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Motivation: Automatic Brain Tumor Segmentation

Task: Segmentation of Multi-Modality MRI Data

Various applications:

radiation therapy target planning.
quantifying growth or treatment response.
image-guided surgery.

Challenges:

image noise and intensity inhomogeneity.
similarity between tumor and normal tissue.
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Motivation: Automatic Brain Tumor Segmentation

Solution strategy:
Explicit correction of image inhomogeneities.
Spatial alignment with template.
Image and template-based features.
Pixel-level classifier.
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Motivation: Automatic Brain Tumor Segmentation

Best performance with logistic regression:

min
x

N∑

i=1

fi (x).

Problem 1: Estimating x is slow:

8 million voxels per volume.
Last part of talk: Big-N problems.

Problem 2: Designing features.

Lots of possible candidate features.
Using all features leads to over-fitting.
First part of talk: Feature Selection.
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Motivation: Automatic Brain Tumor Segmentation

Training time is too slow for automatic feature selection:
forced to use manual feature selection
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Optimizing with `1-Regularzation

Last day of Master’s: try all features with `2-Regularization:

min
x

f (x) + λ‖x‖2.

Reduces over-fitting.
As good as best selected features.
But, very slow to segment new image.

Reading on way to Ph.D.: all features with `1-Regularization:

min
x

f (x) + λ‖x‖1.

Still reduces over-fitting.
But, solution x is SPARSE (some xj = 0).
Feature selection by only training once.

Amazing! But non-smooth, how do we solve this problem?
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Where does the sparsity come from?

We can re-write the regularized problem

min
x

f (x) + λ‖x‖p

as a constrained problem

min
‖x‖p≤τ

f (x).

Unconstrained Solution

L2-Regularized Solution
Unconstrained Solution

L1-Regularized Solution
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Where does the sparsity come from?
Consider our problem

min
x

F (x) = f (x) + r(x).

When F is convex and smooth,
its minimizer x∗ has gradient F ′(x∗) = 0.
When r(x) = λ‖x‖2:

We need f ′(x) = −λx .

When F is convex and smooth,
its minimizer x∗ has a subgradient d = 0.
When r(x) = λ‖x‖1:

We need f ′(x) = −λd , for some sub-gradient d of ‖x‖1.
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Optimization with `1-Regularization

We want to optimize a smooth function with `1-Regularization:

min
x

f (x) + λ‖x‖1.

With `2-Regularization, can use quasi-Newton methods.
http://www.di.ens.fr/˜mschmidt/Software/minFunc.html

The non-smooth `1-regularizer breaks these methods.

But the regularizer is separable: ‖x‖1 =
∑

j |xj |.
Can we extend quasi-Newton methods using this property?
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Converting to a Bound-Constrained Problem

Consider splitting each variable into a positive and negative part:

x = x+ − x−, with x+ ≥ 0, x− ≥ 0.

We can re-write the non-smooth objective

min
x

f (x) + λ‖x‖1,

as a smooth objective with non-negative constraints:

min
x+≥0,x−≥0

F (x) = f (x+ − x−) + λ
∑

j

[x+
i + x−i ]

Use methods for smooth bound-constrained optimization.
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Gradient Projection

Classic bound-constrained optimizer is gradient projection:

xk+1 ← [xk − αF ′(xk )]+.

f(x)

Convergence properties similar to gradient method.
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Naive Projected Newton Method

Can we use a [quasi-]Newton step?

xk+1 ← [xk − αH−1
k F ′(xk )]+,

No, this does not work!

f(x)
Feasible Set

[xk - !!f(xk)]+

xk

x1

x2

xk - !!f(xk)
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Partially Diagonal Two-Metric Projection

For separable problems we can fix this by restricting Hk .

Use a diagonal matrix Dk :

xk+1 ← [xk − α[Dk ]−1F ′(xk )]+

[Birgin et al., 2000, Figueiredo et al., 2007]

But is this too restrictive?

Only need Hk diagonal with respect to:

A , {i |xk
i ≤ ε and F ′i (xk ) > 0}

[Gafni & Bertsekas, 1984]

Re-arranging, we need

Hk =

[
Dk 0
0 H̄k

]

H̄k can be quasi-Newton approximation of F ′′(xk ).
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Discussion of Two-Metric Projection

Outperforms 11 other methods in Schmidt et al. [2007]:

Iterations only require linear time and space.
Many variables can be made zero/non-zero at once.
Allows warm-starting.
Eventually becomes quasi-Newton on the non-zeroes.

But should we convert to a bound-constrained problem?

The number of variables is doubled.
The transformed problem might be harder.

Can we use the same tricks on the original problem?
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Non-Smooth Steepest Descent

The original problem:

min
x

F (x) = f (x) + λ‖x‖1.

If f is smooth, F has directional derivatives everywhere.

We could use the steepest descent direction −zk .

For convex problems, zk is the minimum-norm sub-gradient:

zk = arg min
z∈∂F (xk )

||z||
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Non-Smooth Steepest Descent

The steepest descent direction for `1-Regularization problems,

min
x

F (x) = f (x) + λ‖x‖1,

can be computed coordinate-wise because ‖x‖1 is separable:

zi =





F ′i (x) = f ′i (x) + λ sign(xi ), |xi | > 0
0, xi = 0, |f ′i (x)| ≤ λ

f ′i (x)− λ sign(f ′i (x)), xi = 0, |f ′i (x)| > λ

We can even try a Newton-like version:

xk+1 = xk − α[Hk ]−1zk

However, there are two problems with this step:
1 It may not decrease the objective.
2 The iterations are not sparse.
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Orthant Projection

Use orthant projection to get sparse iterates:

xk+1 ← PO(xk )[x
k − α[Hk ]−1zk ],

[Osborne et al., 2000, Andrew & Gao, 2007]

f(x)

x1

x2

Variables that change sign become exactly zero.
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Two-Metric Sub-Gradient Projection

We can guarantee descent using diagonal scaling:

xk+1 ← PO(xk )[x
k − α[Dk ]−1zk ].

Less restrictive: diagonal with respect to variables near zero:

A = {i ||xk
i | ≤ ε}, F = {i ||xk

i | > ε}

Two-metric sub-gradient projection:

xk+1
F ← PO(xk

F )
[xk
F − α[Hk ]−1F ′F (xk )].

xk+1
A ← PO(xk

A)
[xk
A − α[Dk ]−1zk

A],

Quasi-Newton method with separable non-smooth regularization.
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Comparing to non-L-BFGS methods

Comparing to methods not based on L-BFGS (sido data):
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Discussion

Similar ideas used in many `1-Regularization solvers.
[Perkins et al., 2003, Andrew & Gao, 2007, Shi et al., 2007, Kim & Park, 2010, Byrd et al., 2012].

Recent methods consider two more issues:

Sub-Optimization: Identify variables likely to stay zero.
[El Ghaoui et al., 2010].
Continuation: Start with a large λ and slowly decrease it.
[Xiao and Zhang, 2012]

Generalizes to separable A.E.-differentiable regularizers.

Exist two-metric projection for simplex constraints.
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Motivation:Automatic Brain Tumor Segmentation

Independent pixel classifier ignores correlations.

Conditional random fields (CRFs) generalize logistic regression
to multiple labels.

Can use exact same optimizer for `1-regularized CRFs.
http://www.di.ens.fr/˜mschmidt/Software/L1General.html
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Motivation: Structure Learning in CRFs

Task: early detection of coronoary heart disease.

Assess motion of 16 heart segments using CRF.

But, do not know the best correlation structure.

Perform structure learning with `1-regularization.
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Structure Learning with `1-Regularization

X1

X3
X8

X7X4

X5

X6

X2

X9

We want to fit a Markov random field with unknown structure.

Learn a sparse structure by `1-regularization of edge weights.
[Lee et al. 2006, Wainwright et al. 2006]
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Structure Learning with Group `1-Regularization
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In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].

2 Blockwise-sparsity [Duchi et al., 2008].
3 Conditional random fields [Schmidt et al., 2008]

Mark Schmidt Opening up the Black Box



Structure Learning with Group `1-Regularization

X1

X3
X8

X7X4

X5

X6

X2

X9

-0.2 -1.4 -0.2

0.9 -1.4 -0.2

-0.8 0.5 1.4

1.1 -1.5 2.4

1.5 -0.7 -0.6

0.1 -1.1 0.7

0.0 0.4 -1.1

1.5 -0.2 0.0

-0.8 1.1 0.6

-0.3 0.9 -0.8

0.3 -1.1 -2.9

-0.8 -1.1 1.4

2.8 0.7 -0.2

-1.4 -0.1 -0.1

3.0 0.7 1.5

0.3 -1.7 0.4

-0.8 -0.1 0.3

1.4 -0.2 -0.8
0.0 1.1 0.1

-0.2 1.1 -1.2

0.6 -0.9 -1.10.5 0.9 -0.4

1.8 0.3 0.3

-2.3 -1.3 3.6
1.4 -1.2 0.5

1.4 0.7 1.0

0.7 1.6 0.7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].

2 Blockwise-sparsity [Duchi et al., 2008].
3 Conditional random fields [Schmidt et al., 2008]

Mark Schmidt Opening up the Black Box



Structure Learning with Group `1-Regularization

X

Y

Y

X

Z

Z

In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].
2 Blockwise-sparsity [Duchi et al., 2008].

3 Conditional random fields [Schmidt et al., 2008]

Mark Schmidt Opening up the Black Box



Structure Learning with Group `1-Regularization

X

Y

Y

X

Z

Z

In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].
2 Blockwise-sparsity [Duchi et al., 2008].

3 Conditional random fields [Schmidt et al., 2008]

Mark Schmidt Opening up the Black Box



Structure Learning with Group `1-Regularization

X

Y

Y

X

Z

Z

In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].
2 Blockwise-sparsity [Duchi et al., 2008].

3 Conditional random fields [Schmidt et al., 2008]

Mark Schmidt Opening up the Black Box



Structure Learning with Group `1-Regularization

X

Y

Y

X

Z

Z

In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].
2 Blockwise-sparsity [Duchi et al., 2008].

3 Conditional random fields [Schmidt et al., 2008]

Mark Schmidt Opening up the Black Box



Structure Learning with Group `1-Regularization

X1

X3
X8

X7X4

X5

X6

X2

X9

-0.2 -1.4 -0.2

0.9 -1.4 -0.2

-0.8 0.5 1.4

1.1 -1.5 2.4

1.5 -0.7 -0.6

0.1 -1.1 0.7

0.0 0.4 -1.1

1.5 -0.2 0.0

-0.8 1.1 0.6

-0.3 0.9 -0.8

0.3 -1.1 -2.9

-0.8 -1.1 1.4

2.8 0.7 -0.2

-1.4 -0.1 -0.1

3.0 0.7 1.5

0.3 -1.7 0.4

-0.8 -0.1 0.3

1.4 -0.2 -0.8
0.0 1.1 0.1

-0.2 1.1 -1.2

0.6 -0.9 -1.10.5 0.9 -0.4

1.8 0.3 0.3

-2.3 -1.3 3.6
1.4 -1.2 0.5

1.4 0.7 1.0

0.7 1.6 0.7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
2.8 0.7 -0.2

-1.4 -0.1 -0.1

3.0 0.7 1.5

1.4 -1.2 0.5

1.4 0.7 1.0

0.7 1.6 0.7

-0.3 0.9 -0.8

0.3 -1.1 -2.9

-0.8 -1.1 1.4

0 0 0

0 0 0

0 0 0

0.3 -1.7 0.4

-0.8 -0.1 0.3

1.4 -0.2 -0.8

0.0 1.1 0.1

-0.2 1.1 -1.2

0.6 -0.9 -1.10.5 0.9 -0.4

1.8 0.3 0.3

-2.3 -1.3 3.6

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

-0.2 -1.4 -0.2

0.9 -1.4 -0.2

-0.8 0.5 1.4

1.1 -1.5 2.4

1.5 -0.7 -0.6

0.1 -1.1 0.7

0.0 0.4 -1.1

1.5 -0.2 0.0

-0.8 1.1 0.6

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2.8 0.7 -0.2

-1.4 -0.1 -0.1

3.0 0.7 1.5

In some cases, we want sparsity in groups of parameters:
1 Multi-class variables [Lee et al., 2006].
2 Blockwise-sparsity [Duchi et al., 2008].
3 Conditional random fields [Schmidt et al., 2008]

Mark Schmidt Opening up the Black Box



Structure Learning with Group `1-Regularization

Encourage group sparsity using group `1-regularization:

min
x

f (x) + λ‖x‖1,p,

where
‖x‖1,p =

∑

g

‖xg‖p.

This is `1-regularization of group norms.

Typically p = 2, but other norms give other properties.
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Effect of Different Group Norms
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Group `1-Regularization with the `2 group norm.

Encourages group sparsity.
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Group `1-Regularization with the `∞ group norm.

Encourages group sparsity and parameter tieing.
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Effect of Different Group Norms
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Group `1-Regularization with the nuclear group norm.

Encourages group sparsity and low-rank.
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Optimization with Group `1-Regularization

We’ll focus on the group `1-regularized optimization:

min
x

f (x) + λ‖x‖1,2,

where f is the CRF (expensive) objective.

The regularizer is non-separable.

But the regularizer is simple.

Can we extend quasi-Newton methods using this property?
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Converting to a Constrained Problem

We can re-write the non-smooth objective

min
x

f (x) + λ
∑

g

‖x‖,

as a smooth objective with norm-cone constraints:

min
‖xg‖≤tg

F (x) = f (x) + λ
∑

g

tg .

x1

x2
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Converting to a Constrained Problem

We can re-write the non-smooth objective

min
x

f (x) + λ
∑

g

‖x‖,

as a smooth objective with norm-cone constraints:

min
‖x‖p≤tg

F (x) = f (x) + λ
∑

g

tg .

Properties of this problem:
1 the number of parameters is large.
2 evaluating F (x) is expensive.
3 we have constraints.

But the constraints are simple:

We can compute the projection in linear time.

We want to optimize costly objectives with simple constraints.
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Projected Gradient over General Convex Sets

A general form of projected gradient:

xk+1 ← arg min
x∈C

||x − (xk − αF ′(xk ))||

Feasible Set

f(x)

xk
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Projected Gradient over General Convex Sets

A general form of projected gradient:

xk+1 ← arg min
x∈C

||x − (xk − αF ′(xk ))||

Feasible Set

xk - gk

P(xk - gk)

f(x)
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Projected Newton

We can consider a Newton-like step:

xk+1 ← arg min
x∈C

||x − (xk − α[Hk ]−1F ′(xk ))||,

but as we saw this doesn’t work.

Projected Newton methods project under the same norm:

xk+1 ← arg min
x∈C

||x − (xk − α[Hk ]−1F ′(xk ))||Hk ,

where ||x ||Hk =
√

xT Hk x .
[Levitin & Polyak, 1966]

Convergence properties similar to Newton’s method.
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Inexact Projected Newton

Projected Newton methods equivalently minimize a constrained
quadratic approximation:

xk+1 ← arg min
x∈C

F (xk ) + 〈F ′(xk ), x − xk 〉+
1

2α
‖x − xk‖2

Hk
.

This is expensive even with simple constraints.

Solution: use a cheap approximate solver.
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Inexact Projected Newton

Feasible Set

f(x)

xk
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Q(x,!)

Mark Schmidt Opening up the Black Box



Inexact Projected Newton

Feasible Set

f(x)

xk

PC[xk - !!f(xk)]
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Inexact Projected Newton

Feasible Set

f(x)

minxεC Q(x,!)

dk

xk

Q(x,!)
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Inexact Projected Newton

Can we terminate this early?

For small enough α, we just need Q(x , α) less than f (xk ).

Can we efficiently get an approximate solution?
Schmidt et al. [2009]: use a quasi-Newton approximation of Hk and
use (spectral) projected-gradient on Q(x , α):

Quasi-Newton approximation: linear time/space inner iterations.
Simple constraints: inner projection step takes linear time.
Efficient for optimizing costly functions with simple constraints.

The projected quasi-Newton (PQN) approach:
Best paper prize at AI/Stats.
“The projected quasi-Newton (PQN) algorithm [19, 20] is perhaps the most elegant
and logical extension of quasi-Newton methods, but it involves solving a sub-iteration.”
[Becker and Fadili, 2012].
“PQN is an implementation that uses a limited-memory quasi-Newton update and has
both excellent empirical performance and theoretical properties.” [Lee et al., 2012].

http://www.di.ens.fr/˜mschmidt/Software/PQN.html
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Graphical Model Structure Learning with Groups

Comparing PQN to first-order methods on a graphical model
structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].
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Proximal Operators

As before, we may not want to introduce constraints:

Increases number of variables.
Constrained problem may be harder.

Can we use the same tricks without introducing constraints?

Yes, with proximal-gradient methods.
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Overview of the Basic Gradient Method

We want to solve a smooth optimization problem,

min
x

f (x).

At iteration xk we use a quadratic upper bound on f ,

xk+1 = arg min
x

f (xk ) + 〈f ′(xk ), x − xk 〉+
1

2α
‖x − xk‖2.

We can equivalently write this as the quadratic optimization

xk+1 = arg min
x

1
2
‖x − (xk − αf ′(xk ))‖2.

The solution is the gradient algorithm:

xk+1 = xk − αf ′(xk ).
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Overview of the Basic Proximal-Gradient Method

We want to solve a smooth optimization problem,

min
x

f (x).

At iteration xk we use a quadratic upper bound on f ,

xk+1 = arg min
x

f (xk ) + 〈f ′(xk ), x − xk 〉+
1

2α
‖x − xk‖2.

We can equivalently write this as the quadratic optimization

xk+1 = arg min
x

1
2
‖x − (xk − αf ′(xk ))‖2.

The solution is the gradient algorithm:

xk+1 = xk − αf ′(xk ).
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Overview of the Basic Proximal-Gradient Method

We want to solve a composite optimization problem,

min
x

f (x)+g(x).

At iteration xk we use a quadratic upper bound on f ,

xk+1 = arg min
x

f (xk ) + 〈f ′(xk ), x − xk 〉+
1

2α
‖x − xk‖2.

We can equivalently write this as the quadratic optimization

xk+1 = arg min
x

1
2
‖x − (xk − αf ′(xk ))‖2.

The solution is the gradient algorithm:

xk+1 = xk − αf ′(xk ).
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Overview of the Basic Proximal-Gradient Method

We want to solve a composite optimization problem,

min
x

f (x)+g(x).

At iteration xk we use a quadratic upper bound on f ,

xk+1 = arg min
x

f (xk ) + 〈f ′(xk ), x − xk 〉+
1

2α
‖x − xk‖2+g(x).

We can equivalently write this as the proximal optimization

xk+1 = arg min
x

1
2
‖x − (xk − αf ′(xk ))‖2+αg(x).

The solution is the proximal-gradient algorithm:

xk+1 = proxαg [xk − αf ′(xk )].
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Special case of Projected-Gradient Methods

Projected-gradient methods are a special case:

g(x) =





0 if x ∈ C
∞ if x /∈ C.

Feasible Set

g(x)

xk
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Special case of Iterative Soft-Thresholding Methods

Iterative Soft-Thresholding methods are a special case:

g(x) = λ‖x‖1.

In this case, proximal operator shrinks |xi | by up to λα.

g(x)

xk
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Proximal Gradient for Group `1-Regularization

The group `1-regularizer is simple; we can compute the proximal
operator in linear time. [Wright et al., 2009]

proxα‖xg‖[xg ] = arg min
x

1
2
||x − xg ||2 + α||x ||

=
xg

‖xg‖
max{0, ||xg || − α}
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Proximal Gradient and Proximal Newton

The basic proximal-gradient step:

xk+1 ← arg min
x

1
2
||x − (xk − αf ′(xk ))||2 + αg(x)

Same convergence rate as gradient method.

To speed the convergence, we might consider Newton-like step:

xk+1 ← arg min
x

1
2
||x − (xk − α[Hk ]−1f ′(xk ))||2 + αg(x).

But to ensure descent, we need to match the norms:

xk+1 ← arg min
x

1
2
||x − (xk − α[Hk ]−1f ′(xk ))||2Hk + αg(x)

As before, this will expensive even when g is simple.
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Inexact Proximal Newton

Inexact proximal-Newton method:

Use a cheap inner solver to approximate the step.

Method analogous to PQN:

L-BFGS quasi-Newton Hessian approximation.
Proximal-gradient method as inner solver.
[Beck & Teboulle, 2008, Hofling & Tibshirani, 2009, Wright et al., 2009]

Suitable for optimizing costly objectives with simple regularizers.

Proximal-Newton is increasing in popularity, e.g. NIPS 2012:

Becker & Fadili, Hsieh et al., Lee et al., Olsen et al., Pacheco & Sudderth.
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Motivation: Structure Learning in Graphical Models

PQN has been used in other structure learning applications:

Learning variable groups [Marlin et al., 2009].

Non-DAG approaches to causality [Duvenaud et al., 2010].
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Outline

1 Sparsity

2 Group Sparsity
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Structure Learning with `1-Regularization

A list of papers on this topic (incomplete):

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,
2006], [Lee et al., 2006], [Meinshausen & Bühlmann, 2006], [Wainwright et
al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007], [Shimamura et al.,
2007], [Yuan & Lin, 2007], [d’ Aspremont et al., 2008], [Banerjee et al., 2008],
[Dahl et al., 2008], [Duchi et al., 2008], [Friedman et al., 2008], [Kolar & Xing,
2008], [Levina et al., 2008], [Schmidt et al., 2008], [Fan & Feng, 2009],
[Höling & Tibshirani, 2009], [Krishnamurphy & d’Aspremont, 2009], [Lu,
2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et
al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan,
2009]. Many more since 2009...
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Structure Learning with `1-Regularization

Many of these papers have made the pairwise assumption:
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[Höling & Tibshirani, 2009], [Krishnamurphy & d’Aspremont, 2009], [Lu,
2009a], [Lu, 2009b], [Marlin et al., 2009a], [Marlin et al., 2009b], [Schmidt et
al., 2009], [Schmidt & Murphy, 2009], [Schnitzspan et al., 2009], [Yuan,
2009]. Many more since 2009...

Mark Schmidt Opening up the Black Box



Structure Learning with `1-Regularization

Many of these papers have made the pairwise assumption:

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et al.,
2006], [Lee et al., 2006], [Meinshausen & Bühlmann, 2006], [Wainwright et
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Beyond Pairwise Potentials

The pairwise assumption is inherent to Gaussian models.

It has not traditionally been used in log-linear models.
[Goodman, 1971, Bishop et al., 1975]

The assumption is restrictive if higher-order statistics matter.

Eg. Mutations in both gene A and gene B lead to cancer.

We want to go beyond pairwise potentials.
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General Log-Linear Models

Log-linear models write the probability of a vector x as

log p(x) =
∑

A⊆S

wT
A φA(xA)− log Z

Setting wA = 0 is equivalent to removing the potential.

In pairwise models we assume wA = 0 if |A| > 2.
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Group `1-Regularization for Log-Linear Models

We can extend group `1-regularization to the general case:

min
w

f (w) +
∑

A⊆S

λA||wA||.

However,

We have an exponential number of variables.
Setting wA = 0 does not give conditional independence.

Prior work restricted the cardinality (e.g., threeway models).
[Dahinden et al., 2007]
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Hierarchical Log-Linear Models

Instead of restricting cardinality, we use hierarchical inclusion:

We can only have (1, 2, 3) if we also have (1, 2), (1, 3), and (2, 3).

In general: If wA = 0 then supersets B of A must have wB = 0.

The class of hierarchical log-linear models:
[Bishop et al., 1975]

Much larger than the set of pairwise models.
Can represent any positive distribution.
Group-sparsity corresponds to conditional independence.

But, how can we encourage this structured sparsity?
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Structured Sparsity for Hierarchical Constraints

Can enforce a hierarchy with overlapping group `1-regularization.
[Bach, 2008, Zhao et al., 2009]

Example:

If we want A = 0 to mean B = 0, use two groups {B} and {A,B},

λ{B}||wB||2 + λ{A,B}||wA,B||2.

To make wA non-zero, pay λ{A,B}.
To make wB non-zero, pay λB (but also λ{A,B} if wA = 0).
If wB 6= 0, no penalty for making wA non-zero.

We can learn hierarchical models by solving

min
w

f (w) +
∑

A⊆S

λA‖wA∗‖,

where A∗ = {B|A ⊆ B}. [Schmidt & Murphy, 2010]
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Active Set Method

But can we avoid looking at all higher-order potentials?

Heuristic: only consider adding groups that satisfy hierarchichy.
(And that are sub-optimal. E.g., poorly estimated by the model.)

Convex analogue of [Cheeseman, 1983, Gevarter, 1987].

Guarantees weak form of global optimality.
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Example of Active Set Method

Initial boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5
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Example of Active Set Method

Optimize active groups and sub-optimal boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Find new active groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Find new boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Optimize active groups and sub-optimal boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Find new active groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Find new boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Optimize active groups and sub-optimal boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Find new active groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Find new boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Optimize active groups and sub-optimal boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

Find new active groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Opening up the Black Box



Example of Active Set Method

No new boundary groups, so we are done.
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Example of Active Set Method

We only considered:

4 of 10 possible threeway interactions.
1 of 5 possible fourway interactions.
No fiveway interactions.

The heuristic can reduce the space exponentially.

In practice, do the heuristic and higher-order potentials help?
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Traffic Flow Data

Pairwise Threeway HLLM
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Structured Sparsity for Hierarchical Constraints

We now turn to the overlapping group `1-regularization problem,

min
x

f (x) + λ
∑

g

||xg ||,

where the groups g may not overlap.

Non-smooth is regularizer is not simple.

But we can use that each term is simple.
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Converting to a Constrained Problem

Constrained re-formulation:

min
‖xg‖≤tg

f (x) + λ
∑

g

tg .

We can efficiently project onto each constraint.

But projections aren’t independent since groups overlap.

We want the projection onto the intersection of simple sets.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

Cyclically projecting onto two subspaces converges to the
projection onto their intersections. [von Neumann, 1933]

Cyclically projecting onto convex sets converges to a point in
their interesections. [Bregman, 1965]

A simple modification makes the method converge to the
projection onto their intersections. [Dykstra, 1983]

For polyhedral sets, Dykstra’s algorithm has a linear
convergence rate. [Deutsch and Hundal, 1994]
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von Neumann’s Result
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von Neumann’s Result

Take two intersecting subspaces.
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von Neumann’s Result

We want to project a point onto their intersection.
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von Neumann’s Result

Project onto subspace 1.
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von Neumann’s Result

Project onto subspace 2.
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von Neumann’s Result

Project onto subspace 2.
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von Neumann’s Result

Project onto subspace 1.
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von Neumann’s Result

And keep going...
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von Neumann’s Result

The limit is the projection onto the intersection.
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Bregman’s Algorithm

We have an arbitrary number of convex sets.
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Bregman’s Algorithm

Start with some initial point.
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Bregman’s Algorithm

Project onto convex set 1.
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Bregman’s Algorithm

Project onto convex set 2.
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Bregman’s Algorithm

The limit is a point in the intersection.
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Bregman’s Algorithm

In general, the limit is not the projection.
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Dykstra’s Algorithm

We want to project a point onto the intersection of convex sets.

Mark Schmidt Opening up the Black Box



Dykstra’s Algorithm

Project onto convex set 1, and store the difference.
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Dykstra’s Algorithm

Project onto convex set 2, and store the difference.
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Dykstra’s Algorithm

Remove the difference from projecting on convex set 1.
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Dykstra’s Algorithm

Remove the difference from projecting on convex set 2.
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Dykstra’s Algorithm

Project onto convex set 2, and store the difference.
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Dykstra’s Algorithm

The limit is the projection onto the intersection.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:
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Proximal versions of Dykstra’s algorithm have recently been
developed. [Bauschke and Combettes, 2008]
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Exact and Inexact Proximal-Gradient Methos

We can efficiently compute the proximity operator for:
1 `1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bound constraints.
4 Hyper-plane and half-space constraints.
5 Simplex constraints.
6 Euclidean cone constraints.

We can efficiently approximate the proximity operator for:
1 Overlapping group `1-regularization with general groups.
2 Total-variation regularization and generalizations like the

graph-guided fused-LASSO.
3 Nuclear-norm regularization and other regularizers on the singular

values of matrices.
4 Positive semi-definite cone.
5 Combinations of simple functions.
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Convergence Rate of Inexact Proximal-Gradient

Can inexact proximal-gradient methods achieve the fast rates?

Exact proximal-gradient methods have

f (xk )− f (x∗) = O((1− µ/L)2k ).

(the same convergence rate as gradient methods)

Proposition. If the sequences {||ek ||} and {√εk} are in O(ρk ) for
ρ < (1− µ/L) then the basic proximal-gradient method achieves

f (xk )− f (x∗) = O((1− µ/L)2k ).

We show analogous results for accelerated proximal-gradient
methods, including when µ = 0. [Schmidt et al., 2011]
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Context: Machine Learning for “Big Data”

Large-scale machine learning: large N, large P

N: number of observations (inputs)
P: dimension of each observation

Regularized empirical risk minimization:

min
x∈RP

1
N

N∑

i=1

fi (x) + λr(x)

data fitting term + regularizer

Applications to any data-oriented field:

Vision, bioinformatics, speech, natural language, web.

Main practical challenges:

Designing/learning good features.
Efficiently solving the problem when N or P are very large.
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Big-N Problems

We want to minimize the sum of a finite set of smooth functions:

min
x∈RP

f (x) :=
1
N

N∑

i=1

fi (x).

We are interested in cases where N is very large.

Simple example is `2-regularized least-squares,

fi (x) := (aT
i x − bi )

2 +
λ

2
‖x‖2.

Other examples include any `2-regularized convex loss:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f (x) = 1
N

∑N
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt f ′(xt ) = xt −
αt

N

N∑

i=1

f ′i (xt ).

Linear convergence rate: O(ρt).
Iteration cost is linear in N.
Quasi-Newton methods still require O(N).

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of i(t) from {1, 2, . . . ,N}.

xt+1 = xt − αt fi(t)(xt).

Iteration cost is independent of N.
Sublinear O(1/t) convergence rate.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Motivation for New Methods

FG method has O(N) cost with O(ρk ) rate.

SG method has O(1) cost with O(1/k) rate.

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Goal is linear rate with O(1) cost.
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

Momentum, gradient/iterate averaging

Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov

(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic version of deterministic methods

Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),

Martens (2010), Xiao (2010), Duchi et al. (2011)

None of these methods improve on the O(1/t) rate
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Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),

Martens (2010), Xiao (2010), Duchi et al. (2011)
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Prior Work on Speeding up SG Methods

Existing linear convergence results:

Constant step-size SG, accelerated SG

Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)

Linear convergence but only up to a fixed tolerance

Hybrid methods, incremental average gradient

Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)

Linear rate but iterations make full passes through the data

Special Problems Classes

Collins et al. (2008), Strohmer & Vershynin (2009), Schmidt and Le Roux

(2012), Shalev-Shwartz and Zhang (2012)

Linear rate but limited choice for the fi ’s
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Stochastic Average Gradient

Is it possible to have a general linearly convergent algorithm
with iteration cost independent of N?

YES! The stochastic average gradient (SAG) algorithm:
Randomly select i(t) from {1, 2, . . . , n} and compute f ′i(t)(x

t ),

x t+1 = x t −
αt

N

N∑
i=1

f ′i (x
t )

Memory: x t
i is the last iterate where i was selected.

Assumes gradients of other examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.
Stochastic variant of increment average gradient (IAG).
[Blatt et al. 2007]

O(NP) memory requirements reduced to O(N) for many problems.
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Convergence Rate of SAG

Assume only that:

fi is convex, f ′i is L−continuous, f is µ-strongly convex.

Theorem. With α = 1
16L the SAG iterations satisfy

E[f (x t )− f (x∗)] = O

((
1−min

{
µ

16L
,

1
8N

})t
)
.

Convergence rate of O(ρt ) with cost of O(1) (true for α ≤ 1
16L ).

This rate is “very fast”:
Well-conditioned problems: constant non-trivial reduction per pass:(

1− 1
8N

)N

≤ exp
(
−1

8

)
= 0.8825.

Badly-conditioned problems, almost same as deterministic method.
(deterministic has rate

(
1− µ

L

)2t with α = 1
L , but N times slower)
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Rate of Convergence Comparison

Assume that N = 700000, L = 0.25, µ = 1/N (rcv1 data set):

Gradient method has rate
(

L−µ
L+µ

)2
= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible deterministic method:
(√

L−√µ√
L+
√
µ

)2
= 0.99048.

SAG beats two lower bounds:

Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).
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Convergence Rate in Convex Case

Assume only that:

fi is convex, f ′i is L−continuous, some x∗ exists.

Theorem. With αt 6 1
16L the SAG iterations satisfy

E[f (x t )− f (x∗)] = O(1/N)

Faster than SG lower bound of O(1/
√

N).

Same algorithm and step-size as strongly-convex case:

Algorithm is adaptive to strong-convexity.
Faster convergence rate if µ is locally bigger around x∗.
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Comparing FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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Conclusion and Open Problems

Fast theoretical convergence using the ‘sum’ structure.

Simple algorithm, empirically better than theory predicts.

Allows adaptive step-size and approximate optimality measures.

Subsequent work:

Constrained and non-smooth problems.
[Mairal, 2013, Wong et al., 2013]

Memory-free methods.
[Johnson and Zhang, 2013, Zhang et al., 2013]

Non-uniform sampling.
[Schmidt et al., 2013]

Thanks for coming!
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