Minimizing Finite Sums with the Stochastic Average Gradient Algorithm

Mark Schmidt

Joint work with Nicolas Le Roux and Francis Bach

University of British Columbia

Context: Machine Learning for "Big Data"

• Large-scale machine learning: large N, large P

- N: number of observations (inputs)
- P: dimension of each observation

• Regularized empirical risk minimization: find x* solution of

$$\min_{x \in \mathbb{R}^{p}} \frac{1}{N} \sum_{i=1}^{N} \ell(x^{T} a_{i}) + \lambda r(x)$$

data fitting term + regularizer

Context: Machine Learning for "Big Data"

• Large-scale machine learning: large N, large P

- N: number of observations (inputs)
- P: dimension of each observation

• Regularized empirical risk minimization: find x* solution of

$$\min_{x \in \mathbb{R}^{P}} \frac{1}{N} \sum_{i=1}^{N} \ell(x^{T} a_{i}) + \lambda r(x)$$

data fitting term + regularizer

- Applications to any data-oriented field:
 - Vision, bioinformatics, speech, natural language, web.
- Main practical challenges:
 - Choosing regularizer r and data-fitting term ℓ .
 - Designing/learning good features a_i.
 - Efficiently solving the problem when *N* or *P* are very large.

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^p}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^p}g(x):=\frac{1}{N}\sum_{i=1}^N f_i(x).$$

• We are interested in cases where *N* is very large.

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^p}g(x):=\frac{1}{N}\sum_{i=1}^N f_i(x).$$

- We are interested in cases where *N* is very large.
- We will focus on strongly-convex functions g.
- Simplest example is ℓ_2 -regularized least-squares,

$$f_i(x) := (a_i^T x - b_i)^2 + \frac{\lambda}{2} ||x||^2.$$

- Other examples include any ℓ_2 -regularized convex loss:
 - logistic regression, Huber regression, smooth SVMs, CRFs, etc.

• We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t g'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^N f'_i(x_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Fancier methods exist, but still in O(N)

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t \mathbf{g}'(\mathbf{x}_t) = \mathbf{x}_t - \frac{\alpha_t}{N} \sum_{i=1}^N \mathbf{f}'_i(\mathbf{x}_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Fancier methods exist, but still in O(N)
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of *i*(*t*) from {1, 2, ..., *N*},

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t f_{i(t)}'(\mathbf{x}_t).$$

- Iteration cost is independent of *N*.
- Sublinear convergence rate: O(1/t).

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

• Stochastic gradient method [Robbins & Monro, 1951]:

Motivation for New Methods

- FG method has O(N) cost with $O(\rho^t)$ rate.
- SG method has O(1) cost with O(1/t) rate.

Motivation for New Methods

- FG method has O(N) cost with $O(\rho^t)$ rate.
- SG method has O(1) cost with O(1/t) rate.

Motivation for New Methods

- FG method has O(N) cost with $O(\rho^t)$ rate.
- SG method has O(1) cost with O(1/t) rate.

• Goal is O(1) cost with $O(\rho^k)$ rate.

A variety of methods have been proposed to speed up SG methods:

• Step-size strategies, momentum, gradient/iterate averaging

 Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic version of accelerated and Newton-like methods

 Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011) A variety of methods have been proposed to speed up SG methods:

• Step-size strategies, momentum, gradient/iterate averaging

 Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic version of accelerated and Newton-like methods

- Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010), Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the O(1/t) rate

Existing linear convergence results:

Constant step-size SG, accelerated SG

- Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
- Linear convergence up to a fixed tolerance: $O(\rho^t) + O(\alpha)$.

Hybrid methods, incremental average gradient

- Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
- Linear rate but iterations make full passes through the data

Existing linear convergence results:

Constant step-size SG, accelerated SG

- Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
- Linear convergence up to a fixed tolerance: $O(\rho^t) + O(\alpha)$.

Hybrid methods, incremental average gradient

- Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
- Linear rate but iterations make full passes through the data

Special Problems Classes

- Collins et al. (2008), Strohmer & Vershynin (2009), Schmidt and Le Roux (2012), Shalev-Shwartz and Zhang (2012)
- Linear rate but limited choice for the fi's

- Assume only that:
 - f_i is convex, f'_i is *L*-continuous, *g* is μ -strongly convex.

- Assume only that:
 - f_i is convex, f'_i is *L*-continuous, *g* is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?

- Assume only that:
 - f_i is convex, f'_i is *L*-continuous, *g* is μ -strongly convex.

• Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?

YES!

- Assume only that:
 - f_i is convex, f'_i is *L*-continuous, *g* is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select *i*(*t*) from {1, 2, ..., N} and compute *f*'_{*i*(*t*)}(*x*^{*t*}).

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N f_i'(x^t)$$

- Assume only that:
 - f_i is convex, f'_i is *L*-continuous, *g* is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select *i*(*t*) from {1, 2, ..., N} and compute *f*'_{*i*(*t*)}(*x*^{*t*}).

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \frac{y_i^t}{y_i^t}$$

- Assume only that:
 - f_i is convex, f'_i is *L*-continuous, *g* is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select *i*(*t*) from {1, 2, ..., N} and compute *f*'_{*i*(*t*)}(*x*^{*t*}).

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{\alpha^t}{N} \sum_{i=1}^N \mathbf{y}_i^t$$

• Memory: $y_i^t = f_i'(x^t)$ from the last iteration *t* where *i* was selected.

- Assume only that:
 - f_i is convex, f'_i is *L*-continuous, *g* is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., N\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N \frac{y_i^t}{y_i^t}$$

• Memory: $y_i^t = f_i'(x^t)$ from the last iteration *t* where *i* was selected.

- Assumes that gradients of other examples don't change.
- This assumption becomes accurate as $||x^{t+1} x^t|| \rightarrow 0$.
- Stochastic variant of increment aggregated gradient (IAG). [Blatt et al. 2007]

Proposition 1. With $\alpha_t = \frac{1}{2NL}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - rac{\mu}{8LN}
ight)^{\iota} C.$$

Proposition 1. With $\alpha_t = \frac{1}{2NL}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \frac{\mu}{8LN}\right)^t C.$$

- Convergence rate of $O(\rho^t)$ with cost of O(1).
- Is this useful?!?

Proposition 1. With $\alpha_t = \frac{1}{2NL}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \frac{\mu}{8LN}\right)^t C.$$

- Convergence rate of $O(\rho^t)$ with cost of O(1).
- Is this useful?!?
- This rate is very slow: performance similar to cyclic method.

Proposition 2. With $\alpha_t \in \left[\frac{1}{2N\mu}, \frac{1}{16L}\right]$ and $N \ge 8\frac{L}{\mu}$, the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \frac{1}{8N}\right)^t C.$$

Proposition 2. With $\alpha_t \in \left[\frac{1}{2N\mu}, \frac{1}{16L}\right]$ and $N \ge 8\frac{L}{\mu}$, the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \frac{1}{8N}\right)^t C.$$

 Much bigger step-sizes: μ << L and L << NL (causes cyclic algorithm to diverge) **Proposition 2**. With $\alpha_t \in \left[\frac{1}{2N\mu}, \frac{1}{16L}\right]$ and $N \ge 8\frac{L}{\mu}$, the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \frac{1}{8N}\right)^t C.$$

- Much bigger step-sizes: μ << L and L << NL (causes cyclic algorithm to diverge)
- Gives constant non-trivial reduction per pass:

$$\left(1-rac{1}{8N}
ight)^N \le \exp\left(-rac{1}{8}
ight) = 0.8825.$$

• $N \ge O(\frac{L}{\mu})$ has been called 'big data' condition.

Theorem. With $\alpha_t = \frac{1}{16l}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C.$$

Theorem. With $\alpha_t = \frac{1}{16l}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C.$$

• This rate is "very fast":

Well-conditioned problems: constant non-trivial reduction per pass.

Theorem. With $\alpha_t = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C.$$

- This rate is "very fast":
 - Well-conditioned problems: constant non-trivial reduction per pass.
 - Badly-conditioned problems: almost same as deterministic method:

$$g(x^t) - g(x^*) \leqslant \left(1 - \frac{\mu}{L}\right)^{2t} C,$$

with $\alpha_t = \frac{1}{L}$, but SAG is *N* times faster.

Theorem. With $\alpha_t = \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] \leqslant \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^t C.$$

• This rate is "very fast":

- Well-conditioned problems: constant non-trivial reduction per pass.
- Badly-conditioned problems: almost same as deterministic method:

$$g(x^t) - g(x^*) \leqslant \left(1 - \frac{\mu}{L}\right)^{2t} C,$$

with $\alpha_t = \frac{1}{L}$, but SAG is *N* times faster.

• Still get linear rate for any $\alpha_t \leq \frac{1}{16L}$.

Rate of Convergence Comparison

• Assume that N = 700000, L = 0.25, $\mu = 1/N$:

Rate of Convergence Comparison

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{L}}) = 0.99761$.
 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761$.

• SAG (*N* iterations) has rate $(1 - \min \{\frac{\mu}{16L}, \frac{1}{8N}\})^N = 0.88250.$ • *Fastest possible* first-order method: $(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048.$

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761$.

 - SAG (*N* iterations) has rate $(1 \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^N = 0.88250$. *Fastest possible* first-order method: $(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N). ۲

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761$.

 - SAG (*N* iterations) has rate $(1 \min\{\frac{\mu}{16L}, \frac{1}{8N}\})^N = 0.88250$. *Fastest possible* first-order method: $(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N). ۲
- Number of f'_i evaluations to reach ϵ :

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761$.

 - SAG (*N* iterations) has rate $(1 \min \{\frac{\mu}{16l}, \frac{1}{8N}\})^N = 0.88250$. *Fastest possible* first-order method: $(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N). ٠
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{n}(1/\epsilon))$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761$.

 - SAG (*N* iterations) has rate $(1 \min \{\frac{\mu}{16l}, \frac{1}{8N}\})^N = 0.88250$. *Fastest possible* first-order method: $(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N). ۲
- Number of f_i evaluations to reach ε:
 - Stochastic: $O(\frac{L}{n}(1/\epsilon))$.
 - Gradient: $O(N\frac{L}{\mu}\log(1/\epsilon))$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $(1 \sqrt{\frac{\mu}{I}}) = 0.99761$.

 - SAG (*N* iterations) has rate $(1 \min \{\frac{\mu}{16l}, \frac{1}{8N}\})^N = 0.88250$. *Fastest possible* first-order method: $(\frac{\sqrt{L} \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}})^2 = 0.99048$.
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ , and N). ۲
- Number of f_i evaluations to reach ε:
 - Stochastic: $O(\frac{L}{n}(1/\epsilon))$.
 - Gradient: $O(N\frac{L}{\mu}\log(1/\epsilon))$.
 - Accelerated: $O(N_{\sqrt{\frac{L}{\mu}}}\log(1/\epsilon))$.

- Assume that N = 700000, L = 0.25, $\mu = 1/N$:
 - Gradient method has rate $\left(\frac{L-\mu}{L+\mu}\right)^2 = 0.99998.$
 - Accelerated gradient method has rate $\left(1 \sqrt{\frac{\mu}{L}}\right) = 0.99761$.
 - SAG (*N* iterations) has rate $\left(1 \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^N = 0.88250$.
 - Fastest possible first-order method: $\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^2 = 0.99048.$
- SAG beats two lower bounds:
 - Stochastic gradient bound (of O(1/t)).
 - Deterministic gradient bound (for typical L, μ, and N).
- Number of f'_i evaluations to reach ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: O(N^L/_μ log(1/ε)).
 - Accelerated: $O(N\sqrt{\frac{L}{\mu}}\log(1/\epsilon))$.
 - SAG: $O(\max\{N, \frac{L}{\mu}\}\log(1/\epsilon))$.

Proof Technique: Lyapunov Function

• We define a Lyapunov function of the form

1. dith

$$\mathcal{L}(\theta^t) = 2h[g(x^t + de^\top y^t) - g(x^*)] + (\theta^t - \theta^*)^\top \begin{bmatrix} A & B \\ B^\top & C \end{bmatrix} (\theta^t - \theta^*),$$

$$\theta^{t} = \begin{bmatrix} y_{1}^{t} \\ \vdots \\ y_{l}^{N} \\ x^{t} \end{bmatrix}, \quad \theta^{*} = \begin{bmatrix} f_{i}'(x^{*}) \\ \vdots \\ f_{N}'(x^{*}) \\ x^{*} \end{bmatrix}, \quad e = \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix}, \quad A = a_{1}ee^{\top} + a_{2}I, \\ B = be, \\ C = cI.$$

Proof Technique: Lyapunov Function

We define a Lyapunov function of the form

$$\mathcal{L}(\theta^t) = 2h[g(x^t + de^\top y^t) - g(x^*)] + (\theta^t - \theta^*)^\top \begin{bmatrix} A & B \\ B^\top & C \end{bmatrix} (\theta^t - \theta^*),$$

with
$$\theta^t = \begin{bmatrix} y_1^t \\ \vdots \\ y_l^N \\ x^t \end{bmatrix}$$
, $\theta^* = \begin{bmatrix} f_i'(x^*) \\ \vdots \\ f_N'(x^*) \\ x^* \end{bmatrix}$, $e = \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix}$, $A = a_1 e e^\top + a_2 I$, $B = b e$, $C = c I$.

• Proof involves finding $\{\alpha, a_1, a_2, b, c, d, h, \delta, \gamma\}$ such that

$$\mathbb{E}(\mathcal{L}(\theta^t)|\mathcal{F}_{t-1}) \leqslant (1-\delta)\mathcal{L}(\theta^{t-1}), \quad \mathcal{L}(\theta^t) \geqslant \gamma[g(x^t) - g(x^*)].$$

Apply recursively and initial Lyapunov function gives constant.

• What are the constants?

• What are the constants?

• If we initialize with $y_i^0 = 0$ we have

$$C = [g(x^{0}) - g(x^{*})] + \frac{4L}{N} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

- What are the constants?
 - If we initialize with $y_i^0 = 0$ we have

$$C = [g(x^{0}) - g(x^{*})] + \frac{4L}{N} ||x^{0} - x^{*}||^{2} + \frac{\sigma^{2}}{16L}.$$

• If we initialize with $y_i^0 = f'_i(x^0) - g'(x^0)$ we have

$$C = \frac{3}{2}[g(x^{0}) - g(x^{*})] + \frac{4L}{N} ||x^{0} - x^{*}||^{2}.$$

- What are the constants?
 - If we initialize with $y_i^0 = 0$ we have

$$C = [g(x^0) - g(x^*)] + \frac{4L}{N} ||x^0 - x^*||^2 + \frac{\sigma^2}{16L}.$$

• If we initialize with $y_i^0 = f'_i(x^0) - g'(x^0)$ we have

$$C = \frac{3}{2}[g(x^0) - g(x^*)] + \frac{4L}{N} ||x^0 - x^*||^2.$$

• If we initialize with N stochastic gradient iterations,

$$[g(x^0) - g(x^*)] = O(1/N), \quad ||x^0 - x^*||^2 = O(1/N).$$

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Theorem. With $\alpha_t \leq \frac{1}{16L}$ the SAG iterations satisfy

 $\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$

• Faster than SG lower bound of $O(1/\sqrt{t})$.

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Theorem. With $\alpha_t \leq \frac{1}{16l}$ the SAG iterations satisfy

 $\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$

- Faster than SG lower bound of $O(1/\sqrt{t})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Theorem. With $\alpha_t \leq \frac{1}{16l}$ the SAG iterations satisfy

 $\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$

- Faster than SG lower bound of $O(1/\sqrt{t})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .
- Same algorithm could be used in non-convex case.

Assume only that:

• f_i is convex, f'_i is *L*-continuous, some x^* exists.

Theorem. With $\alpha_t \leq \frac{1}{16l}$ the SAG iterations satisfy

 $\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$

- Faster than SG lower bound of $O(1/\sqrt{t})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .
- Same algorithm could be used in non-convex case.
- Contrast with stochastic dual coordinate ascent:
 - Requires explicit strongly-convex regularizer.
 - Not adaptive to μ , does not allow $\mu = 0$.

Comparing FG and SG Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

Comparison of competitive deterministic and stochastic methods.

SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

SAG starts fast and stays fast.

SAG Compared to Coordinate-Based Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)

PCD/DCA are similar on some problems, much worse on others.

- while(1)
 - Sample *i* from {1, 2, ..., *N*}.
 - Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$y_i = f'_i(x)$$
.

•
$$x = x - \frac{\alpha}{N}d$$
.

- while(1)
 - Sample *i* from {1, 2, ..., *N*}.
 - Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$y_i = f'_i(x)$$
.

•
$$x = x - \frac{\alpha}{N}d$$
.

- Issues:
 - Should we normalize by N?

- while(1)
 - Sample *i* from {1, 2, ..., *N*}.
 - Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$\mathbf{y}_i = f'_i(\mathbf{x}).$$

•
$$x = x - \frac{\alpha}{N}d$$
.

- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?

- while(1)
 - Sample *i* from {1, 2, ..., *N*}.
 - Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$\mathbf{y}_i = f'_i(\mathbf{x})$$
.

•
$$x = x - \frac{\alpha}{N} d$$
.

- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?

- while(1)
 - Sample *i* from {1, 2, ..., *N*}.
 - Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$\mathbf{y}_i = f'_i(\mathbf{x})$$
.

•
$$x = x - \frac{\alpha}{N} d$$
.

- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?

• while(1)

- Sample *i* from {1, 2, ..., *N*}.
- Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$\mathbf{y}_i = f'_i(\mathbf{x})$$
.

•
$$x = x - \frac{\alpha}{N} d$$
.

- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?

• while(1)

- Sample *i* from {1, 2, ..., *N*}.
- Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$\mathbf{y}_i = f'_i(\mathbf{x})$$
.

•
$$x = x - \frac{\alpha}{N}d$$
.

- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?

• while(1)

- Sample *i* from {1, 2, ..., *N*}.
- Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$\mathbf{y}_i = f'_i(\mathbf{x})$$
.

•
$$x = x - \frac{\alpha}{N} d$$
.

- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?
 - Can we handle constraints or non-smooth problems?

while(1)

- Sample *i* from {1, 2, ..., *N*}.
- Compute $f'_i(x)$.

•
$$d = d - y_i + f'_i(x)$$
.

•
$$\mathbf{y}_i = f'_i(\mathbf{x}).$$

•
$$x = x - \frac{\alpha}{N} d$$
.

- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?
 - Can we handle constraints or non-smooth problems?
 - Should we shuffle the data?

- Should we normalize by N in the early iterations?
- The parameter update:

•
$$x = x - \frac{\alpha}{N}d$$
.

- Should we normalize by N in the early iterations?
- The parameter update:

• $x = x - \frac{\alpha}{M}d$.

- We normalize by number of examples seen (*M*).
- Better performance on early iterations.
- Similar to doing one pass of SG.

- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(a_i^T x)$.

•
$$d = d + f'_i(a_i^T x) - y_i$$
.

•
$$y_i = f'_i(a_i^T x)$$
.

- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(\delta)$, with $\delta = a_i^T x$.

•
$$d = d + a_i(f'(\delta) - y_i)$$

•
$$y_i = f'_i(\delta)$$
.

• Use that
$$f'_i(a_i^T x) = a_i f'_i(\delta)$$
.
- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(\delta)$, with $\delta = a_i^T x$.

•
$$d = d + a_i(f'(\delta) - y_i)$$

•
$$y_i = f'_i(\delta)$$
.

- Use that $f'_i(a_i^T x) = a_i f'_i(\delta)$.
- Only store the scalars $f'_i(\delta)$.
- Reduces the memory from O(NP) to O(N).

Implementation Issues: Memory Requirements

- Can we reduce the memory in general?
- We can re-write the SAG iteration as:

$$x^{t+1} = x^t - \frac{\alpha_t}{N} \left(f'_i(x^t) - f'_i(x^i) + \sum_{j=1}^N f'_j(x^j) \right).$$

Implementation Issues: Memory Requirements

- Can we reduce the memory in general?
- We can re-write the SAG iteration as:

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{\alpha_t}{N} \left(f'_i(\mathbf{x}^t) - f'_i(\mathbf{x}^i) + \sum_{j=1}^N f'_j(\mathbf{x}^j) \right).$$

• The SVRG/mixedGrad method ('memory-free methods'):

$$x^{t+1} = x^t - \alpha \left(f'_i(x^t) - f'_i(\tilde{x}) + \frac{1}{N} \sum_{j=1}^N f'_j(\tilde{x}) \right),$$

where we occasionally update \tilde{x} .

[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Xiao and Zhang, 2014]

Implementation Issues: Memory Requirements

- Can we reduce the memory in general?
- We can re-write the SAG iteration as:

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{\alpha_t}{N} \left(f'_i(\mathbf{x}^t) - f'_i(\mathbf{x}^i) + \sum_{j=1}^N f'_j(\mathbf{x}^j) \right).$$

• The SVRG/mixedGrad method ('memory-free methods'):

$$x^{t+1} = x^t - \alpha \left(f'_i(x^t) - f'_i(\tilde{x}) + \frac{1}{N} \sum_{j=1}^N f'_j(\tilde{x}) \right),$$

where we occasionally update \tilde{x} .

[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Xiao and Zhang, 2014]

• Gets rid of memory for two f'_i evaluations per iteration.

- Can we handle sparse data?
- The parameter update for each variable *j*:

•
$$x_j = x_j - \frac{\alpha}{M} d_j$$
.

- Can we handle sparse data?
- The parameter update for each variable *j*:

•
$$x_j = x_j - \frac{k\alpha}{M} d_j$$
.

- For sparse data, d_j is typically constant.
- Apply previous *k* updates when it changes.

- Can we handle sparse data?
- The parameter update for each variable *j*:

•
$$x_j = x_j - \frac{k\alpha}{M} d_j$$
.

- For sparse data, *d_j* is typically constant.
- Apply previous *k* updates when it changes.
- Reduces the iteration cost from O(P) to $O(||f'_i(x)||_0)$.
- Standard tricks allow $\ell_2\text{-}\text{regularization}$ and $\ell_1\text{-}\text{regularization}.$

• How should we set the step size?

• How should we set the step size?

- Theory: $\alpha = 1/16L$.
- Practice: $\alpha = 1/L$.

• How should we set the step size?

- Theory: α = 1/16L.
- Practice: $\alpha = 1/L$.

• What if *L* is unknown or smaller near *x**?

- How should we set the step size?
 - Theory: α = 1/16L.
 - Practice: $\alpha = 1/L$.
- What if *L* is unknown or smaller near *x**?
 - Start with a small L.
 - Increase L until we satisfy:

$$f_i(x - \frac{1}{L}f'_i(x)) \leq f'_i(x) - \frac{1}{2L}||f'_i(x)||^2.$$

(assuming $||f'_i(x)||^2 \ge \epsilon$)

• Decrease *L* between iterations.

(Lipschitz approximation procedure from FISTA)

- How should we set the step size?
 - Theory: α = 1/16L.
 - Practice: $\alpha = 1/L$.
- What if *L* is unknown or smaller near *x**?
 - Start with a small L.
 - Increase L until we satisfy:

$$f_i(x - \frac{1}{L}f'_i(x)) \leq f'_i(x) - \frac{1}{2L}||f'_i(x)||^2.$$

(assuming $||f_i'(x)||^2 \ge \epsilon$)

• Decrease *L* between iterations.

(Lipschitz approximation procedure from FISTA)

• For $f_i(a_i^T x)$, this costs O(1) in N and P:

$$f_i(\boldsymbol{a}_i^T\boldsymbol{x}-\frac{f_i'(\delta)}{L}\|\boldsymbol{a}_i\|^2).$$

Implementation Issues: Termination Criterion

• When should we stop?

Implementation Issues: Termination Criterion

- When should we stop?
- Normally we check the size of ||f'(x)||.

- When should we stop?
- Normally we check the size of ||f'(x)||.
- And SAG has $y_i \to f'_i(x)$.

- When should we stop?
- Normally we check the size of ||f'(x)||.
- And SAG has $y_i \to f'_i(x)$.
- We can check the size of $\|\frac{1}{N}d\| = \|\frac{1}{N}\sum_{i=1}^{N}y_i\| \to \|f'(x)\|$

SAG Implementation Issues: Mini-Batches

• Can we use mini-batches?

SAG Implementation Issues: Mini-Batches

• Can we use mini-batches?

- Yes, define each f_i to include more than one example.
- Reduces memory requirements.
- Allows parallelization.
- But must decrease L for good performance

$$L_{\mathcal{B}} \leq \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} L_i \leq \max_{i \in \mathcal{B}} \{L_i\}.$$

SAG Implementation Issues: Mini-Batches

• Can we use mini-batches?

- Yes, define each f_i to include more than one example.
- Reduces memory requirements.
- Allows parallelization.
- But must decrease L for good performance

$$L_{\mathcal{B}} \leq \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} L_i \leq \max_{i \in \mathcal{B}} \{L_i\}.$$

In practice, Lipschitz approximation procedure on to determine L_B.

• For composite problems with non-smooth regularizers r,

$$\min_{x}\frac{1}{N}\sum_{i=1}^{N}f_{i}(x)+r(x).$$

• For composite problems with non-smooth regularizers r,

$$\min_{x}\frac{1}{N}\sum_{i=1}^{N}f_{i}(x)+r(x).$$

• We can do a proximal-gradient variant when r is simple:

$$x = \operatorname{prox}_{\alpha r(\cdot)}[x - \frac{\alpha}{N}d].$$

[Mairal, 2013, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

- E.g., with $r(x) = \lambda ||x||_1$: stochastic iterative soft-thresholding.
- Same converge rate as smooth case.

• For composite problems with non-smooth regularizers r,

$$\min_{x}\frac{1}{N}\sum_{i=1}^{N}f_{i}(x)+r(x).$$

• We can do a proximal-gradient variant when r is simple:

$$x = \operatorname{prox}_{\alpha r(\cdot)}[x - \frac{\alpha}{N}d].$$

[Mairal, 2013, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

- E.g., with $r(x) = \lambda ||x||_1$: stochastic iterative soft-thresholding.
- Same converge rate as smooth case.
- Exist ADMM variants when r is simple/linear composition, r(Ax).
 [Wong et al., 2013]

• For composite problems with non-smooth regularizers r,

$$\min_{x}\frac{1}{N}\sum_{i=1}^{N}f_{i}(x)+r(x).$$

• We can do a proximal-gradient variant when r is simple:

$$x = \operatorname{prox}_{\alpha r(\cdot)}[x - \frac{\alpha}{N}d].$$

[Mairal, 2013, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

- E.g., with $r(x) = \lambda ||x||_1$: stochastic iterative soft-thresholding.
- Same converge rate as smooth case.
- Exist ADMM variants when r is simple/linear composition, r(Ax).
 [Wong et al., 2013]
- If *f_i* are non-smooth, could smooth them or use dual methods. [Nesterov, 2005, Lacoste-Julien et al., 2013, Shalev-Schwartz and Zhang, 2013]

Does re-shuffling and doing full passes work better?

- Does re-shuffling and doing full passes work better?
 - NO!

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Bias sampling towards Lipschitz constants L_i.

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Bias sampling towards Lipschitz constants L_i.
 - Justification: duplicate examples proportional to L_i:

$$\frac{1}{N}\sum_{i=1}^{N}f_{i}(x) = \frac{1}{\sum L_{i}}\sum_{i=1}^{N}\sum_{j=1}^{L_{i}}L_{\text{mean}}\frac{f_{i}(x)}{L_{i}}$$

convergence rate depends on L_{mean} instead of L_{max} .

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Bias sampling towards Lipschitz constants L_i.
 - Justification: duplicate examples proportional to L_i:

$$\frac{1}{N}\sum_{i=1}^{N}f_{i}(x) = \frac{1}{\sum L_{i}}\sum_{i=1}^{N}\sum_{j=1}^{L_{i}}L_{\text{mean}}\frac{f_{i}(x)}{L_{i}}$$

convergence rate depends on L_{mean} instead of L_{max} .

• Combine with the line-search for adaptive sampling. (see paper/code for details)

SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Datasets where SAG had the worst relative performance.

SAG with Non-Uniform Sampling

• protein (*n* = 145751, *p* = 74) and sido (*n* = 12678, *p* = 4932)

• Lipschitz sampling helps a lot.

• Can we use a scaling matrix H?

$$x = x - \frac{\alpha}{N} H^{-1} d.$$

• Can we use a scaling matrix H?

$$x=x-\frac{\alpha}{N}H^{-1}d.$$

- Didn't help in my experiments with diagonal H.
- Non-diagonal will lose sparsity.

• Can we use a scaling matrix H?

$$x=x-\frac{\alpha}{N}H^{-1}d.$$

- Didn't help in my experiments with diagonal H.
- Non-diagonal will lose sparsity.
- Quasi-Newton method proposed that has empirically-faster convergence, but much overhead.

[Sohl-Dickstein et al., 2014]

Conclusion and Discussion

• Faster theoretical convergence using only the 'sum' structure.
- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Recent/current developments:
 - Memory-free variants.
 - Non-smooth variants.
 - Improved constants.
 - Relaxed strong-convexity.
 - Non-uniform sampling.
 - Quasi-Newton variants.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Recent/current developments:
 - Memory-free variants.
 - Non-smooth variants.
 - Improved constants.
 - Relaxed strong-convexity.
 - Non-uniform sampling.
 - Quasi-Newton variants.
- Future developments:
 - Non-convex analysis.
 - Parallel/distributed methods.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Recent/current developments:
 - Memory-free variants.
 - Non-smooth variants.
 - Improved constants.
 - Relaxed strong-convexity.
 - Non-uniform sampling.
 - Quasi-Newton variants.
- Future developments:
 - Non-convex analysis.
 - Parallel/distributed methods.
- Thank you for the invitation.