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Context: Machine Learning for “Big Data”

Large-scale machine learning: large N, large P

N: number of observations (inputs)
P: dimension of each observation

Regularized empirical risk minimization: find x∗ solution of

min
x∈RP

1
N

N∑

i=1

`(xT ai) + λr(x)

data fitting term + regularizer

Applications to any data-oriented field:

Vision, bioinformatics, speech, natural language, web.

Main practical challenges:

Choosing regularizer r and data-fitting term `.
Designing/learning good features ai .
Efficiently solving the problem when N or P are very large.
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This talk: Big-N Problems

We want to minimize the sum of a finite set of smooth functions:

min
x∈RP

g(x) :=
1
N

N∑

i=1

fi(x).

We are interested in cases where N is very large.

We will focus on strongly-convex functions g.

Simplest example is `2-regularized least-squares,

fi(x) := (aT
i x − bi)

2 +
λ

2
‖x‖2.

Other examples include any `2-regularized convex loss:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑N
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αtg′(xt) = xt −
αt

N

N∑

i=1

f ′i (xt).

Linear convergence rate: O(ρt).
Iteration cost is linear in N.
Fancier methods exist, but still in O(N)

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of i(t) from {1, 2, . . . ,N},

xt+1 = xt − αt f ′i(t)(xt).

Iteration cost is independent of N.
Sublinear convergence rate: O(1/t).
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑N
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Motivation for New Methods

FG method has O(N) cost with O(ρt) rate.

SG method has O(1) cost with O(1/t) rate.

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Goal is linear rate with O(1) cost.
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

Step-size strategies, momentum, gradient/iterate averaging

Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov

(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic version of accelerated and Newton-like methods

Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),

Martens (2010), Xiao (2010), Duchi et al. (2011)

None of these methods improve on the O(1/t) rate

Mark Schmidt Minimzing Finite Sums with the SAG Algorithm



Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

Step-size strategies, momentum, gradient/iterate averaging

Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov

(2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)

Stochastic version of accelerated and Newton-like methods

Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),

Martens (2010), Xiao (2010), Duchi et al. (2011)

None of these methods improve on the O(1/t) rate

Mark Schmidt Minimzing Finite Sums with the SAG Algorithm



Prior Work on Speeding up SG Methods

Existing linear convergence results:

Constant step-size SG, accelerated SG

Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)

Linear convergence up to a fixed tolerance: O(ρt) + O(α).

Hybrid methods, incremental average gradient

Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)

Linear rate but iterations make full passes through the data

Special Problems Classes

Collins et al. (2008), Strohmer & Vershynin (2009), Schmidt and Le Roux

(2012), Shalev-Shwartz and Zhang (2012)

Linear rate but limited choice for the fi ’s
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Stochastic Average Gradient

Assume only that:

fi is convex, f ′i is L−continuous, g is µ-strongly convex.

Is it possible to have an O(ρt) rate with an O(1) cost?
YES! The stochastic average gradient (SAG) algorithm:

Randomly select i(t) from {1, 2, . . . ,N} and compute f ′i(t)(x
t ).

x t+1 = x t −
αt

N

N∑
i=1

f ′i (x
t )

Memory: y t
i = f ′i (x

t ) from the last iteration t where i was selected.

Assumes that gradients of other examples don’t change.
This assumption becomes accurate as ||x t+1 − x t || → 0.
Stochastic variant of increment aggregated gradient (IAG).
[Blatt et al. 2007]
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Convergence Rate of SAG: Attempt 1

Proposition 1. With αt =
1

2NL the SAG iterations satisfy

E[g(x t)− g(x∗)] 6
(

1− µ

8LN

)t
C.

Convergence rate of O(ρt) with cost of O(1).

Is this useful?!?

This rate is very slow: performance similar to cyclic method.
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Convergence Rate of SAG: Attempt 2

Proposition 2. With αt ∈ [ 1
2Nµ ,

1
16L ] and N ≥ 8 L

µ , the SAG iterations
satisfy

E[g(x t)− g(x∗)] 6
(

1− 1
8N

)t

C.

Much bigger step-sizes: µ << L and L << NL
(causes cyclic algorithm to diverge)

Gives constant non-trivial reduction per pass:

(
1− 1

8N

)N

≤ exp
(
−1

8

)
= 0.8825.

N ≥ O( L
µ ) has been called ‘big data’ condition.
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Convergence Rate of SAG: Attempt 3

Theorem. With αt =
1

16L the SAG iterations satisfy

E[g(x t)− g(x∗)] 6
(

1−min
{

µ

16L
,

1
8N

})t

C.

This rate is “very fast”:

Well-conditioned problems: constant non-trivial reduction per pass.
Badly-conditioned problems: almost same as deterministic method:

g(x t)− g(x∗) 6
(

1− µ

L

)2t
C,

with αt =
1
L , but SAG is N times faster.

Still get linear rate for any αt ≤ 1
16L .
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Rate of Convergence Comparison

Assume that N = 700000, L = 0.25, µ = 1/N:

Gradient method has rate
(

L−µ
L+µ

)2
= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2
= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O( L

µ
(1/ε)).

Gradient: O(N L
µ

log(1/ε)).

Accelerated: O(N
√

L
µ

log(1/ε)).

SAG: O(max{N, L
µ
} log(1/ε)).
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= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2
= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O( L

µ
(1/ε)).

Gradient: O(N L
µ

log(1/ε)).

Accelerated: O(N
√

L
µ

log(1/ε)).

SAG: O(max{N, L
µ
} log(1/ε)).
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Proof Technique: Lyapunov Function

We define a Lyapunov function of the form

L(θt) = 2h[g(x t+de>y t)−g(x∗)]+(θt−θ∗)>
[

A B
B> C

]
(θt−θ∗),

with

θt =




y t
1
...

yN
t

x t



, θ∗ =




f ′i (x
∗)

...
f ′N(x

∗)

x∗



, e =




I
...
I


 ,

A = a1ee> + a2I,
B = be,
C = cI.

Proof involves finding {α,a1,a2,b, c,d ,h, δ, γ} such that

E(L(θt)|Ft−1) 6 (1− δ)L(θt−1), L(θt) > γ[g(x t)− g(x∗)].

Apply recursively and initial Lyapunov function gives constant.
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Constants in Convergence Rate

What are the constants?

If we initialize with y0
i = 0 we have

C = [g(x0)− g(x∗)] +
4L
N
‖x0 − x∗‖2 +

σ2

16L
.

If we initialize with y0
i = f ′i (x

0)− g′(x0) we have

C =
3
2
[g(x0)− g(x∗)] +

4L
N
‖x0 − x∗‖2.

If we initialize with N stochastic gradient iterations,

[g(x0)− g(x∗)] = O(1/N), ‖x0 − x∗‖2 = O(1/N).
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Convergence Rate in Convex Case

Assume only that:

fi is convex, f ′i is L−continuous, some x∗ exists.

Theorem. With αt 6 1
16L the SAG iterations satisfy

E[g(x t)− g(x∗)] = O(1/t)

Faster than SG lower bound of O(1/
√

t).

Same algorithm and step-size as strongly-convex case:
Algorithm is adaptive to strong-convexity.
Faster convergence rate if µ is locally bigger around x∗.

Same algorithm could be used in non-convex case.

Contrast with stochastic dual coordinate ascent:
Requires explicit strongly-convex regularizer.
Not adaptive to µ, does not allow µ = 0.
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Comparing FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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Comparison of competitive deterministic and stochastic methods.
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SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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SAG starts fast and stays fast.
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SAG Compared to Coordinate-Based Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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PCD/DCA are similar on some problems, much worse on others.
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SAG Implementation Issues

while(1)

Sample i from {1, 2, . . . ,N}.
Compute f ′i (x).
d = d − yi + f ′i (x).
yi = f ′i (x).
x = x − α

N d .

Issues:

Should we normalize by N?
Can we reduce the memory?
Can we handle sparse data?
How should we set the step size?
When should we stop?
Can we use mini-batches?
Can we handle constraints or non-smooth problems?
Should we shuffle the data?
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Implementation Issues: Normalization

Should we normalize by N in the early iterations?

The parameter update:

x = x − α
N d .

We normalize by number of examples seen (M).

Better performance on early iterations.

Similar to doing one pass of SG.
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Implementation Issues: Memory Requirements

Can we reduce the memory?

The memory update for fi(aT
i x):

Compute f ′i (a
T
i x).

d = d + f ′i (a
T
i x)− yi .

yi = f ′i (a
T
i x).

Use that f ′i (a
T
i x) = ai f ′i (δ).

Only store the scalars f ′i (δ).

Reduces the memory from O(NP) to O(N).
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Implementation Issues: Memory Requirements

Can we reduce the memory in general?

We can re-write the SAG iteration as:

x t+1 = x t − αt

N


f ′i (x

t)− f ′i (x
i) +

N∑

j=1

f ′j (x
j)


 .

The SVRG/mixedGrad method (‘memory-free methods’):

x t+1 = x t − α


f ′i (x

t)− f ′i (x̃) +
1
N

N∑

j=1

f ′j (x̃)


 ,

where we occasionally update x̃ .
[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik,

2013, Xiao and Zhang, 2014]

Gets rid of memory for two f ′i evaluations per iteration.
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Implementation Issues: Sparsity

Can we handle sparse data?

The parameter update for each variable j :

xj = xj − α
M dj .

For sparse data, dj is typically constant.

Apply previous k updates when it changes.

Reduces the iteration cost from O(P) to O(‖f ′i (x)‖0).

Standard tricks allow `2-regularization and `1-regularization.
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Implementation Issues: Step-Size

How should we set the step size?

Theory: α = 1/16L.
Practice: α = 1/L.

What if L is unknown or smaller near x∗?
Start with a small L.
Increase L until we satisfy:

fi(x −
1
L

f ′i (x)) ≤ f ′i (x)−
1

2L
‖f ′i (x)‖2.

(assuming ‖f ′i (x)‖2 ≥ ε)
Decrease L between iterations.

(Lipschitz approximation procedure from FISTA)

For fi(aT
i x), this costs O(1) in N and P:

fi(aT
i x − f ′i (δ)

L
‖ai‖2).
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Implementation Issues: Termination Criterion

When should we stop?

Normally we check the size of ‖f ′(x)‖.
And SAG has yi → f ′i (x).

We can check the size of ‖ 1
N d‖ = ‖ 1

N

∑N
i=1 yi‖ → ‖f ′(x)‖
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SAG Implementation Issues: Mini-Batches

Can we use mini-batches?

Yes, define each fi to include more than one example.
Reduces memory requirements.
Allows parallelization.
But must decrease L for good performance

LB ≤
1
|B|
∑
i∈B

Li ≤ max
i∈B
{Li}.

In practice, Lipschitz approximation procedure on to determine LB.
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Implementation Issues: Constraints/Non-Smooth

For composite problems with non-smooth regularizers r ,

min
x

1
N

N∑

i=1

fi(x) + r(x).

We can do a proximal-gradient variant when r is simple:

x = proxαr(·)[x −
α

N
d ].

[Mairal, 2013, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

E.g., with r(x) = λ‖x‖1: stochastic iterative soft-thresholding.

Same converge rate as smooth case.

Exist ADMM variants when r is simple/linear composition, r(Ax).
[Wong et al., 2013]

If fi are non-smooth, could smooth them or use dual methods.
[Nesterov, 2005, Lacoste-Julien et al., 2013, Shalev-Schwartz and Zhang, 2013]
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SAG Implementation Issues: Non-Uniform Sampling

Does re-shuffling and doing full passes work better?

NO!
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

Bias sampling towards Lipschitz constants Li .
Justification: duplicate examples proportional to Li :

1
N

N∑
i=1

fi(x) =
1∑
Li

N∑
i=1

Li∑
j=1

Lmean
fi(x)

Li
,

convergence rate depends on Lmean instead of Lmax.
Combine with the line-search for adaptive sampling.
(see paper/code for details)
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SAG with Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s 
O

p
ti
m

u
m

IAG

AG
D

L−B
FG

S

SG−C

ASG−C

PCD−L

DCA

SAG

0 10 20 30 40 50

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s 
O

p
ti
m

u
m

IAG

AGD

L−BFGS

SG−C
ASG−C

PCD−L

DCA

SAG

Datasets where SAG had the worst relative performance.
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Lipschitz sampling helps a lot.
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Newton-like Methods

Can we use a scaling matrix H?

x = x − α

N
H−1d .

Didn’t help in my experiments with diagonal H.

Non-diagonal will lose sparsity.

Quasi-Newton method proposed that has empirically-faster
convergence, but much overhead.
[Sohl-Dickstein et al., 2014]
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Conclusion and Discussion

Faster theoretical convergence using only the ‘sum’ structure.

Simple algorithm, empirically better than theory predicts.
Black-box stochastic gradient algorithm:

Adaptivity to problem difficulty, line-search, termination criterion.

Recent/current developments:
Memory-free variants.
Non-smooth variants.
Improved constants.
Relaxed strong-convexity.
Non-uniform sampling.
Quasi-Newton variants.

Future developments:
Non-convex analysis.
Parallel/distributed methods.

Thank you for the invitation.
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