection:

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha \mathbf{F}'(\mathbf{x}^k)]^+.$$

Gradient Projection

• Classic bound-constrained optimizer is gradient projection:

$$\mathbf{x}^{k+1} \leftarrow [\mathbf{x}^k - \alpha \mathbf{F}'(\mathbf{x}^k)]^+.$$

• Convergence properties similar to gradient method.

• Can we use a [quasi-]Newton step?

$$\boldsymbol{x}^{k+1} \leftarrow [\boldsymbol{x}^k - \alpha \boldsymbol{H}_k^{-1} \boldsymbol{F}'(\boldsymbol{x}^k)]^+,$$

• Can we use a [quasi-]Newton step?

$$\boldsymbol{x}^{k+1} \leftarrow [\boldsymbol{x}^k - \alpha \boldsymbol{H}_k^{-1} \boldsymbol{F}'(\boldsymbol{x}^k)]^+,$$

• Can we use a [quasi-]Newton step?

$$\boldsymbol{x}^{k+1} \leftarrow [\boldsymbol{x}^k - \alpha \boldsymbol{H}_k^{-1} \boldsymbol{F}'(\boldsymbol{x}^k)]^+,$$

• Can we use a [quasi-]Newton step?

$$\boldsymbol{x}^{k+1} \leftarrow [\boldsymbol{x}^k - \alpha \boldsymbol{H}_k^{-1} \boldsymbol{F}'(\boldsymbol{x}^k)]^+,$$

• Can we use a [quasi-]Newton step?

$$\boldsymbol{x}^{k+1} \leftarrow [\boldsymbol{x}^k - \alpha \boldsymbol{H}_k^{-1} \boldsymbol{F}'(\boldsymbol{x}^k)]^+,$$

• Can we use a [quasi-]Newton step?

$$\boldsymbol{x}^{k+1} \leftarrow [\boldsymbol{x}^k - \alpha \boldsymbol{H}_k^{-1} \boldsymbol{F}'(\boldsymbol{x}^k)]^+,$$

• Can we use a [quasi-]Newton step?

$$\boldsymbol{x}^{k+1} \leftarrow [\boldsymbol{x}^k - \alpha \boldsymbol{H}_k^{-1} \boldsymbol{F}'(\boldsymbol{x}^k)]^+,$$

• For separable problems we can fix this by restricting H_k .

- For separable problems we can fix this by restricting H_k .
- Use a diagonal matrix D_k :

$$x^{k+1} \leftarrow [x^k - \alpha[D_k]^{-1}F'(x^k)]^+$$

[Birgin et al., 2000, Figueiredo et al., 2007]

- For separable problems we can fix this by restricting H_k .
- Use a diagonal matrix D_k :

$$x^{k+1} \leftarrow [x^k - \alpha[D_k]^{-1}F'(x^k)]^+$$

[Birgin et al., 2000, Figueiredo et al., 2007]

But is this too restrictive?

- For separable problems we can fix this by restricting H_k .
- Use a diagonal matrix D_k :

$$x^{k+1} \leftarrow [x^k - \alpha[D_k]^{-1}F'(x^k)]^+$$

[Birgin et al., 2000, Figueiredo et al., 2007]

- But is this too restrictive?
- Only need *H_k* diagonal with respect to:

 $\mathcal{A} \triangleq \{i | x_i^k \leq \epsilon \text{ and } F_i'(x^k) > 0\}$

[Gafni & Bertsekas, 1984]

- For separable problems we can fix this by restricting H_k .
- Use a diagonal matrix D_k :

$$x^{k+1} \leftarrow [x^k - \alpha[D_k]^{-1}F'(x^k)]^+$$

[Birgin et al., 2000, Figueiredo et al., 2007]

- But is this too restrictive?
- Only need *H_k* diagonal with respect to:

 $\mathcal{A} \triangleq \{i | x_i^k \leq \epsilon \text{ and } F_i'(x^k) > 0\}$

[Gafni & Bertsekas, 1984]

• Re-arranging, we need

$$H_k = \left[\begin{array}{cc} D_k & \mathbf{0} \\ \mathbf{0} & \bar{H}_k \end{array} \right]$$

- For separable problems we can fix this by restricting H_k .
- Use a diagonal matrix D_k :

$$x^{k+1} \leftarrow [x^k - \alpha[D_k]^{-1}F'(x^k)]^+$$

[Birgin et al., 2000, Figueiredo et al., 2007]

- But is this too restrictive?
- Only need *H_k* diagonal with respect to:

$$\mathcal{A} \triangleq \{i | x_i^k \leq \epsilon \text{ and } F_i'(x^k) > 0\}$$

[Gafni & Bertsekas, 1984]

• Re-arranging, we need

$$H_k = \left[\begin{array}{cc} D_k & \mathbf{0} \\ \mathbf{0} & \bar{H}_k \end{array} \right]$$

• \bar{H}_k can be quasi-Newton approximation of $F''(x^k)$.

Discussion of Two-Metric Projection

- Outperforms 11 other methods in Schmidt et al. [2007]:
 - Iterations only require linear time and space.
 - Many variables can be made zero/non-zero at once.
 - Allows warm-starting.
 - Eventually becomes quasi-Newton on the non-zeroes.

Discussion of Two-Metric Projection

• Outperforms 11 other methods in Schmidt et al. [2007]:

- Iterations only require linear time and space.
- Many variables can be made zero/non-zero at once.
- Allows warm-starting.
- Eventually becomes quasi-Newton on the non-zeroes.
- But should we convert to a bound-constrained problem?
 - The number of variables is doubled.
 - The transformed problem might be harder.

Discussion of Two-Metric Projection

• Outperforms 11 other methods in Schmidt et al. [2007]:

- Iterations only require linear time and space.
- Many variables can be made zero/non-zero at once.
- Allows warm-starting.
- Eventually becomes quasi-Newton on the non-zeroes.
- But should we convert to a bound-constrained problem?
 - The number of variables is doubled.
 - The transformed problem might be harder.
- Can we use the same tricks on the original problem?

$$\min_{x} F(x) = f(x) + \lambda \|x\|_{1}.$$

$$\min_{x} F(x) = f(x) + \lambda \|x\|_{1}.$$

• If *f* is smooth, *F* has directional derivatives everywhere.

$$\min_{x} F(x) = f(x) + \lambda \|x\|_{1}.$$

- If f is smooth, F has directional derivatives everywhere.
- We could use the steepest descent direction $-z^k$.

$$\min_{x} F(x) = f(x) + \lambda \|x\|_{1}.$$

- If f is smooth, F has directional derivatives everywhere.
- We could use the steepest descent direction $-z^k$.
- For convex problems, z^k is the minimum-norm sub-gradient:

$$z^k = \arg\min_{z \in \partial F(x^k)} ||z||$$

• The steepest descent direction for ℓ_1 -Regularization problems,

$$\min_{x} F(x) = f(x) + \lambda \|x\|_{1},$$

can be computed coordinate-wise because $||x||_1$ is separable:

• The steepest descent direction for ℓ_1 -Regularization problems,

$$\min_{x} F(x) = f(x) + \lambda \|x\|_{1},$$

can be computed coordinate-wise because $||x||_1$ is separable:

$$Z_i = \left\{ egin{array}{ll} F_i'(x) = f_i'(x) + \lambda \operatorname{sign}(x_i), & |x_i| > 0 \ 0, & x_i = 0, |f_i'(x)| \leq \lambda \ f_i'(x) - \lambda \operatorname{sign}(f_i'(x)), & x_i = 0, |f_i'(x)| > \lambda \end{array}
ight.$$

• The steepest descent direction for ℓ_1 -Regularization problems,

$$\min_{x} F(x) = f(x) + \lambda \|x\|_{1},$$

can be computed coordinate-wise because $||x||_1$ is separable:

$$Z_i = \left\{ egin{array}{ll} F_i'(x) = f_i'(x) + \lambda \operatorname{sign}(x_i), & |x_i| > 0 \ 0, & x_i = 0, |f_i'(x)| \leq \lambda \ f_i'(x) - \lambda \operatorname{sign}(f_i'(x)), & x_i = 0, |f_i'(x)| > \lambda \end{array}
ight.$$

• We can even try a Newton-like version:

$$x^{k+1} = x^k - \alpha [H_k]^{-1} z^k$$

• The steepest descent direction for ℓ_1 -Regularization problems,

$$\min_{x} F(x) = f(x) + \lambda ||x||_1,$$

can be computed coordinate-wise because $||x||_1$ is separable:

$$Z_i = \left\{ egin{array}{ll} F_i'(x) = f_i'(x) + \lambda \operatorname{sign}(x_i), & |x_i| > 0 \ 0, & x_i = 0, |f_i'(x)| \leq \lambda \ f_i'(x) - \lambda \operatorname{sign}(f_i'(x)), & x_i = 0, |f_i'(x)| > \lambda \end{array}
ight.$$

• We can even try a Newton-like version:

$$x^{k+1} = x^k - \alpha [H_k]^{-1} z^k$$

• However, there are two problems with this step:

2 The iterations are not sparse.

• Use orthant projection to get sparse iterates:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[H_k]^{-1}z^k],$$

• Use orthant projection to get sparse iterates:

$$\mathbf{x}^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(\mathbf{x}^k)}[\mathbf{x}^k - \alpha[\mathbf{H}_k]^{-1}\mathbf{z}^k],$$

• Use orthant projection to get sparse iterates:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[H_k]^{-1}z^k],$$

• Use orthant projection to get sparse iterates:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[H_k]^{-1}z^k],$$

• Use orthant projection to get sparse iterates:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[H_k]^{-1}z^k],$$

• Use orthant projection to get sparse iterates:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[H_k]^{-1}z^k],$$

• Use orthant projection to get sparse iterates:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[H_k]^{-1}z^k],$$

• Use orthant projection to get sparse iterates:

$$\mathbf{x}^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(\mathbf{x}^k)}[\mathbf{x}^k - \alpha[\mathbf{H}_k]^{-1}\mathbf{z}^k],$$

[Osborne et al., 2000, Andrew & Gao, 2007]

• Variables that change sign become exactly zero.

Two-Metric Sub-Gradient Projection

• We can guarantee descent using diagonal scaling:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[D_k]^{-1}z^k].$$
Two-Metric Sub-Gradient Projection

• We can guarantee descent using diagonal scaling:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[D_k]^{-1}z^k].$$

• Less restrictive: diagonal with respect to variables near zero:

$$\mathcal{A} = \{i | |\mathbf{x}_i^k| \le \epsilon\}, \quad \mathcal{F} = \{i | |\mathbf{x}_i^k| > \epsilon\}$$

Two-Metric Sub-Gradient Projection

• We can guarantee descent using diagonal scaling:

$$x^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(x^k)}[x^k - \alpha[D_k]^{-1}z^k].$$

Less restrictive: diagonal with respect to variables near zero:

$$\mathcal{A} = \{i | |\mathbf{x}_i^k| \le \epsilon\}, \quad \mathcal{F} = \{i | |\mathbf{x}_i^k| > \epsilon\}$$

• Two-metric sub-gradient projection:

$$\begin{aligned} x_{\mathcal{F}}^{k+1} &\leftarrow \mathcal{P}_{\mathcal{O}(x_{\mathcal{F}}^{k})}[x_{\mathcal{F}}^{k} - \alpha[H_{k}]^{-1}F_{\mathcal{F}}'(x^{k})].\\ x_{\mathcal{A}}^{k+1} &\leftarrow \mathcal{P}_{\mathcal{O}(x_{\mathcal{A}}^{k})}[x_{\mathcal{A}}^{k} - \alpha[D_{k}]^{-1}z_{\mathcal{A}}^{k}], \end{aligned}$$

Two-Metric Sub-Gradient Projection

• We can guarantee descent using diagonal scaling:

$$\mathbf{x}^{k+1} \leftarrow \mathcal{P}_{\mathcal{O}(\mathbf{x}^k)}[\mathbf{x}^k - \alpha[\mathbf{D}_k]^{-1}\mathbf{z}^k].$$

Less restrictive: diagonal with respect to variables near zero:

$$\mathcal{A} = \{i | |\mathbf{x}_i^k| \le \epsilon\}, \quad \mathcal{F} = \{i | |\mathbf{x}_i^k| > \epsilon\}$$

• Two-metric sub-gradient projection:

$$\begin{aligned} x_{\mathcal{F}}^{k+1} &\leftarrow \mathcal{P}_{\mathcal{O}(x_{\mathcal{F}}^{k})}[x_{\mathcal{F}}^{k} - \alpha[H_{k}]^{-1}F_{\mathcal{F}}'(x^{k})].\\ x_{\mathcal{A}}^{k+1} &\leftarrow \mathcal{P}_{\mathcal{O}(x_{\mathcal{A}}^{k})}[x_{\mathcal{A}}^{k} - \alpha[D_{k}]^{-1}z_{\mathcal{A}}^{k}], \end{aligned}$$

• Quasi-Newton method with separable non-smooth regularization.

Comparing to non-L-BFGS methods

Comparing to methods not based on L-BFGS (sido data):

• Similar ideas used in many ℓ_1 -Regularization solvers.

[Perkins et al., 2003, Andrew & Gao, 2007, Shi et al., 2007, Kim & Park, 2010, Byrd et al., 2012].

• Similar ideas used in many ℓ_1 -Regularization solvers.

[Perkins et al., 2003, Andrew & Gao, 2007, Shi et al., 2007, Kim & Park, 2010, Byrd et al., 2012].

- Recent methods consider two more issues:
 - Sub-Optimization: Identify variables likely to stay zero. [El Ghaoui et al., 2010].
 - Continuation: Start with a large λ and slowly decrease it. [Xiao and Zhang, 2012]

• Similar ideas used in many ℓ_1 -Regularization solvers.

[Perkins et al., 2003, Andrew & Gao, 2007, Shi et al., 2007, Kim & Park, 2010, Byrd et al., 2012].

- Recent methods consider two more issues:
 - Sub-Optimization: Identify variables likely to stay zero. [El Ghaoui et al., 2010].
 - Continuation: Start with a large λ and slowly decrease it. [Xiao and Zhang, 2012]
- Generalizes to separable A.E.-differentiable regularizers.
- Exist two-metric projection for simplex constraints.

Motivation: Automatic Brain Tumor Segmentation

- Independent pixel classifier ignores correlations.
- Conditional random fields (CRFs) generalize logistic regression to multiple labels.

Motivation: Automatic Brain Tumor Segmentation

- Independent pixel classifier ignores correlations.
- Conditional random fields (CRFs) generalize logistic regression to multiple labels.

• Can use exact same optimizer for ℓ_1 -regularized CRFs.

http://www.di.ens.fr/~mschmidt/Software/L1General.html

Sparsity

- Group Sparsity
- Structured Sparsity
- Big-N Problems

Motivation: Structure Learning in CRFs

• Task: early detection of coronoary heart disease.

Motivation: Structure Learning in CRFs

• Task: early detection of coronoary heart disease.

- Assess motion of 16 heart segments using CRF.
- But, do not know the best correlation structure.

Motivation: Structure Learning in CRFs

• Task: early detection of coronoary heart disease.

- Assess motion of 16 heart segments using CRF.
- But, do not know the best correlation structure.
- Perform structure learning with ℓ_1 -regularization.

• We want to fit a Markov random field with unknown structure.

• We want to fit a Markov random field with unknown structure.

• We want to fit a Markov random field with unknown structure.

- We want to fit a Markov random field with unknown structure.
- Learn a sparse structure by ℓ₁-regularization of edge weights. [Lee et al. 2006, Wainwright et al. 2006]

- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].

- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].

- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].

- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].

• In some cases, we want sparsity in groups of parameters:

- Multi-class variables [Lee et al., 2006].
- Blockwise-sparsity [Duchi et al., 2008].

• In some cases, we want sparsity in groups of parameters:

- Multi-class variables [Lee et al., 2006].
- Blockwise-sparsity [Duchi et al., 2008].

- In some cases, we want sparsity in groups of parameters:
 - Multi-class variables [Lee et al., 2006].
 - Blockwise-sparsity [Duchi et al., 2008].
 - Onditional random fields [Schmidt et al., 2008]

• Encourage group sparsity using group ℓ_1 -regularization:

 $\min_{x} f(x) + \lambda \|x\|_{1,p},$

where

$$\|x\|_{1,p} = \sum_{g} \|x_{g}\|_{p}.$$

• Encourage group sparsity using group ℓ_1 -regularization:

$$\min_{x} f(x) + \lambda \|x\|_{1,p},$$

where

$$\|x\|_{1,p}=\sum_g \|x_g\|_p.$$

- This is ℓ_1 -regularization of group norms.
- Typically p = 2, but other norms give other properties.

• Encourage group sparsity using group ℓ_1 -regularization:

$$\min_{x} f(x) + \lambda \|x\|_{1,p},$$

where

$$\|x\|_{1,p} = \sum_{g} \|x_{g}\|_{p}.$$

- This is ℓ_1 -regularization of group norms.
- Typically p = 2, but other norms give other properties.

Effect of Different Group Norms

- Group ℓ_1 -Regularization with the ℓ_2 group norm.
- Encourages group sparsity.

Effect of Different Group Norms

- Group ℓ_1 -Regularization with the ℓ_∞ group norm.
- Encourages group sparsity and parameter tieing.

Effect of Different Group Norms

- Group ℓ_1 -Regularization with the nuclear group norm.
- Encourages group sparsity and low-rank.

 $\min_{x} f(x) + \lambda \|x\|_{1,2},$

where *f* is the CRF (expensive) objective.

 $\min_{x} f(x) + \lambda \|x\|_{1,2},$

where *f* is the CRF (expensive) objective.

• The regularizer is non-separable.

 $\min_{x} f(x) + \lambda \|x\|_{1,2},$

where *f* is the CRF (expensive) objective.

- The regularizer is non-separable.
- But the regularizer is simple.

 $\min_{x} f(x) + \lambda \|x\|_{1,2},$

where *f* is the CRF (expensive) objective.

- The regularizer is non-separable.
- But the regularizer is simple.
- Can we extend quasi-Newton methods using this property?

Converting to a Constrained Problem

• We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \sum_{g} \|x\|_{2}$$

as a smooth objective with norm-cone constraints:

$$\min_{\|x_g\| \le t_g} F(x) = f(x) + \lambda \sum_g t_g.$$

Converting to a Constrained Problem

We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \sum_{g} \|x\|,$$

as a smooth objective with norm-cone constraints:

$$\min_{\|x_g\| \le t_g} F(x) = f(x) + \lambda \sum_g t_g.$$

• We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \sum_{g} \|x\|,$$

• We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \sum_{g} \|x\|,$$

$$\min_{\|x_g\| \leq t_g} F(x) = f(x) + \lambda \sum_g t_g.$$

• We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \sum_{g} \|x\|,$$

$$\min_{\|x\|_{
ho} \leq t_g} F(x) = f(x) + \lambda \sum_g t_g.$$

- Properties of this problem:
 - the number of parameters is large.
 - 2 evaluating F(x) is expensive.
 - we have constraints.

• We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \sum_{g} \|x\|,$$

$$\min_{\|x\|_{
ho} \leq t_g} F(x) = f(x) + \lambda \sum_g t_g.$$

- Properties of this problem:
 - the number of parameters is large.
 - 2 evaluating F(x) is expensive.
 - we have constraints.
- But the constraints are simple:
 - We can compute the projection in linear time.

• We can re-write the non-smooth objective

$$\min_{x} f(x) + \lambda \sum_{g} \|x\|,$$

$$\min_{\|x\|_{
ho} \leq t_g} F(x) = f(x) + \lambda \sum_g t_g.$$

- Properties of this problem:
 - the number of parameters is large.
 - 2 evaluating F(x) is expensive.
 - we have constraints.
- But the constraints are simple:
 - We can compute the projection in linear time.
- We want to optimize costly objectives with simple constraints.

$$x^{k+1} \leftarrow rgmin_{x \in \mathcal{C}} ||x - (x^k - \alpha F'(x^k))||$$

$$\mathbf{x}^{k+1} \leftarrow rgmin_{\mathbf{x}\in\mathcal{C}} ||\mathbf{x} - (\mathbf{x}^k - lpha \mathbf{F}'(\mathbf{x}^k))||$$

$$\mathbf{x}^{k+1} \leftarrow rgmin_{\mathbf{x}\in\mathcal{C}} ||\mathbf{x} - (\mathbf{x}^k - lpha \mathbf{F}'(\mathbf{x}^k))||$$

$$\mathbf{x}^{k+1} \leftarrow rgmin_{\mathbf{x}\in\mathcal{C}} ||\mathbf{x} - (\mathbf{x}^k - lpha \mathbf{F}'(\mathbf{x}^k))||$$

$$\mathbf{x}^{k+1} \leftarrow rgmin_{\mathbf{x}\in\mathcal{C}} ||\mathbf{x} - (\mathbf{x}^k - lpha \mathbf{F}'(\mathbf{x}^k))||$$

• We can consider a Newton-like step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} ||x - (x^k - \alpha[H_k]^{-1}F'(x^k))||,$$

but as we saw this doesn't work.

• We can consider a Newton-like step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} ||x - (x^k - \alpha[H_k]^{-1}F'(x^k))||,$$

but as we saw this doesn't work.

Projected Newton methods project under the same norm:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} ||x - (x^k - \alpha[H_k]^{-1}F'(x_k))||_{H^k},$$

where $||x||_{H^k} = \sqrt{x^T H^k x}$. [Levitin & Polyak, 1966] • We can consider a Newton-like step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} ||x - (x^k - \alpha[H_k]^{-1}F'(x^k))||,$$

but as we saw this doesn't work.

Projected Newton methods project under the same norm:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} ||x - (x^k - \alpha[H_k]^{-1}F'(x_k))||_{H^k},$$

where $||x||_{H^k} = \sqrt{x^T H^k x}$.

[Levitin & Polyak, 1966]

Convergence properties similar to Newton's method.

 Projected Newton methods equivalently minimize a constrained quadratic approximation:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} F(x^k) + \langle F'(x^k), x - x^k \rangle + \frac{1}{2lpha} \|x - x_k\|_{H_k}^2.$$

4

 Projected Newton methods equivalently minimize a constrained quadratic approximation:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} F(x^k) + \langle F'(x^k), x - x^k \rangle + \frac{1}{2\alpha} \|x - x_k\|_{H_k}^2.$$

4

• This is expensive even with simple constraints.

 Projected Newton methods equivalently minimize a constrained quadratic approximation:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x\in\mathcal{C}} F(x^k) + \langle F'(x^k), x - x^k \rangle + rac{1}{2lpha} \|x - x_k\|_{H_k}^2.$$

4

- This is expensive even with simple constraints.
- Solution: use a cheap approximate solver.

• Can we terminate this early?

- Can we terminate this early?
 - For small enough α , we just need $Q(x, \alpha)$ less than $f(x^k)$.

- Can we terminate this early?
 - For small enough α , we just need $Q(x, \alpha)$ less than $f(x^k)$.
- Can we efficiently get an approximate solution?

- Can we terminate this early?
 - For small enough α, we just need Q(x, α) less than f(x^k).
- Can we efficiently get an approximate solution?
 - Schmidt et al. [2009]: use a quasi-Newton approximation of H_k and use (spectral) projected-gradient on Q(x, α):
 - Quasi-Newton approximation: linear time/space inner iterations.
 - Simple constraints: inner projection step takes linear time.
 - Efficient for optimizing costly functions with simple constraints.

- Can we terminate this early?
 - For small enough α , we just need $Q(x, \alpha)$ less than $f(x^k)$.
- Can we efficiently get an approximate solution?
 - Schmidt et al. [2009]: use a quasi-Newton approximation of H_k and use (spectral) projected-gradient on Q(x, α):
 - Quasi-Newton approximation: linear time/space inner iterations.
 - Simple constraints: inner projection step takes linear time.
 - Efficient for optimizing costly functions with simple constraints.
- The projected quasi-Newton (PQN) approach:
 - Best paper prize at AI/Stats.
 - "The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps the most elegant and logical extension of quasi-Newton methods, but it involves solving a sub-iteration." [Becker and Fadili, 2012].
 - "PQN is an implementation that uses a limited-memory quasi-Newton update and has both excellent empirical performance and theoretical properties." [Lee et al., 2012].
 - http://www.di.ens.fr/~mschmidt/Software/PQN.html

Comparing PQN to first-order methods on a graphical model structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].

- As before, we may not want to introduce constraints:
 - Increases number of variables.
 - Constrained problem may be harder.
- Can we use the same tricks without introducing constraints?

- As before, we may not want to introduce constraints:
 - Increases number of variables.
 - Constrained problem may be harder.
- Can we use the same tricks without introducing constraints?
- Yes, with proximal-gradient methods.

• We want to solve a smooth optimization problem,

 $\min_{x} f(x).$

• We want to solve a smooth optimization problem,

 $\min_{x} f(x).$

• At iteration x_k we use a quadratic upper bound on f,

$$x_{k+1} = \operatorname*{arg\,min}_{x} f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2.$$

We want to solve a smooth optimization problem,

 $\min_{x} f(x).$

• At iteration x_k we use a quadratic upper bound on f,

$$x_{k+1} = \operatorname*{arg\,min}_{x} f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2.$$

We can equivalently write this as the quadratic optimization

$$x_{k+1} = \arg\min_{x} \frac{1}{2} \|x - (x_k - \alpha f'(x_k))\|^2$$

We want to solve a smooth optimization problem,

 $\min_{x} f(x).$

• At iteration x_k we use a quadratic upper bound on f,

$$x_{k+1} = \operatorname*{arg\,min}_{x} f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2.$$

We can equivalently write this as the quadratic optimization

$$x_{k+1} = \arg\min_{x} \frac{1}{2} \|x - (x_k - \alpha f'(x_k))\|^2$$

• The solution is the gradient algorithm:

$$x_{k+1} = x_k - \alpha f'(x_k).$$

Overview of the Basic Proximal-Gradient Method

• We want to solve a smooth optimization problem,

 $\min_{x} f(x).$

• At iteration x_k we use a quadratic upper bound on f,

$$x_{k+1} = \operatorname*{arg\,min}_{x} f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2.$$

We can equivalently write this as the quadratic optimization

$$x_{k+1} = \arg\min_{x} \frac{1}{2} \|x - (x_k - \alpha f'(x_k))\|^2$$

• The solution is the gradient algorithm:

$$x_{k+1} = x_k - \alpha f'(x_k).$$

Overview of the Basic Proximal-Gradient Method

• We want to solve a composite optimization problem,

 $\min_{x} f(x) + g(x).$

• At iteration *x_k* we use a quadratic upper bound on *f*,

$$x_{k+1} = \operatorname*{arg\,min}_{x} f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2.$$

• We can equivalently write this as the quadratic optimization

$$x_{k+1} = \arg\min_{x} \frac{1}{2} \|x - (x_k - \alpha f'(x_k))\|^2$$

• The solution is the gradient algorithm:

$$x_{k+1} = x_k - \alpha f'(x_k).$$
Overview of the Basic Proximal-Gradient Method

• We want to solve a composite optimization problem,

 $\min_{x} f(x) + g(x).$

• At iteration *x_k* we use a quadratic upper bound on *f*,

$$x_{k+1} = \operatorname*{arg\,min}_{x} f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2 + g(x).$$

We can equivalently write this as the quadratic optimization

$$x_{k+1} = \underset{x}{\operatorname{arg\,min}} \frac{1}{2} \|x - (x_k - \alpha f'(x_k))\|^2.$$

• The solution is the gradient algorithm:

$$x_{k+1} = x_k - \alpha f'(x_k).$$

Overview of the Basic Proximal-Gradient Method

• We want to solve a composite optimization problem,

 $\min_{x} f(x) + g(x).$

• At iteration *x_k* we use a quadratic upper bound on *f*,

$$x_{k+1} = \underset{x}{\operatorname{arg\,min}} \ f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2 + g(x).$$

We can equivalently write this as the proximal optimization

$$x_{k+1} = \arg\min_{x} \frac{1}{2} \|x - (x_k - \alpha f'(x_k))\|^2 + \alpha g(x).$$

• The solution is the gradient algorithm:

$$x_{k+1} = x_k - \alpha f'(x_k).$$

Overview of the Basic Proximal-Gradient Method

• We want to solve a composite optimization problem,

 $\min_{x} f(x) + g(x).$

• At iteration x_k we use a quadratic upper bound on f,

$$x_{k+1} = \underset{x}{\operatorname{arg\,min}} \ f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|^2 + g(x).$$

We can equivalently write this as the proximal optimization

$$x_{k+1} = \operatorname*{arg\,min}_{x} \frac{1}{2} \|x - (x_k - \alpha f'(x_k))\|^2 + \alpha g(x).$$

• The solution is the proximal-gradient algorithm:

$$x_{k+1} = \operatorname{prox}_{\alpha g}[x_k - \alpha f'(x_k)].$$

$$g(x) = egin{cases} 0 & ext{if } x \in \mathcal{C} \ \infty & ext{if } x \notin \mathcal{C}. \end{cases}$$

$$g(x) = egin{cases} 0 & ext{if } x \in \mathcal{C} \ \infty & ext{if } x \notin \mathcal{C}. \end{cases}$$

$$g(x) = egin{cases} 0 & ext{if } x \in \mathcal{C} \ \infty & ext{if } x \notin \mathcal{C}. \end{cases}$$

$$g(x) = egin{cases} 0 & ext{if } x \in \mathcal{C} \ \infty & ext{if } x \notin \mathcal{C}. \end{cases}$$

• Projected-gradient methods are a special case:

$$g(x) = egin{cases} 0 & ext{if } x \in \mathcal{C} \ \infty & ext{if } x \notin \mathcal{C}. \end{cases}$$

file:///Users/Mark/Pictures/2011/11Paris/MVI_0605.MOV

• Iterative Soft-Thresholding methods are a special case:

$$g(x)=\lambda\|x\|_1.$$

• Iterative Soft-Thresholding methods are a special case:

$$g(x) = \lambda \|x\|_1.$$

• Iterative Soft-Thresholding methods are a special case:

$$g(x) = \lambda \|x\|_1.$$

• Iterative Soft-Thresholding methods are a special case:

$$g(x)=\lambda\|x\|_1.$$

• Iterative Soft-Thresholding methods are a special case:

$$g(x)=\lambda\|x\|_1.$$

• Iterative Soft-Thresholding methods are a special case:

$$g(x) = \lambda \|x\|_1.$$

• In this case, proximal operator shrinks $|x_i|$ by up to $\lambda \alpha$.

file:///Users/Mark/Pictures/2011/12Paris/MVI_0643.MOV

 The group l₁-regularizer is simple; we can compute the proximal operator in linear time. [Wright et al., 2009]

$$\operatorname{prox}_{\alpha \parallel x_g \parallel} [x_g] = \arg \min_{x} \frac{1}{2} ||x - x_g||^2 + \alpha ||x||$$
$$= \frac{x_g}{\|x_g\|} \max\{0, ||x_g|| - \alpha\}$$

• The basic proximal-gradient step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x} \frac{1}{2} ||x - (x^k - \alpha f'(x^k))||^2 + \alpha g(x)$$

• The basic proximal-gradient step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x} \frac{1}{2} ||x - (x^k - \alpha f'(x^k))||^2 + \alpha g(x)$$

• Same convergence rate as gradient method.

• The basic proximal-gradient step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x} \frac{1}{2} ||x - (x^k - \alpha f'(x^k))||^2 + \alpha g(x)$$

- Same convergence rate as gradient method.
- To speed the convergence, we might consider Newton-like step:

$$x^{k+1} \leftarrow \arg\min_{x} \frac{1}{2} ||x - (x^k - \alpha [H_k]^{-1} f'(x^k))||^2 + \alpha g(x).$$

• The basic proximal-gradient step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x} \frac{1}{2} ||x - (x^k - \alpha f'(x^k))||^2 + \alpha g(x)$$

- Same convergence rate as gradient method.
- To speed the convergence, we might consider Newton-like step:

$$x^{k+1} \leftarrow \arg\min_{x} \frac{1}{2} ||x - (x^k - \alpha [H_k]^{-1} f'(x^k))||^2 + \alpha g(x).$$

But to ensure descent, we need to match the norms:

$$x^{k+1} \leftarrow \arg\min_{x} \frac{1}{2} ||x - (x^k - \alpha [H_k]^{-1} f'(x^k))||_{H^k}^2 + \alpha g(x)$$

• The basic proximal-gradient step:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x} \frac{1}{2} ||x - (x^k - \alpha f'(x^k))||^2 + \alpha g(x)$$

- Same convergence rate as gradient method.
- To speed the convergence, we might consider Newton-like step:

$$x^{k+1} \leftarrow \arg\min_{x} \frac{1}{2} ||x - (x^k - \alpha [H_k]^{-1} f'(x^k))||^2 + \alpha g(x).$$

• But to ensure descent, we need to match the norms:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x} \frac{1}{2} ||x - (x^k - \alpha [H_k]^{-1} f'(x^k))||_{H^k}^2 + \alpha g(x)$$

• As before, this will expensive even when *g* is simple.

• Inexact proximal-Newton method:

• Use a cheap inner solver to approximate the step.

- Inexact proximal-Newton method:
 - Use a cheap inner solver to approximate the step.
- Method analogous to PQN:
 - L-BFGS quasi-Newton Hessian approximation.
 - Proximal-gradient method as inner solver.

[Beck & Teboulle, 2008, Hofling & Tibshirani, 2009, Wright et al., 2009]

• Suitable for optimizing costly objectives with simple regularizers.

- Inexact proximal-Newton method:
 - Use a cheap inner solver to approximate the step.
- Method analogous to PQN:
 - L-BFGS quasi-Newton Hessian approximation.
 - Proximal-gradient method as inner solver.

[Beck & Teboulle, 2008, Hofling & Tibshirani, 2009, Wright et al., 2009]

- Suitable for optimizing costly objectives with simple regularizers.
- Proximal-Newton is increasing in popularity, e.g. NIPS 2012:
 - Becker & Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco & Sudderth.

Motivation: Structure Learning in Graphical Models

PQN has been used in other structure learning applications:

• Learning variable groups [Marlin et al., 2009].

Non-DAG approaches to causality [Duvenaud et al., 2010].

Sparsity

- Group Sparsity
- Structured Sparsity
- Big-N Problems

A list of papers on this topic (incomplete):

• The pairwise assumption is inherent to Gaussian models.

- The pairwise assumption is inherent to Gaussian models.
- It has not traditionally been used in log-linear models.

[Goodman, 1971, Bishop et al., 1975]

- The pairwise assumption is inherent to Gaussian models.
- It has not traditionally been used in log-linear models.
 [Goodman, 1971, Bishop et al., 1975]
- The assumption is restrictive if higher-order statistics matter.
- Eg. Mutations in both gene A and gene B lead to cancer.

- The pairwise assumption is inherent to Gaussian models.
- It has not traditionally been used in log-linear models.
 [Goodman, 1971, Bishop et al., 1975]
- The assumption is restrictive if higher-order statistics matter.
- Eg. Mutations in both gene A and gene B lead to cancer.
- We want to go beyond pairwise potentials.

• Log-linear models write the probability of a vector x as

$$\log p(x) = \sum_{A \subset S} w_A^T \phi_A(x_A) - \log Z$$

• Log-linear models write the probability of a vector x as

$$\log p(x) = \sum_{A \subseteq S} w_A^T \phi_A(x_A) - \log Z$$

- Setting $w_A = 0$ is equivalent to removing the potential.
- In pairwise models we assume $w_A = 0$ if |A| > 2.
Group ℓ_1 -Regularization for Log-Linear Models

• We can extend group ℓ_1 -regularization to the general case:

$$\min_{w} f(w) + \sum_{A \subseteq S} \lambda_A ||w_A||.$$

• We can extend group ℓ_1 -regularization to the general case:

$$\min_{\boldsymbol{w}} f(\boldsymbol{w}) + \sum_{\boldsymbol{A} \subseteq \boldsymbol{S}} \lambda_{\boldsymbol{A}} ||\boldsymbol{w}_{\boldsymbol{A}}||.$$

- However,
 - We have an exponential number of variables.
 - Setting $w_A = 0$ does not give conditional independence.

• We can extend group ℓ_1 -regularization to the general case:

$$\min_{w} f(w) + \sum_{A \subseteq S} \lambda_A ||w_A||.$$

- However,
 - We have an exponential number of variables.
 - Setting $w_A = 0$ does not give conditional independence.

Prior work restricted the cardinality (e.g., threeway models).

[Dahinden et al., 2007]

• Instead of restricting cardinality, we use hierarchical inclusion:

- Instead of restricting cardinality, we use hierarchical inclusion:
 - We can only have (1,2,3) if we also have (1,2), (1,3), and (2,3).

- Instead of restricting cardinality, we use hierarchical inclusion:
 - We can only have (1,2,3) if we also have (1,2), (1,3), and (2,3).
- In general: If $w_A = 0$ then supersets *B* of *A* must have $w_B = 0$.

- Instead of restricting cardinality, we use hierarchical inclusion:
 - We can only have (1,2,3) if we also have (1,2), (1,3), and (2,3).
- In general: If $w_A = 0$ then supersets *B* of *A* must have $w_B = 0$.
- The class of hierarchical log-linear models: [Bishop et al., 1975]
 - Much larger than the set of pairwise models.
 - Can represent any positive distribution.
 - Group-sparsity corresponds to conditional independence.

- Instead of restricting cardinality, we use hierarchical inclusion:
 - We can only have (1,2,3) if we also have (1,2), (1,3), and (2,3).
- In general: If $w_A = 0$ then supersets *B* of *A* must have $w_B = 0$.
- The class of hierarchical log-linear models: [Bishop et al., 1975]
 - Much larger than the set of pairwise models.
 - Can represent any positive distribution.
 - Group-sparsity corresponds to conditional independence.
- But, how can we encourage this structured sparsity?

Structured Sparsity for Hierarchical Constraints

• Can enforce a hierarchy with overlapping group ℓ_1 -regularization.

[Bach, 2008, Zhao et al., 2009]

Structured Sparsity for Hierarchical Constraints

- Can enforce a hierarchy with overlapping group ℓ_1 -regularization. [Bach, 2008, Zhao et al., 2009]
- Example:
 - If we want A = 0 to mean B = 0, use two groups $\{B\}$ and $\{A, B\}$,

 $\lambda_{\{B\}}||\textbf{\textit{W}}_{B}||_{2}+\lambda_{\{\textbf{\textit{A}},B\}}||\textbf{\textit{W}}_{\textbf{\textit{A}},B}||_{2}.$

- To make w_A non-zero, pay $\lambda_{\{A,B\}}$.
- To make w_B non-zero, pay λ_B (but also $\lambda_{\{A,B\}}$ if $w_A = 0$).
- If $w_B \neq 0$, no penalty for making w_A non-zero.

Structured Sparsity for Hierarchical Constraints

- Can enforce a hierarchy with overlapping group ℓ_1 -regularization. [Bach, 2008, Zhao et al., 2009]
- Example:
 - If we want A = 0 to mean B = 0, use two groups $\{B\}$ and $\{A, B\}$,

$$\lambda_{\{B\}}||{\it W}_{\it B}||_2+\lambda_{\{{\it A},{\it B}\}}||{\it W}_{{\it A},{\it B}}||_2.$$

- To make w_A non-zero, pay $\lambda_{\{A,B\}}$.
- To make w_B non-zero, pay λ_B (but also $\lambda_{\{A,B\}}$ if $w_A = 0$).
- If $w_B \neq 0$, no penalty for making w_A non-zero.
- We can learn hierarchical models by solving

$$\min_{\boldsymbol{w}} f(\boldsymbol{w}) + \sum_{\boldsymbol{A} \subseteq \boldsymbol{S}} \lambda_{\boldsymbol{A}} \| \boldsymbol{w}_{\boldsymbol{A}^*} \|,$$

where $A^* = \{B | A \subseteq B\}$. [Schmidt & Murphy, 2010]

• But can we avoid looking at all higher-order potentials?

- But can we avoid looking at all higher-order potentials?
- Heuristic: only consider adding groups that satisfy hierarchichy. (And that are sub-optimal. E.g., poorly estimated by the model.)

- But can we avoid looking at all higher-order potentials?
- Heuristic: only consider adding groups that satisfy hierarchichy. (And that are sub-optimal. E.g., poorly estimated by the model.)
- Convex analogue of [Cheeseman, 1983, Gevarter, 1987].
- Guarantees weak form of global optimality.

Find new boundary groups.

Optimize active groups and sub-optimal boundary groups.

Find new boundary groups.

Optimize active groups and sub-optimal boundary groups.

Find new boundary groups.

Optimize active groups and sub-optimal boundary groups.

Find new boundary groups.

Optimize active groups and sub-optimal boundary groups.

No new boundary groups, so we are done.

- We only considered:
 - 4 of 10 possible threeway interactions.
 - 1 of 5 possible fourway interactions.
 - No fiveway interactions.

- We only considered:
 - 4 of 10 possible threeway interactions.
 - 1 of 5 possible fourway interactions.
 - No fiveway interactions.
- The heuristic can reduce the space exponentially.

- We only considered:
 - 4 of 10 possible threeway interactions.
 - 1 of 5 possible fourway interactions.
 - No fiveway interactions.
- The heuristic can reduce the space exponentially.
- In practice, do the heuristic and higher-order potentials help?

Flow Cytometry Data

Traffic Flow Data

• We now turn to the overlapping group ℓ_1 -regularization problem,

$$\min_{x} f(x) + \lambda \sum_{g} ||x_{g}||,$$

where the groups g may not overlap.

- Non-smooth is regularizer is not simple.
- But we can use that each term is simple.
• Constrained re-formulation:

$$\min_{\|x_g\| \le t_g} f(x) + \lambda \sum_g t_g.$$

Constrained re-formulation:

$$\min_{\|x_g\|\leq t_g} f(x) + \lambda \sum_g t_g.$$

- We can efficiently project onto each constraint.
- But projections aren't independent since groups overlap.

Constrained re-formulation:

$$\min_{\|x_g\|\leq t_g} f(x) + \lambda \sum_g t_g.$$

- We can efficiently project onto each constraint.
- But projections aren't independent since groups overlap.
- We want the projection onto the intersection of simple sets.

Projecting onto the intersection of simple sets is a classic problem:

Projecting onto the intersection of simple sets is a classic problem:

• Cyclically projecting onto two subspaces converges to the projection onto their intersections. [von Neumann, 1933]

Definition 13.7: If ϕ_1 , ϕ_2 , ... is a sequence \sum of s.v. operators, if f is an element of $\int_{r_1}^{cc} b(p'_r)$ such that $\lim_{r \to 0} p'_r f$ exists, and if D is the set of all such elements f, then \sum is said to have a limit \emptyset over D, and, for f \in D = = $D(\vec{p})$, $\vec{p}f = \lim_{n \to \infty} \vec{p}_n f$. THEOREM 12.7. If E = P_M and F = P_N, then the sequence \sum_{1} of operators E, FE, EFE, FEFE, ... has a limit G, the sequence \sum_2 : F, EF, FEF, ... has the same limit G, and G = P_{MN}. (The condition EF = FE need not hold.) Proof: Let A_{μ} be the nth operator of the sequence \sum_{i} . Then $(A_mf, A_ng) = (A_{m+n-f}f, g)$, where $\xi = 1$ if m and n have the same parity and \mathcal{E} = 0 if m and n have opposite parity. It must be shown that if f is any elemert of S, then $\lim_{n \to \infty} A_n^f$ exists. But $\|A_m^f - A_n^f\|^2 = (A_m^f - A_n^f, A_m^f - A_n^f) =$

Mark Schmidt Opening up the Black Box

We want to project a point onto their intersection.

The limit is the projection onto the intersection.

Projecting onto the intersection of simple sets is a classic problem:

• Cyclically projecting onto two subspaces converges to the projection onto their intersections. [von Neumann, 1933]

Projecting onto the intersection of simple sets is a classic problem:

- Cyclically projecting onto two subspaces converges to the projection onto their intersections. [von Neumann, 1933]
- Cyclically projecting onto convex sets converges to a point in their interesections. [Bregman, 1965]

We have an arbitrary number of convex sets.

Start with some initial point.

Project onto convex set 1.

Project onto convex set 2.

The limit is a point in the intersection.

In general, the limit is not the projection.

Projecting onto the intersection of simple sets is a classic problem:

- Cyclically projecting onto two subspaces converges to the projection onto their intersections. [von Neumann, 1933]
- Cyclically projecting onto convex sets converges to a point in their interesections. [Bregman, 1965]

Projecting onto the intersection of simple sets is a classic problem:

- Cyclically projecting onto two subspaces converges to the projection onto their intersections. [von Neumann, 1933]
- Cyclically projecting onto convex sets converges to a point in their interesections. [Bregman, 1965]
- A simple modification makes the method converge to the projection onto their intersections. [Dykstra, 1983]

We want to project a point onto the intersection of convex sets.

Project onto convex set 1, and store the difference.

Project onto convex set 2, and store the difference.

Remove the difference from projecting on convex set 1.

Project onto convex set 1, and store the difference.

Remove the difference from projecting on convex set 2.

Project onto convex set 2, and store the difference.

The limit is the projection onto the intersection.

Projecting onto the intersection of simple sets is a classic problem:

- Cyclically projecting onto two subspaces converges to the projection onto their intersections. [von Neumann, 1933]
- Cyclically projecting onto convex sets converges to a point in their interesections. [Bregman, 1965]
- A simple modification makes the method converge to the projection onto their intersections. [Dykstra, 1983]
- For polyhedral sets, Dykstra's algorithm has a linear convergence rate. [Deutsch and Hundal, 1994]
Projecting onto the intersection of simple sets is a classic problem:

- Cyclically projecting onto two subspaces converges to the projection onto their intersections. [von Neumann, 1933]
- Cyclically projecting onto convex sets converges to a point in their interesections. [Bregman, 1965]
- A simple modification makes the method converge to the projection onto their intersections. [Dykstra, 1983]
- For polyhedral sets, Dykstra's algorithm has a linear convergence rate. [Deutsch and Hundal, 1994]
- Proximal versions of Dykstra's algorithm have recently been developed. [Bauschke and Combettes, 2008]

Exact and Inexact Proximal-Gradient Methos

- We can efficiently compute the proximity operator for:
 - ℓ₁-Regularization.
 - 2 Group ℓ_1 -Regularization.
 - Lower and upper bound constraints.
 - Hyper-plane and half-space constraints.
 - Simplex constraints.
 - Euclidean cone constraints.

Exact and Inexact Proximal-Gradient Methos

- We can efficiently compute the proximity operator for:
 - ℓ₁-Regularization.
 - 2 Group ℓ_1 -Regularization.
 - Lower and upper bound constraints.
 - Hyper-plane and half-space constraints.
 - Simplex constraints.
 - Euclidean cone constraints.
- We can efficiently approximate the proximity operator for:
 - Overlapping group ℓ_1 -regularization with general groups.

Exact and Inexact Proximal-Gradient Methos

- We can efficiently compute the proximity operator for:
 - ℓ₁-Regularization.
 - **2** Group ℓ_1 -Regularization.
 - Lower and upper bound constraints.
 - Hyper-plane and half-space constraints.
 - Simplex constraints.
 - Euclidean cone constraints.
- We can efficiently approximate the proximity operator for:
 - Overlapping group ℓ_1 -regularization with general groups.
 - Total-variation regularization and generalizations like the graph-guided fused-LASSO.
 - Nuclear-norm regularization and other regularizers on the singular values of matrices.
 - Positive semi-definite cone.
 - Sombinations of simple functions.

• Can inexact proximal-gradient methods achieve the fast rates?

- Can inexact proximal-gradient methods achieve the fast rates?
- Exact proximal-gradient methods have

$$f(x^k) - f(x^*) = O((1 - \mu/L)^{2k}).$$

(the same convergence rate as gradient methods)

- Can inexact proximal-gradient methods achieve the fast rates?
- Exact proximal-gradient methods have

$$f(x^k) - f(x^*) = O((1 - \mu/L)^{2k}).$$

(the same convergence rate as gradient methods)

Proposition. If the sequences $\{||e_k||\}$ and $\{\sqrt{\varepsilon_k}\}$ are in $O(\rho^k)$ for $\rho < (1 - \mu/L)$ then the basic proximal-gradient method achieves

$$f(x^k) - f(x^*) = O((1 - \mu/L)^{2k}).$$

- Can inexact proximal-gradient methods achieve the fast rates?
- Exact proximal-gradient methods have

$$f(x^k) - f(x^*) = O((1 - \mu/L)^{2k}).$$

(the same convergence rate as gradient methods)

Proposition. If the sequences $\{||e_k||\}$ and $\{\sqrt{\varepsilon_k}\}$ are in $O(\rho^k)$ for $\rho < (1 - \mu/L)$ then the basic proximal-gradient method achieves

$$f(x^k) - f(x^*) = O((1 - \mu/L)^{2k}).$$

• We show analogous results for accelerated proximal-gradient methods, including when $\mu = 0$. [Schmidt et al., 2011]

Sparsity

- Group Sparsity
- Structured Sparsity
- Big-N Problems

Context: Machine Learning for "Big Data"

• Large-scale machine learning: large N, large P

- N: number of observations (inputs)
- P: dimension of each observation

Context: Machine Learning for "Big Data"

• Large-scale machine learning: large N, large P

- N: number of observations (inputs)
- P: dimension of each observation

Regularized empirical risk minimization:

$$\min_{x\in\mathbb{R}^{P}}\frac{1}{N}\sum_{i=1}^{N}f_{i}(x) + \lambda r(x)$$

data fitting term + regularizer

- Applications to any data-oriented field:
 - Vision, bioinformatics, speech, natural language, web.

Context: Machine Learning for "Big Data"

• Large-scale machine learning: large N, large P

- N: number of observations (inputs)
- P: dimension of each observation

Regularized empirical risk minimization:

$$\min_{x\in\mathbb{R}^{P}}\frac{1}{N}\sum_{i=1}^{N}f_{i}(x) + \lambda r(x)$$

data fitting term + regularizer

- Applications to any data-oriented field:
 - Vision, bioinformatics, speech, natural language, web.
- Main practical challenges:
 - Designing/learning good features.
 - Efficiently solving the problem when *N* or *P* are very large.

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^p}f(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}f(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

• We are interested in cases where *N* is very large.

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^p}f(x):=\frac{1}{N}\sum_{i=1}^N f_i(x).$$

- We are interested in cases where *N* is very large.
- Simple example is ℓ_2 -regularized least-squares,

$$f_i(x) := (a_i^T x - b_i)^2 + \frac{\lambda}{2} ||x||^2.$$

- Other examples include any ℓ_2 -regularized convex loss:
 - logistic regression, Huber regression, smooth SVMs, CRFs, etc.

• We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t f'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N f'_i(x_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Quasi-Newton methods still require O(N).

- We consider minimizing $f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t f'(\mathbf{x}_t) = \mathbf{x}_t - \frac{\alpha_t}{N} \sum_{i=1}^N f'_i(\mathbf{x}_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Quasi-Newton methods still require O(N).
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of *i*(*t*) from {1, 2, ..., *N*}.

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t f_{i(t)}(\mathbf{x}_t).$$

- Iteration cost is independent of *N*.
- Sublinear O(1/t) convergence rate.

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

Stochastic gradient method [Robbins & Monro, 1951]:

Motivation for New Methods

- FG method has O(N) cost with $O(\rho^k)$ rate.
- SG method has O(1) cost with O(1/k) rate.

Motivation for New Methods

- FG method has O(N) cost with $O(\rho^k)$ rate.
- SG method has O(1) cost with O(1/k) rate.

• Goal is O(1) cost with $O(\rho^k)$ rate.

A variety of methods have been proposed to speed up SG methods:

Momentum, gradient/iterate averaging

 Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic version of deterministic methods

 Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011) A variety of methods have been proposed to speed up SG methods:

Momentum, gradient/iterate averaging

 Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic version of deterministic methods

- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the O(1/t) rate

Prior Work on Speeding up SG Methods

Existing linear convergence results:

Constant step-size SG, accelerated SG

- Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
- Linear convergence but only up to a fixed tolerance

Hybrid methods, incremental average gradient

- Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
- Linear rate but iterations make full passes through the data

Existing linear convergence results:

Constant step-size SG, accelerated SG

- Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
- Linear convergence but only up to a fixed tolerance

Hybrid methods, incremental average gradient

- Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
- Linear rate but iterations make full passes through the data

Special Problems Classes

- Collins et al. (2008), Strohmer & Vershynin (2009), Schmidt and Le Roux (2012), Shalev-Shwartz and Zhang (2012)
- Linear rate but limited choice for the fi's

• Is it possible to have a general linearly convergent algorithm with iteration cost independent of *N*?

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES!

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select *i*(*t*) from {1, 2, ..., *n*} and compute *f*'_{*i*(*t*)}(*x*^{*t*}),

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N f'_i(x^t)$$

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of N?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select *i*(*t*) from {1, 2, ..., *n*} and compute *f*'_{*i*(*t*)}(*x*^{*t*}),

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{\alpha^t}{N} \sum_{i=1}^N f'_i(\mathbf{x}^t)$$

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of *N*?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select *i*(*t*) from {1, 2, ..., *n*} and compute *f*'_{*i*(*t*)}(*x*^{*t*}),

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{\alpha^t}{N} \sum_{i=1}^N f_i'(\mathbf{x}_i^t)$$

• Memory: x_i^t is the last iterate where *i* was selected.

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of *N*?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$,

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{\alpha^t}{N} \sum_{i=1}^N f_i'(\mathbf{x}_i^t)$$

- Memory: x_i^t is the last iterate where *i* was selected.
- Assumes gradients of other examples don't change.
- Assumption becomes accurate as $||x^{t+1} x^t|| \rightarrow 0$.

- Is it possible to have a general linearly convergent algorithm with iteration cost independent of *N*?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., n\}$ and compute $f'_{i(t)}(x^t)$,

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{\alpha^t}{N} \sum_{i=1}^N f_i'(\mathbf{x}_i^t)$$

- Memory: x_i^t is the last iterate where *i* was selected.
- Assumes gradients of other examples don't change.
- Assumption becomes accurate as $||x^{t+1} x^t|| \rightarrow 0$.
- Stochastic variant of increment average gradient (IAG). [Blatt et al. 2007]
- O(NP) memory requirements reduced to O(N) for many problems.

Convergence Rate of SAG

Assume only that:

• f_i is convex, f'_i is *L*-continuous, *f* is μ -strongly convex.

Convergence Rate of SAG

Assume only that:

• f_i is convex, f'_i is *L*-continuous, *f* is μ -strongly convex.

Theorem. With $\alpha = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[f(x^t) - f(x^*)] = O\left(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t\right)$$

• Convergence rate of $O(\rho^t)$ with cost of O(1) (true for $\alpha \leq \frac{1}{16L}$).

Assume only that:

• f_i is convex, f'_i is *L*-continuous, *f* is μ -strongly convex.

Theorem. With $\alpha = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[f(x^t) - f(x^*)] = O\left(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t\right)$$

- Convergence rate of $O(\rho^t)$ with cost of O(1) (true for $\alpha \leq \frac{1}{16L}$).
- This rate is "very fast":
 - Well-conditioned problems: constant non-trivial reduction per pass:

$$\left(1-\frac{1}{8N}\right)^N \le \exp\left(-\frac{1}{8}\right) = 0.8825.$$

• Badly-conditioned problems, almost same as deterministic method. (deterministic has rate $(1 - \frac{\mu}{L})^{2t}$ with $\alpha = \frac{1}{L}$, but *N* times slower) • Assume that N = 700000, L = 0.25, $\mu = 1/N$ (*rcv1 data set*):
• Assume that N = 700000, L = 0.25, $\mu = 1/N$ (*rcv1 data set*):

• Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$

- Assume that N = 700000, L = 0.25, $\mu = 1/N$ (*rcv1 data set*):
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $\left(1 \sqrt{\frac{\mu}{L}}\right) = 0.99761$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$ (*rcv1 data set*):
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $\left(1 \sqrt{\frac{\mu}{L}}\right) = 0.99761$.
 - SAG (N iterations) has rate $(1 \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^{N} = 0.88250.$

- Assume that N = 700000, L = 0.25, $\mu = 1/N$ (*rcv1 data set*):
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.
 - SAG (N iterations) has rate $(1 \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^{N} = 0.88250.$
 - Fastest possible deterministic method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048.$

- Assume that N = 700000, L = 0.25, μ = 1/N (rcv1 data set):
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $\left(1 \sqrt{\frac{\mu}{L}}\right) = 0.99761$.
 - SAG (N iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250.$

• Fastest possible deterministic method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048.$

- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ, and N).

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Theorem. With $\alpha_t \leq \frac{1}{16l}$ the SAG iterations satisfy

 $\mathbb{E}[f(x^t) - f(x^*)] = O(1/N)$

• Faster than SG lower bound of $O(1/\sqrt{N})$.

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Theorem. With $\alpha_t \leq \frac{1}{16L}$ the SAG iterations satisfy

 $\mathbb{E}[f(x^t) - f(x^*)] = O(1/N)$

- Faster than SG lower bound of $O(1/\sqrt{N})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .

Comparing FG and SG Methods

• quantum (*n* = 50000, *p* = 78) and rcv1 (*n* = 697641, *p* = 47236)

SAG Compared to FG and SG Methods

• quantum (*n* = 50000, *p* = 78) and rcv1 (*n* = 697641, *p* = 47236)

• Fast theoretical convergence using the 'sum' structure.

- Fast theoretical convergence using the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.

- Fast theoretical convergence using the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Allows adaptive step-size and approximate optimality measures.

- Fast theoretical convergence using the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Allows adaptive step-size and approximate optimality measures.
- Subsequent work:
 - Constrained and non-smooth problems.

[Mairal, 2013, Wong et al., 2013]

Memory-free methods.

[Johnson and Zhang, 2013, Zhang et al., 2013]

Non-uniform sampling.

[Schmidt et al., 2013]

- Fast theoretical convergence using the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Allows adaptive step-size and approximate optimality measures.
- Subsequent work:
 - Constrained and non-smooth problems.

[Mairal, 2013, Wong et al., 2013]

Memory-free methods.

[Johnson and Zhang, 2013, Zhang et al., 2013]

Non-uniform sampling.

[Schmidt et al., 2013]

Thanks for coming!