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Context: Big Data and Big Models

We are collecting data at unprecedented rates.

Seen across many fields of science and engineering.
Not gigabytes, but terabytes or petabytes (and beyond).

Many important aspects to the ‘big data’ puzzle:

Distributed data storage and management, parallel
computation, software paradigms, data mining, machine
learning, privacy and security issues, reacting to other agents,
power management, summarization and visualization.
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Context: Big Data and Big Models

Machine learning uses big data to fit richer statistical models:

Vision, bioinformatics, speech, natural language, web, social.
Developping broadly applicable tools.
Output of models can be used for further analysis.

Numerical optimization is at the core of many of these models.

But, traditional ‘black-box’ methods have difficulty with:

the large data sizes.
the large model complexities.
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Motivation: Why Learn about Convex Optimization?

Why learn about optimization?

Optimization is at the core of many ML algorithms.

ML is driving a lot of modern research in optimization.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.

You can do a lot with convex models.
(least squares, lasso, generlized linear models, SVMs, CRFs)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)
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Two Components of My Research

The first component of my research focuses on computation:

We ‘open up the black box’, by using the structure of machine
models to derive faster large-scale optimization algorithms.
Can lead to enormous speedups for big data and complex
models.

The second component of my research focuses on modeling:

By expanding the set of tractable problems, we can propose
richer classes of statistical models that can be efficiently fit.

We can alternate between these two.
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Convexity: Zero-order condition

A real-valued function is convex if

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y),

for all x, y ∈ Rn and all 0 ≤ θ ≤ 1.

Function is below a linear interpolation from x to y .

Implies that all local minima are global minima.
(contradiction otherwise)
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Convexity of Norms

We say that a function f is a norm if:

1 f (0) = 0.

2 f (θx) = |θ|f (x).

3 f (x + y) ≤ f (x) + f (y).

Examples:

‖x‖2 =

√∑

i

x2
i =
√
xT x

‖x‖1 =
∑

i

|xi |

‖x‖H =
√
xTHx

Norms are convex:

f (θx + (1− θ)y) ≤ f (θx) + f ((1− θ)y) (3)

= θf (x) + (1− θ)f (y) (2)
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Strict Convexity

A real-valued function is strictly convex if

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y),

for all x 6= y ∈ Rn and all 0 < θ < 1.

Strictly below the linear interpolation from x to y .

Implies at most one global minimum.
(otherwise, could construct lower global minimum)
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Convexity: First-order condition

A real-valued differentiable function is convex iff

f (y) ≥ f (x) +∇f (x)T (y − x),

for all x, y ∈ Rn.

The function is globally above the tangent at x .
(if ∇f (y) = 0 then y is a a global minimizer)
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Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff

∇2f (x) � 0

for all x ∈ Rn.

The function is flat or curved upwards in every direction.

A real-valued function f is a quadratic if it can be written in the
form:

f (x) =
1

2
xTAx + bT x + c .

Since ∇2f (x) = A, it is convex if A � 0.
E.g., least squares has ∇2f (x) = ATA � 0.
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Examples of Convex Functions

Some simple convex functions:

f (x) = c

f (x) = aT x

f (x) = ax2 + b (for a > 0)

f (x) = exp(ax)

f (x) = x log x (for x > 0)

f (x) = ||x ||2
f (x) = maxi{xi}

Some other notable examples:

f (x , y) = log(ex + ey )

f (X ) = log detX (for X positive-definite).

f (x ,Y ) = xTY−1x (for Y positive-definite)
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Operations that Preserve Convexity

1 Non-negative weighted sum:

f (x) = θ1f1(x) + θ2f2(x).

2 Composition with affine mapping:

g(x) = f (Ax + b).

3 Pointwise maximum:

f (x) = max
i
{fi (x)}.

Show that least-residual problems are convex for any `p-norm:

f (x) = ||Ax − b||p

We know that ‖ · ‖p is a norm, so it follows from (2).
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2 Composition with affine mapping:

g(x) = f (Ax + b).
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i
{fi (x)}.

Show that SVMs are convex:

f (x) =
1

2
||x ||2 + C

n∑

i=1

max{0, 1− bia
T
i x}.

The first term has Hessian I � 0, for the second term use (3) on
the two (convex) arguments, then use (1) to put it all together.
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How hard is real-valued optimization?
How long to find an ε-optimal minimizer of a real-valued function?

min
x∈Rn

f (x).

General function: impossible!
(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

Assume f is Lipschitz-continuous: (can not change too quickly)

|f (x)− f (y)| ≤ L‖x − y‖.
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(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

Assume f is Lipschitz-continuous: (can not change too quickly)

|f (x)− f (y)| ≤ L‖x − y‖.

After t iterations, the error of any algorithm is Ω(1/t1/n).
(this is in the worst case, and note that grid-search is nearly optimal)

Optimization is hard, but assumptions make a big difference.
(we went from impossible to very slow)
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Motivation for First-Order Methods

Well-known that we can solve convex optimization problems
in polynomial-time by interior-point methods

However, these solvers require O(n2) or worse cost per
iteration.

Infeasible for applications where n may be in the billions.

Solving big problems has led to re-newed interest in simple
first-order methods (gradient methods):

x+ = x − α∇f (x).

These only have O(n) iteration costs.
But we must analyze how many iterations are needed.
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`2-Regularized Logistic Regression

Consider `2-regularized logistic regression:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))) +
λ

2
‖x‖2.

Objective f is convex.

First term is Lipschitz continuous.

Second term is not Lipschitz continuous.

But we have
µI � ∇2f (x) � LI .

(L = 1
4
‖A‖2

2 + λ, µ = λ)

Gradient is Lipschitz-continuous.

Function is strongly-convex.
(implies strict convexity, and existence of unique solution)
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Properties of Lipschitz-Continuous Gradient
From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � LI .

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖2

Global quadratic upper bound on function value.
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Properties of Lipschitz-Continuous Gradient

From Taylor’s theorem, for some z we have:
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1

2
(y − x)T∇2f (z)(y − x)
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L

2
‖y − x‖2

Global quadratic upper bound on function value.

Set x+ to minimize upper bound in terms of y :

x+ = x − 1

L
∇f (x).

(gradient descent with step-size of 1/L)

Plugging this value in:

f (x+) ≤ f (x)− 1

2L
‖∇f (x)‖2.

(decrease of at least 1
2L
‖∇f (x)‖2)
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Properties of Strong-Convexity
From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � µI .
f (y) ≥ f (x) +∇f (x)T (y − x) +

µ

2
‖y − x‖2

Global quadratic lower bound on function value.
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Properties of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � µI .

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
‖y − x‖2

Global quadratic lower bound on function value.

Minimize both sides in terms of y :

f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.

Upper bound on how far we are from the solution.
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Linear Convergence of Gradient Descent

We have bounds on x+ and x∗:

f (x+) ≤ f (x)− 1

2L
‖∇f (x)‖2, f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.
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Linear Convergence of Gradient Descent

We have bounds on x+ and x∗:

f (x+) ≤ f (x)− 1

2L
‖∇f (x)‖2, f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.

combine them to get

f (x+)− f (x∗) ≤
(

1− µ

L

)
[f (x)− f (x∗)]

This gives a linear convergence rate:

f (x t)− f (x∗) ≤
(

1− µ

L

)t
[f (x0)− f (x∗)]

Each iteration multiplies the error by a fixed amount.
(very fast if µ/L is not too close to one)
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Maximum Likelihood Logistic Regression
What about maximum-likelihood logistic regression?

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)
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Maximum Likelihood Logistic Regression

Consider maximum-likelihood logistic regression:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)

If some x∗ exists, we have the sublinear convergence rate:

f (x t)− f (x∗) = O(1/t)

(compare to slower Ω(1/t−1/N) for general Lipschitz functions)

If f is convex, then f + λ‖x‖2 is strongly-convex.
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Gradient Method: Practical Issues
In practice, searching for step size (line-search) is usually
much faster than α = 1/L.

(and doesn’t require knowledge of L)

Basic Armijo backtracking line-search:
1 Start with a large value of α.
2 Divide α in half until we satisfy (typically value is γ = .0001)

f (x+) ≤ f (x)− γα||∇f (x)||2.
Practical methods may use Wolfe conditions (so α isn’t too
small), and/or use interpolation to propose trial step sizes.

(with good interpolation, ≈ 1 evaluation of f per iteration)

Also, check your derivative code!

∇i f (x) ≈ f (x + δei )− f (x)

δ
For large-scale problems you can check a random direction d :

∇f (x)Td ≈ f (x + δd)− f (x)

δ
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Convergence Rate of Gradient Method

We are going to explore the ‘convex optimization zoo’:

Gradient method for smooth/convex: O(1/t).

Gradient method for smooth/strongly-convex: O((1− µ/L)t).

Rates are the same if only once-differentiable.

Line-search doesn’t change the worst-case rate.
(strongly-convex slightly improved with α = 2/(µ+ L))

Is this the best algorithm under these assumptions?
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Accelerated Gradient Method

Nesterov’s accelerated gradient method:

xt+1 = yt − αt∇f (yt),

yt+1 = xt + βt(xt+1 − xt),

for appropriate αt , βt .

Motivation: “to make the math work”
(but similar to heavy-ball/momentum and conjugate gradient method)
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Convex Optimization Zoo

Algorithm Assumptions Rate

Gradient Convex O(1/t)
Nesterov Convex O(1/t2)
Gradient Strongly-Convex O((1− µ/L)t)

Nesterov Strongly-Convex O((1−
√
µ/L)t)

O(1/t2) is optimal given only these assumptions.
(sometimes called the optimal gradient method)

The faster linear convergence rate is close to optimal.

Also faster in practice, but implementation details matter.
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Newton’s Method

The oldest differentiable optimization method is Newton’s.
(also called IRLS for functions of the form f (Ax))

Modern form uses the update

x+ = x − αd ,
where d is a solution to the system

∇2f (x)d = ∇f (x).
(Assumes ∇2f (x) � 0)

Equivalent to minimizing the quadratic approximation:

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2α
‖y − x‖2

∇2f (x).

(recall that ‖x‖2
H = xTHx)

We can generalize the Armijo condition to

f (x+) ≤ f (x) + γα∇f (x)Td .

Has a natural step length of α = 1.
(always accepted when close to a minimizer)
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Newton’s Method

f(x)
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Newton’s Method

f(x)

f(x) + ∇f(x)T(y-x) + (1/2)(y-x)T∇2f(x)(y-x)
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Convergence Rate of Newton’s Method

If ∇2f (x) is Lipschitz-continuous and ∇2f (x) � µ, then close
to x∗ Newton’s method has local superlinear convergence:

f (x t+1)− f (x∗) ≤ ρt [f (x t)− f (x∗)],

with limt→∞ ρt = 0.

Converges very fast, use it if you can!

But requires solving ∇2f (x)d = ∇f (x).

Get global rates under various assumptions
(cubic-regularization/accelerated/self-concordant).
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Newton’s Method: Practical Issues
There are many practical variants of Newton’s method:

Modify the Hessian to be positive-definite.

Only compute the Hessian every m iterations.

Only use the diagonals of the Hessian.

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (BFGS, L-BFGS).

Hessian-free: Compute d inexactly using Hessian-vector
products:

∇2f (x)d = lim
δ→0

∇f (x + δd)−∇f (x)

δ

Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:

α =
(x+ − x)T (∇f (x+)−∇f (x))

‖∇f (x+)− f (x)‖2

Another related method is nonlinear conjugate gradient.
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Motivation: Sparse Regularization

Consider `1-regularized optimization problems,

min
x

f (x) + λ‖x‖1,

where f is differentiable.

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

How can we solve non-smooth convex optimization problems?
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y .

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dT (y − x),∀y .
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y .

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

f is differentiable at x iff ∇f (x) is the only subgradient.

At non-differentiable x , we have a set of subgradients.

Set of subgradients is the sub-differential ∂f (x).

Note that 0 ∈ ∂f (x) iff x is a global minimum.
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Sub-Differential of Absolute Value and Max Functions

The sub-differential of the absolute value function:

∂|x | =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)
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Sub-Differential of Absolute Value and Max Functions

The sub-differential of the absolute value function:

∂|x | =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)

The sub-differential of the maximum of differentiable fi :

∂max{f1(x), f2(x)} =





∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

(any convex combination of the gradients of the argmax)
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Sub-gradient method
The sub-gradient method:

x+ = x − αd ,
for some d ∈ ∂f (x).

The steepest descent step is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)

Otherwise, may increase the objective even for small α.
But ‖x+ − x∗‖ ≤ ‖x − x∗‖ for small enough α.
For convergence, we require α→ 0.
Many variants average the iterations:

x̄k =
k−1∑

i=0

wix
i .

Many variants average the gradients (‘dual averaging’):

d̄k =
k−1∑

i=0

wid
i .
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Convex Optimization Zoo

Algorithm Assumptions Rate

Subgradient Convex O(1/
√
t)

Gradient Convex O(1/t)

Subgradient Strongly-Convex O(1/t)
Gradient Strongly-Convex O((1− µ/L)t)

Alternative is cutting-plane/bundle methods:

Minimze an approximation based on all subgradients {dt}.
But have the same rates as the subgradient method.

(tend to be better in practice)

Bad news: Rates are optimal for black-box methods.

But, we often have more than a black-box.
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√
x2 + ν.

Smooth approximation to the max function:

max{a, b} ≈ log(exp(a) + exp(b))

Smooth approximation to the hinge loss:

max{0, x} ≈





0 x ≥ 1

1− x2 t < x < 1

(1− t)2 + 2(1− t)(t − x) x ≤ t

Generic smoothing strategy: strongly-convex regularization of
convex conjugate.[Nesterov, 2005]
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Convex Optimization Zoo

Algorithm Assumptions Rate

Subgradient Convex O(1/
√
t)

Gradient Convex O(1/t)
Nesterov Convex O(1/t2)

Gradient Smoothed to 1/ε, Convex O(1/
√
t)

Nesterov Smoothed to 1/ε, Convex O(1/t)

Smoothing is only faster if you use Nesterov’s method.

In practice, faster to slowly decrease smoothing level.

You can get the O(1/t) rate for minx max{fi (x)} for fi convex
and smooth using mirror-prox method.[Nemirovski, 2004]
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Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

f (x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

f (x+ − x−) + λ
∑

i

(x+
i + x−i ),

or the problems

min
−y≤x≤y

f (x) + λ
∑

i

yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).
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yi , min
‖x‖1≤γ

f (x) + λγ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).
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Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x+ = argmin
y

{
f (x) +∇f (x)T (y − x) +

1

2α
‖y − x‖2

}
.

Consider minimizing subject to simple constraints:

x+ = argmin
y∈C

{
f (x) +∇f (x)T (y − x) +

1

2α
‖y − x‖2

}
.

Equivalent to projection of gradient descent:

xGD = x − α∇f (x),

x+ = argmin
y∈C

{
‖y − xGD‖

}
,
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Gradient Projection
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Projection Onto Simple Sets

Projections onto simple sets:

argminy≥0 ‖y − x‖ = max{x , 0}

argminl≤y≤u ‖y − x‖ = max{l ,min{x , u}}
argminaT y=b ‖y − x‖ = x + (b − aT x)a/‖a‖2.

argminaT y≥b ‖y − x‖ =

{
x aT x ≥ b

x + (b − aT x)a/‖a‖2 aT x < b

argmin‖y‖≤τ ‖y − x‖ = τx/‖x‖.
Linear-time algorithm for `1-norm ‖y‖1 ≤ τ .

Linear-time algorithm for probability simplex y ≥ 0,
∑

y = 1.

Intersection of simple sets: Dykstra’s algorithm.
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Convex Optimization Zoo

Algorithm Assumptions Rate

P(Subgradient) Convex O(1/
√
t)

P(Subgradient) Strongly O(1/t)
P(Nesterov) Smoothed to 1/ε, Convex O(1/t)
P(Gradient) Convex O(1/t)
P(Nesterov) Convex O(1/t2)
P(Gradient) Strongly O((1− µ/L)t)

P(Nesterov) Strongly O((1−
√
µ/L)t)

P(Newton) Strongly O(
∏t

i=1 ρt), ρt → 0

Convergence rates are the same for projected versions!

Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Barzilai-Borwein, quasi-Newton).
For Newton, you need to project under ‖ · ‖∇2f (x)

(expensive, but special tricks for the case of simplex or lower/upper bounds)

You don’t need to compute the projection exactly.
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Proximal-Gradient Method

A generalization of projected-gradient is Proximal-gradient.

The proximal-gradient method addresses problem of the form

min
x

f (x) + r(x),

where f is smooth but r is a general convex function.

Applies proximity operator of r to gradient descent on f :

xGD = x − α∇f (x),

x+ = argmin
y

{
1

2
‖y − xGD‖2 + αr(y)

}
,

Equivalent to using the approximation

x+ = argmin
y

{
f (x) +∇f (x)T (y − x) +

1

2α
‖y − x‖2+r(y)

}
.

Convergence rates are still the same as for minimizing f .
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Proximal Operator, Iterative Soft Thresholding

The proximal operator is the solution to

proxr [y ] = argmin
x∈RP

r(x) +
1

2
‖x − y‖2.

For L1-regularization, we obtain iterative soft-thresholding:

x+ = softThreshαλ[x − α∇f (x)].

Example with λ = 1:
Input Threshold Soft-Threshold




0.6715
−1.2075
0.7172
1.6302
0.4889







0
−1.2075

0
1.6302

0







0
−0.2075

0
0.6302

0



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Special case of Projected-Gradient Methods

Projected-gradient methods are another special case:

r(x) =

{
0 if x ∈ C
∞ if x /∈ C

,

gives
x+ = projectC[x − α∇f (x)],

f(x)

x
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Exact Proximal-Gradient Methods

For what problems can we apply these methods?

We can efficiently compute the proximity operator for:
1 L1-Regularization.
2 Group `1-Regularization.
3 Lower and upper bounds.
4 Small number of linear constraint.
5 Probability constraints.
6 A few other simple regularizers/constraints.

Can solve these non-smooth/constrained problems as fast as
smooth/unconstrained problems!

But for many problems we can not efficiently compute this
operator.
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Inexact Proximal-Gradient Methods

We can efficiently approximate the proximity operator for:

1 Structured sparsity.
2 Penalties on the differences between variables.
3 Regularizers and constraints on the singular values of matrices.
4 Sums of simple functions.

Many recent works use inexact proximal-gradient methods:
Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011],

Ma et al. [2011]

Do inexact methods have the same rates?

Yes, if the errors are appropriately controlled. [Schmidt et al.,

2011]



Convex Functions Smooth Optimization Non-Smooth Optimization Randomized Algorithms Parallel/Distributed Optimization

Inexact Proximal-Gradient Methods

We can efficiently approximate the proximity operator for:
1 Structured sparsity.

2 Penalties on the differences between variables.
3 Regularizers and constraints on the singular values of matrices.
4 Sums of simple functions.

Many recent works use inexact proximal-gradient methods:
Cai et al. [2010], Liu & Ye [2010], Barbero & Sra [2011], Fadili & Peyré [2011],
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Convergence Rate of Inexact Proximal-Gradient

Proposition [Schmidt et al., 2011] If the sequences of gradient
errors {||et ||} and proximal errors {√εt} are in {O((1− µ/L)t)},
then the inexact proximal-gradient method has an error of
O((1− µ/L)t).

Classic result as a special case (constants are good).

The rates degrades gracefully if the errors are larger.

Similar analyses in convex case.

Huge improvement in practice over black-box methods.

Also exist accelerated and spectral proximal-gradient methods.
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Discussion of Proximal-Gradient

Theoretical justification for what works in practice.

Significantly extends class of tractable problems.

Many applications with inexact proximal operators:

Genomic expression, model predictive control, neuroimaging,
satellite image fusion, simulating flow fields.

But, it assumes computing ∇f (x) and proxh[x ] have similar
cost.

Often ∇f (x) is much more expensive:

We may have a large dataset.
Data-fitting term might be complex.

Particularly true for structured output prediction:

Text, biological sequences, speech, images, matchings, graphs.
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Costly Data-Fitting Term, Simple Regularizer

Consider fitting a conditional random field with
`1-regularization:

min
x∈RP

1

N

N∑

i=1

fi (x) + r(x)

costly smooth + simple

Different than classic optimization (like linear programming).
(cheap smooth plus complex non-smooth)

Inspiration from the smooth case:

For smooth high-dimensional problems, L-BFGS quasi-Newton
algorithm outperforms accelerated/spectral gradient methods.
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Quasi-Newton Methods

Gradient method for optimizing a smooth f :

x+ = x − α∇f (x).

Newton-like methods alternatively use:

x+ = x − αH−1∇f (x).

H approximates the second-derivative matrix.

L-BFGS is a particular strategy to choose the H values:

Based on gradient differences.
Linear storage and linear time.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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Naive Proximal Quasi-Newton Method

Proximal-gradient method:

x+ = proxαr [x − α∇f (x)].

Can we just plug in the Newton-like step?

x+ = proxαr [x − αH−1∇f (x)].

NO!

f(x)
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Two-Metric (Sub)Gradient Projection

In some cases, we can modify H to make this work:

Bound constraints.
Probability constraints.
L1-regularization.

Two-metric (sub)gradient projection.
[Gafni & Bertskeas, 1984, Schmidt, 2010].

Key idea: make H diagonal with respect to coordinates near
non-differentiability.
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Comparing to accelerated/spectral/diagonal gradient
Comparing to methods that do not use L-BFGS (sido data):
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Inexact Proximal-Newton

The broken proximal-Newton method:

x+ = proxαr [x − αH−1∇f (x)],

with the Euclidean proximal operator:

proxr [y ] = argmin
x∈RP

r(x) +
1

2
‖x − y‖2,

where ‖x‖2
H = xTHx .

Non-smooth Newton-like method

Same convergence properties as smooth case.

But, the prox is expensive even with a simple regularizer.

Solution: use a cheap approximate solution.
(e.g., spectral proximal-gradient)
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Projected Quasi-Newton (PQN) Algorithm

A proximal quasi-Newton (PQN) algorithm:
[Schmidt et al., 2009, Schmidt, 2010]

Outer: evaluate f (x) and ∇f (x), use L-BFGS to update H.
Inner: spectral proximal-gradient to approximate proximal
operator:

Requires multiplication by H (linear-time for L-BFGS).
Requires proximal operator of r (cheap for simple constraints).

For small α, one iteration is sufficient to give descent.

Cheap inner iterations lead to fewer expensive outer iterations.

“Optimizing costly functions with simple constraints”.

“Optimizing costly functions with simple regularizers”.
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Graphical Model Structure Learning with Groups

Comparing PQN to first-order methods on a graphical model
structure learning problem. [Gasch et al., 2000, Duchi et al., 2008].
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Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

min
Ax+By=c

f (x) + r(y).

Alternate between prox-like operators with respect to f and r .

Can introduce constraints to convert to this form:

min
x

f (Ax) + r(x) ⇔ min
x=Ay

f (x) + r(y),

min
x

f (x) + r(Bx) ⇔ min
y=Bx

f (x) + r(y).

If prox can not be computed exactly: Linearized ADMM.
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Dual Methods

Stronly-convex problems have smooth duals.

Solve the dual instead of the primal.

SVM non-smooth strongly-convex primal:

min
x

C
N∑

i=1

max{0, 1− bia
T
i x}+

1

2
‖x‖2.

SVM smooth dual:

min
0≤α≤C

1

2
αTAATα−

N∑

i=1

αi

Smooth bound constrained problem:

Two-metric projection (efficient Newton-liked method).
Randomized coordinate descent (next section).
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Discussion

State of the art methods consider several other issues:

Shrinking: Identify variables likely to stay zero.
[El Ghaoui et al., 2010].
Continuation: Start with a large λ and slowly decrease it.
[Xiao and Zhang, 2012]

Frank-Wolfe: Using linear approximations to obtain
efficient/sparse updates.
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Frank-Wolfe Method

In some cases the projected gradient step

x+ = argmin
y∈C

{
f (x) +∇f (x)T (y − x) +

1

2α
‖y − x‖2

}
,

may be hard to compute (e.g., dual of max-margin Markov
networks).

Frank-Wolfe method simply uses:

x+ = argmin
y∈C

{
f (x) +∇f (x)T (y − x)

}
,

requires compact C, takes convex combination of x and x+.

Iterate can be written as convex combination of vertices of C.

O(1/t) rate for smooth convex objectives, some linear
convergence results for smooth and strongly-convex.[Jaggi, 2013]
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Big-N Problems

We want to minimize the sum of a finite set of smooth
functions:

min
x∈RP

f (x) :=
1

N

N∑

i=1

fi (x).

We are interested in cases where N is very large.

Simple example is least-squares,

fi (x) := (aTi x − bi )
2.

Other examples:

logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods
We consider minimizing f (x) = 1

N

∑N
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt∇f (xt) = xt −
αt

N

N∑

i=1

∇fi (xt).
Iteration cost is linear in N.
Quasi-Newton methods still require O(N).
Convergence with constant αt or line-search.

Stochastic gradient method [Robbins & Monro, 1951]:
Random selection of i(t) from {1, 2, . . . ,N}.

xt+1 = xt − αt f
′
i(t)(xt).

Gives unbiased estimate of true gradient,

E[f ′(it)(x)] =
1

N

N∑

i=1

∇fi (x) = ∇f (x).

Iteration cost is independent of N.
As in subgradient method, we require αt → 0.
Classical choice is αt = O(1/t).
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
N

∑n
i=1 fi (x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n
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f ′
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• Stochastic gradient descent: θt = θt−1 − γtf
′
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Convex Optimization Zoo

Stochastic iterations are N times faster, but how many iterations?

Algorithm Assumptions Exact Stochastic

Subgradient Convex O(1/
√
t) O(1/

√
t)

Subgradient Strongly O(1/t) O(1/t)

Good news for non-smooth problems:

stochastic is as fast as deterministic

We can solve non-smooth problems N times faster!

Bad news for smooth problems:

smoothness does not help stochastic methods.

Algorithm Assumptions Exact Stochastic

Gradient Convex O(1/t) O(1/
√
t)

Gradient Strongly O((1− µ/L)t) O(1/t)
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Deterministic vs. Stochastic Convergence Rates

Plot of convergence rates in smooth/strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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Speeding up Stochastic Gradient Methods

We can try accelerated/Newton-like stochastic methods:

These do not improve on the convergence rates.
But may improve performance at start if noise is small.

Ideas that do improve convergence: averaging and large steps:

αt = O(1/tα) for α ∈ (0.5, 1) more robust than O(1/t).
[Bach & Moulines, 2011]

Gradient averaging improves constants (‘dual averaging’).
[Nesterov, 2007]

Averaging later iterations gives rates without smoothness.
[Rakhlin et al., 2011]

Averaging in smooth case achieves same asymptotic rate as
optimal stochastic Newton method.[Polyak & Juditsky, 1992]]

Constant step-size α achieves rate of O(ρt) + O(α).
[Nedic & Bertsekas, 2000]

Averaging and constant step-size achieves O(1/t) rate for
stochastic Newton-like methods without strong convexity.
[Bach & Moulines, 2013]
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Averaging later iterations gives rates without smoothness.
[Rakhlin et al., 2011]

Averaging in smooth case achieves same asymptotic rate as
optimal stochastic Newton method.[Polyak & Juditsky, 1992]]

Constant step-size α achieves rate of O(ρt) + O(α).
[Nedic & Bertsekas, 2000]

Averaging and constant step-size achieves O(1/t) rate for
stochastic Newton-like methods without strong convexity.
[Bach & Moulines, 2013]
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Motivation for Hybrid Methods for Smooth Problems

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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Stochastic Average Gradient

Should we use stochastic methods for smooth problems?

Can we have a rate of O(ρt) with only 1 gradient
evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select i(t) from {1, 2, . . . , n} and compute f ′i(t)(x
t).

x t+1 = x t − αt

N

N∑
i=1

∇fi (x t)

Memory: y t
i = ∇fi (x t) from the last t where i was selected.

[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||x t+1 − x t || → 0.
Memory requirements reduced to O(N) for many problems.
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Convex Optimization Zoo

Algorithm Rate Grads

Stochastic Gradient O(1/t) 1
Gradient O((1− µ/L)t) N

SAG O((1−min{ µ
16Li

, 1
8N })t) 1

Li is the Lipschitz constant over all ∇fi (Li ≥ L).

SAG has a similar speed to the gradient method, but only
looks at one training example per iteration.

Recent work extends this result in various ways:

Similar rates for stochastic dual coordinate ascent.
[Shalev-Schwartz & Zhang, 2013]

Memory-free variants. [Johnson & Zhang, 2013, Madavi et al., 2013]

Proximal-gradient variants. [Mairal, 2013]

ADMM variants. [Wong et al., 2013]

Improved constants. [Defazio et al., 2014]

Non-uniform sampling. [Schmidt et al., 2013]
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Comparing FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
p = 47236)
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SAG Compared to FG and SG Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641,
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Coordinate Descent Methods

Consider problems of the form

min
x

f (Ax) +
n∑

i=1

hi (xi ), min
x

∑

i∈V
fi (xi ) +

∑

(i ,j)∈E

fij(xi , xj),

where f and fij are smooth and G = {V, E} is a graph.

Appealing strategy for these problems is coordinate descent:

xj
+ = xj − α∇j f (x).

(i.e., update one variable at a time)

We can typically perform a cheap and precise line-search for α.
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Convergence Rate of Coordinate Descent
The steepest descent choice is j = argmaxj{|∇j f (x)|}.

(but only efficient to calculate in some special cases)

Convergence rate (strongly-convex, gradient is L-Lipschitz):

O((1− µ/LD)t)

This L is typically much smaller than L across all coordinates:
Coordinate descent if we can do D coordinate descent steps
for cost of one gradient step.

Choosing a random coordinate j has same rate as steepest
coordinate descent.[Nesterov, 2010]

Various extensions:
Non-uniform sampling (Lipschitz sampling) [Nesterov, 2010]

Projected coordinate descent (product constraints)
[Nesterov, 2010]

Proximal coordinate descent (separable non-smooth term)
Richtarik & Takac, 2011]

Frank-Wolfe coordinate descent (product constraints)
[LaCoste-Julien et al., 2013]

Accelerated version [Fercoq & Richtarik, 2013]

(exact step size for `1-regularized least squares)
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Accelerated version [Fercoq & Richtarik, 2013]

(exact step size for `1-regularized least squares)
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Randomized Linear Algebra

Consider problems of the form

min
x

f (Ax),

where bottleneck is matrix multiplication and A is low-rank.

Randomized linear algebra approaches uses

A ≈ Q(QTA),

or choses random row/columns subsets.

Now work with f (Q(QTA)).

Q formed from Gram-Schmidt and matrix multiplication with
random vectors gives very good approximation bounds, if
singular values decay quickly.[Halko et al., 2011, Mahoney, 2011]

May work quite badly if singular values decay slowly.
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Motivation for Parallel and Distributed

Two recent trends:

We aren’t making large gains in serial computation speed.
Datasets no longer fit on a single machine.

Result: we must use parallel and distributed computation.

Two major issues:

Synchronization: we can’t wait for the slowest machine.
Communication: we can’t transfer all information.
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Embarassing Parallelism in Machine Learning

A lot of machine learning problems are embarrassingly parallel:

Split task across M machines, solve independently, combine.

E.g., computing the gradient in deterministic gradient method,

1

N

N∑

i=1

∇fi (x) =
1

N




N/M∑

i=1

∇fi (x) +

2N/M∑

i=(N/M)+1

∇fi (x) + . . .


 .

These allow optimal linear speedups.

You should always consider this first!
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Asynchronous Computation

Do we have to wait for the last computer to finish?

No!

Updating asynchronously saves a lot of time.

E.g., stochastic gradient method on shared memory:

xk+1 = xk − α∇fik (xk−m).

You need to decrease step-size in proportion to asynchrony.

Convergence rate decays elegantly with delay m.[Niu et al., 2011]
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Reduced Communication: Parallel Coordinate Descnet

It may be expensive to communicate parameters x .

One solution: use parallel coordinate descent:

xj1 = xj1 − αj1∇j1f (x)

xj2 = xj2 − αj2∇j2f (x)

xj3 = xj3 − αj3∇j3f (x)

Only needs to communicate single coordinates.

Again need to decrease step-size for convergence.

Speedup is based on density of graph.[Richtarik & Takac, 2013]
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Reduced Communication: Decentralized Gradient

We may need to distribute the data across machines.

We may not want to update a ‘centralized’ vector x .

One solution: decentralized gradient method:
Each processor has its own data samples f1, f2, . . . fm.
Each processor has its own parameter vector xc .
Each processor only communicates with a limited number of
neighbours nei(c).

xc =
1

|nei(c)|
∑

c ′∈nei(c)

xc −
αc

M

M∑

i=1

∇fi (xc).

Gradient descent is special case where all neighbours
communicate.

With modified update, rate decays gracefully as graph
becomes sparse.[Shi et al., 2014]

Can also consider communication failures.[Agarwal & Duchi, 2011]
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Summary

Summary:

Part 1: Convex functions have special properties that allow us
to efficiently minimize them.

Part 2: Gradient-based methods allow elegant scaling with
problems sizes for smooth problems.

Part 3: Tricks like proximal-gradient methods allow the same
scaling for many non-smooth problems.

Part 4: Randomized algorithms allow even further scaling for
problem structures that commonly arise in machine learning.

Part 5: The future will require parallel and distributed that are
asynchronous and are careful about communication costs.

Thank you for coming and staying until the end!
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