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Context: Machine Learning for “Big Data”

@ Large-scale machine learning: large N, large P

@ N: number of observations (inputs)
@ P: dimension of each observation

@ Examples: vision, bioinformatics, speech, language, etc.

e Pascal large-scale datasets: N =5 - 105, P = 10°
o ImageNet: N = 10’
e Industrial datasets: N > 108, P > 10’
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Context: Machine Learning for “Big Data”

@ Large-scale machine learning: large N, large P

@ N: number of observations (inputs)
@ P: dimension of each observation

@ Examples: vision, bioinformatics, speech, language, etc.

e Pascal large-scale datasets: N =5 - 105, P = 10°
o ImageNet: N = 10’
e Industrial datasets: N > 108, P > 10’

@ Main computational challenge:

e Design algorithms for very large N and P.

Mark Schmidt Linearly-Convergent Stochastic-Gradient Methods



Example: Supervised Machine Learning

@ Data: nobservations (a;, b;),i=1,...,N.
@ Prediction as linear function x7 a; of features a; € R”.

@ Regularized empirical risk minimization: find x* solution of

XERP

N
1 ;
min ;:1 Lbi,x'a) +  Ar(x)

data fitting term  + regularizer
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Example: Supervised Machine Learning

@ Data: nobservations (a;, b;),i=1,...,N.
@ Prediction as linear function x7 a; of features a; € R”.

@ Regularized empirical risk minimization: find x* solution of

)[Q]erlNZK (bi,x"a) + Ar(x)
data fitting term  + regularizer

@ Applications to any data-oriented field:
@ Vision, bioinformatics, speech, natural language, web.
@ Main practical challenges:

e Designing/learning good features a;.
o Efficiently solving the problem when N or P are very large.
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Big-N Problems

@ We want to minimize the sum of a finite set of smooth functions:

: f
min g(x NZ
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Big-N Problems

@ We want to minimize the sum of a finite set of smooth functions:

: f
min g(x NZ

@ We are interested in cases where N is very large.

@ We will focus on strongly-convex functions g.
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Big-N Problems

@ We want to minimize the sum of a finite set of smooth functions:

: f
min g(x NZ

@ We are interested in cases where N is very large.
@ We will focus on strongly-convex functions g.

@ Simplest example is ¢>-regularized least-squares,
T 2 A 2
fi(x) = (& x — b)® + S x|

@ Other examples include any /¢>-regularized convex loss:
o logistic regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing g(x) = 1 >N, £(x).
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Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing g(x) = 1 >N, £(x).

@ Deterministic gradient method [Cauchy, 1847]:

N
(67 ’
Xir1 = Xt — g’ (X :x——E f/(xp).
t+1 t tg'(Xt) t— : 7 (xt)
i=1
e Linear convergence rate: O(p').
o lteration cost is linear in N.
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Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing g(x) = 1 >N, £(x).

@ Deterministic gradient method [Cauchy, 1847]:

N
(67 ’
Xir1 = Xt — g’ (X :x——E f/(xp).
t+1 t tg'(Xt) t— : 7 (xt)
i=1
e Linear convergence rate: O(p').
o lteration cost is linear in N.

@ Stochastic gradient method [Robbins & Monro, 1951]:
e Random selection of i(t) from {1,2,..., N},

Xty = Xt — oufin(Xt).

o lteration cost is independent of N.
e Sublinear convergence rate: O(1/1).
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Stochastic vs. Deterministic Gradient Methods

@ We consider minimizing g(x) = %Z,’L fi(x).

@ Deterministic gradient method [Cauchy, 1847]:

@ Stochastic gradient method [Robbins & Monro, 1951]:
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Motivation for New Methods

@ FG method has O(N) cost with linear rate.

@ SG method has O(1) cost with sublinear rate.

\

L

stochastic

deterministic

log(excess cost)

Y

time
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Motivation for New Methods

@ FG method has O(N) cost with linear rate.

@ SG method has O(1) cost with sublinear rate.
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@ Goal is linear rate with reduced cost.
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

@ Momentum, gradient averaging, iterate averaging,

stochastic version of FG methods:
[Polyak & Juditsky, 1992, Tseng ,1998, Schraudolph, 1999, Nesterov, 2009, Sunehag, 2009,
Ghadimi & Lan, 2010, Martens, 2010, Xiao, 2010, Hazan & Kale, 2011, Rakhlin et al. 2012]

o None of these methods improve on the O(1/t) rate.
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

@ Momentum, gradient averaging, iterate averaging,

stochastic version of FG methods:
[Polyak & Juditsky, 1992, Tseng ,1998, Schraudolph, 1999, Nesterov, 2009, Sunehag, 2009,
Ghadimi & Lan, 2010, Martens, 2010, Xiao, 2010, Hazan & Kale, 2011, Rakhlin et al. 2012]

o None of these methods improve on the O(1/t) rate.

@ Constant step-size SG, accelerated SG:
[Kesten, 1958, Delyon & Juditsky, 1993, Solodov, 1998, Nedic & Bertsekas, 2000]

e Linear rate, but only up to a fixed tolerance.
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

@ Momentum, gradient averaging, iterate averaging,

stochastic version of FG methods:
[Polyak & Juditsky, 1992, Tseng ,1998, Schraudolph, 1999, Nesterov, 2009, Sunehag, 2009,
Ghadimi & Lan, 2010, Martens, 2010, Xiao, 2010, Hazan & Kale, 2011, Rakhlin et al. 2012]

o None of these methods improve on the O(1/t) rate.
@ Constant step-size SG, accelerated SG:
[Kesten, 1958, Delyon & Juditsky, 1993, Solodov, 1998, Nedic & Bertsekas, 2000]
e Linear rate, but only up to a fixed tolerance.
@ Hybrid Methods, Incremental Average Gradient:
[Bertsekas, 1997, Blatt et al., 2007]

e Linear rate, but iterations make full passes through the data.
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Overview of Contributions

Is a linear rate possible, without requiring full passes?
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Overview of Contributions

Is a linear rate possible, without requiring full passes?

@ Control the sample size to interpolate between FG and SG.

e Linear convergence rate.
e lteration cost grows from O(1) to O(N).
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Overview of Contributions

Is a linear rate possible, without requiring full passes?

@ Control the sample size to interpolate between FG and SG.

e Linear convergence rate.
e lteration cost grows from O(1) to O(N).

@ SAG algorithm: sequence of estimates converging to g’(x!) as
|x! — x!=1| — 0.

e Linear convergence rate.
e lteration costis O(1).
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SG methods with a larger subsample

@ Approach 1: control the sample size.
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SG methods with a larger subsample

@ Approach 1: control the sample size.

@ The FG method uses the exact gradient,

@ The SG method approximates it with 1 sample,

N
1
fiiey(x') ~ N Z fi(x").
i—1
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SG methods with a larger subsample

@ Approach 1: control the sample size.

@ The FG method uses the exact gradient,

@ The SG method approximates it with 1 sample,
1N
fi(X) ~ & ;j fi(x").

@ A common variant is to use larger sample 3¢,

N
1 1
157 Z fi(x") = N Z fi(x").
i=1

ient
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SG methods with a larger subsample

@ The SG method with a sample B! uses iterations

t
[0
Xt+1 — xt — @ Z f,‘(Xt).

ieBt

@ For a fixed sample size |B!|, the rate is sublinear.
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SG methods with a larger subsample

@ The SG method with a sample B! uses iterations

t
I Y (ot
X = x = Z fi(xh).
ieBt
@ For a fixed sample size |B!|, the rate is sublinear.

o Gradient error decreases as sample size |3!| increases.
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SG methods with a larger subsample

@ The SG method with a sample B! uses iterations
t1 _ it of £(xt
X = x = Z (xh).
ient
@ For a fixed sample size |B!|, the rate is sublinear.

o Gradient error decreases as sample size |3!| increases.

@ Common to gradually increase the sample size |B!|.

[Bertsekas & Tsitsiklis, 1996]
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SG methods with a larger subsample

@ The SG method with a sample B! uses iterations
t1 _ it of £(xt
X = x = Z (xh).
ient
@ For a fixed sample size |B!|, the rate is sublinear.

o Gradient error decreases as sample size |3!| increases.

@ Common to gradually increase the sample size |B!|.
[Bertsekas & Tsitsiklis, 1996]

@ We can choose |B!| to achieve a linear convergence rate.
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SG methods with a larger subsample

@ The SG method with a sample B! uses iterations
t1 _ it of £(xt
X = x = Z (xh).
ient
@ For a fixed sample size |B!|, the rate is sublinear.

o Gradient error decreases as sample size |3!| increases.

@ Common to gradually increase the sample size |B!|.
[Bertsekas & Tsitsiklis, 1996]

@ We can choose |B!| to achieve a linear convergence rate.

@ Early iterations are cheap like SG iterations.
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Convergence of gradient method with bounded error

@ We first analyze the basic gradient method with error e,

XH—1 — Xt _ Ott(g/(Xt) + et)-
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Convergence of gradient method with bounded error

@ We first analyze the basic gradient method with error e,
Xt+1 — Xt _ Ozt(g/(Xt) + et)-

@ We assume:

e ¢ is L-Lipschitz continuous.
@ g is p-strongly convex.
e The step size o' is setto 1/L.
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Convergence of gradient method with bounded error

@ We first analyze the basic gradient method with error e,
Xt+1 — Xt _ Ozt(g/(Xt) + et)-

@ We assume:

e ¢ is L-Lipschitz continuous.
@ g is p-strongly convex.
e The step size o' is setto 1/L.

@ For twice-differentiable g, equivalent to (with 1 > 0)

ul 2 g"(x) < LI
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Convergence of gradient method with bounded error

@ We first analyze the basic gradient method with error e,
Xt+1 — Xt _ Ozt(g/(Xt) + et)-

@ We assume:

e ¢ is L-Lipschitz continuous.
@ g is p-strongly convex.
e The step size o' is setto 1/L.

@ For twice-differentiable g, equivalent to (with 1 > 0)
ul 2 g"(x) < LI

@ We analyze how || e!|| affects the convergence rate.
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Convergence of gradient method with bounded error

Proposition 1. If the sequence {E[| €||?]} is in O(y!), then

Elg(x") = g(x*)] < (1 = /L)' [g(x°) = g(x*)] + O(p"),

where p = max{v,1 — u/L + €} forany e > 0.
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Convergence of gradient method with bounded error

Proposition 1. If the sequence {E[| €||?]} is in O(y!), then

Elg(x") = g(x*)] < (1 = /L)' [g(x°) = g(x*)] + O(p"),

where p = max{v,1 — u/L + €} forany e > 0.

@ If v <1 — /L, rate is the same as error-free case.
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Convergence of gradient method with bounded error

Proposition 1. If the sequence {E[| €||?]} is in O(y!), then

Elg(x") = g(x*)] < (1 = /L)' [g(x°) = g(x*)] + O(p"),

where p = max{v,1 — u/L + €} forany e > 0.

@ If v <1 — /L, rate is the same as error-free case.

o Ify>1—p/L, therate is v.
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Convergence of gradient method with bounded error

Proposition 1. If the sequence {E[| €||?]} is in O(y!), then

Elg(x") = g(x*)] < (1 = /L)' [g(x°) = g(x*)] + O(p"),

where p = max{v,1 — u/L + €} forany e > 0.

@ If v <1 — /L, rate is the same as error-free case.
o Ify>1—p/L, therate is v.

@ We also obtain a bound on the iterates because

* L *
Sl = x'? < g(x') - g(x") < ZlIx' — x|1%.
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Convergence of methods with increasing sample sizes

@ How can we set the sample size |B!| to control ||e||?
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Convergence of methods with increasing sample sizes

@ How can we set the sample size |B!| to control ||e||?
@ To have E[||€!||?] = O(v!), we need

e for sampling uniformly with replacement:

1

57 = 90,
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Convergence of methods with increasing sample sizes

@ How can we set the sample size |B!| to control ||e||?
@ To have E[||€!||?] = O(v!), we need

e for sampling uniformly with replacement:

1

57 = 90,

e for any sampling without replacement strategy:

M) o

Mark Schmidt Linearly-Convergent Stochastic-Gradient Methods



Convergence of methods with increasing sample sizes

@ How can we set the sample size |B!| to control ||e!||?
@ To have E[||€!||?] = O(v!), we need
e for sampling uniformly with replacement:

1 t
@—O(’Y)-

e for any sampling without replacement strategy:

N—|B11% .
%] = o
e for sampling uniformly without replacement:
N— B 1 _ ¢
N : @ = O(’Y )
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Sample Size needed for Linear Rate

10 | | | S _I —
- -
E .
~ ’
2 ’
g 4
w 05 -
Q
o
% replacement
wn = no replacement
=+ deterministic
0.0 T T T T
0 20 40 60 80 100

Iteration (k)
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Advanced Algorithms and Practical Implementation

@ We also give sequence E[| €!||?] to achieve strong linear rate:

Elg(x") — g(x*)] < (1 = p)'[g(x°) — g(x*)],

forany p > 1 — u/L.
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Advanced Algorithms and Practical Implementation

@ We also give sequence E[| €!||?] to achieve strong linear rate:

Elg(x") — g(x*)] < (1 = p)'[g(x°) — g(x*)],

forany p > 1 — u/L.
@ We can analyze more advance algorithms:

e Nesterov’s accelerated gradient method (faster rate).
o Newton-like second-order methods (faster rate)
e Proximal methods (constrained/non-smooth).
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Advanced Algorithms and Practical Implementation

@ We also give sequence E[| €!||?] to achieve strong linear rate:

Elg(x") — g(x*)] < (1 = p)'[g(x°) — g(x*)],

forany p > 1 — u/L.

@ We can analyze more advance algorithms:
e Nesterov’s accelerated gradient method (faster rate).
o Newton-like second-order methods (faster rate)
e Proximal methods (constrained/non-smooth).

@ We made a practical implementation:
@ L-BFGS Hessian approximation.
e Armijo line-search on the batch.
e Eventually reduces to standard quasi-Newton method.
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Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:

Stochastic1(1e-01)|
Stochastic1(1e-02)
Stochastic1(1e-03)

10" st Hy/bridl r
==Q== Deterministic

Objective minus Optimal

=
0 20 40 60 80 100
Passes through data

Hybrid uses |B*'| = [min{1.1 - |B!| + 1, N}].
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Stochastic Average Gradient

@ Growing |B!| eventually requires O(N) iteration cost.
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Stochastic Average Gradient

@ Growing |B!| eventually requires O(N) iteration cost.

@ Is it possible to have a linearly convergent algorithm with
iteration cost independent of N?
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Stochastic Average Gradient

@ Growing |B!| eventually requires O(N) iteration cost.

@ Is it possible to have a linearly convergent algorithm with
iteration cost independent of N?
e YES!
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Stochastic Average Gradient

@ Growing |B!| eventually requires O(N) iteration cost.

@ Is it possible to have a linearly convergent algorithm with
iteration cost independent of N?
e YES! The stochastic average gradient (SAG) algorithm:

@ Randomly select i(t) from {1,2,...,n} and compute fl.’(t)(x’).
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Stochastic Average Gradient

@ Growing |B!| eventually requires O(N) iteration cost.

@ Is it possible to have a linearly convergent algorithm with
iteration cost independent of N?
e YES! The stochastic average gradient (SAG) algorithm:

@ Randomly select i(t) from {1,2,...,n} and compute fl.’(t)(x’).

t N
tH1 ot @ 7t
Xt = x NEH:f,-(x)
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Stochastic Average Gradient

@ Growing |B!| eventually requires O(N) iteration cost.

@ Is it possible to have a linearly convergent algorithm with
iteration cost independent of N?
e YES! The stochastic average gradient (SAG) algorithm:

@ Randomly select i(t) from {1,2,...,n} and compute fl.’(t)(x’).

® Memory: yf = f/.’(xk) from the last k where / was selected.
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Stochastic Average Gradient

@ Growing |B!| eventually requires O(N) iteration cost.

@ Is it possible to have a linearly convergent algorithm with
iteration cost independent of N?
e YES! The stochastic average gradient (SAG) algorithm:

@ Randomly select i(t) from {1,2,...,n} and compute fl.’(t)(x’).

® Memory: yf = f/.’(xk) from the last k where / was selected.

e Stochastic variant of increment average gradient (I1AG).
[Blatt et al. 2007]
e Assumes that gradients of other examples don’t change.
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Convergence Rate of SAG

@ Assume each f/ is L—continuous, g is p-strongly convx.

Theorem. With o; = ﬂﬁ the SAG iterations satisfy

slge) - gt < (1-min {4 L) e

with

4L 2
C = 19(x") = g(x) + 5 I = x*|P + ==
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Convergence Rate of SAG

@ Assume each f/ is L—continuous, g is p-strongly convx.

Theorem. With o; = ﬂﬁ the SAG iterations satisfy

slge) - gt < (1-min {4 L) e

with

4L 2
C = 19(x") = g(x) + 5 I = x*|P + ==

@ Linear convergene with iteration cost independent of N.
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Convergence Rate of SAG

Theorem. With o; = -1+ the SAG iterations satisfy

with

Assume each f/ is L—continuous, g is u-strongly convx.

16L
slge) - gt < (1-min {4 L) e

4L o
_ 0y _ * W0 2
C = [9(x°) - g0x)] + I = X2 + T

Linear convergene with iteration cost independent of N.
“despite 60 years of extensive research on SG methods, with a
significant portion of the applications focusing on finite datasets,
we are not aware of any other SG method that achieves a linear
convergence rate while preserving the iteration cost of standard
SG methods.”
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Convergence Rate of SAG

@ Assume each f/ is L—continuous, g is p-strongly convx.
Theorem. With o = 7 the SAG iterations satisfy

slgte) - gt < (1-min {4 L) e

with

C=[0(x°) gl )] + H 0 -
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Convergence Rate of SAG

@ Assume each f/ is L—continuous, g is p-strongly convx.

Theorem. With o = 7 the SAG iterations satisfy

slgte) - gt < (1-min {4 L) e

with

4 o?
C=1[g(x°) — g(x*)] + - IX° = x*[I” + -

@ Further, this rate is “very fast”™:
e For well-conditioned problems, constant reduction per pass:

-2 Y cexp (1) = 08825
gN) =P\ 7g) TUeee

e For ill-conditioned problems, almost same as deterministic method.
(but N times faster)
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Rate of Convergence Comparison

@ Assume that L =100, x = .01, and n = 80000:
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Rate of Convergence Comparison

@ Assume that L =100, x = .01, and n = 80000:
e Gradient method has rate (ﬁ—ﬁ)z = 0.9996.
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Rate of Convergence Comparison

@ Assume that L =100, x = .01, and n = 80000:

2
o Gradient method has rate (ﬁ;—fj) = 0.9996.
o Accelerated gradient method has rate (1 — /%) = 0.9900.
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Rate of Convergence Comparison

@ Assume that L =100, x = .01, and n = 80000:

2
e Gradient method has rate (ﬁ—ﬁ) = 0.9996.

o Accelerated gradient method has rate (1 — \/%) = 0.9900.
o SAG (N iterations) has rate (1 — min { -, - 1)" = 0.8825.
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Rate of Convergence Comparison

@ Assume that L =100, x = .01, and n = 80000:

2
o Gradient method has rate (ﬁ;—fj) = 0.9996.
o Accelerated gradient method has rate (1 — \/%) = 0.9900.
@ SAG (N iterations) has rate (1 — min {4, 55 )N = 0.8825.

e Fastest possible first-order method: (‘\2+\/‘/;) = 0.9608.
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Rate of Convergence Comparison

@ Assume that L =100, x = .01, and n = 80000:

2
o Gradient method has rate (ﬁ;—fj) = 0.9996.
o Accelerated gradient method has rate (1 — \/%) = 0.9900.
@ SAG (N iterations) has rate (1 — min {4, 55 )N = 0.8825.

e Fastest possible first-order method: (‘\2+\/‘/;) = 0.9608.

@ SAG beats two lower bounds:

e Stochastic gradient bound.
e Full gradient bound (for appropriate L, u, and N).
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Rate of Convergence Comparison

@ Assume that L =100, x = .01, and n = 80000:

2
Gradient method has rate (ﬁ;—fj) = 0.9996.
Accelerated gradient method has rate (1 — \/%) = 0.9900.
SAG (N iterations) has rate (1 — min {4, 55 )N = 0.8825.

e Fastest possible first-order method: (‘\2+\/‘/;) = 0.9608.

(]

@ SAG beats two lower bounds:

e Stochastic gradient bound.
e Full gradient bound (for appropriate L, u, and N).

@ O(1/k) rate in convex case (vs. O(1/vk) for SG methods).
@ Algorithm is adaptive to . around optimum.

@ Can improve C by clever initialization of x° and y?.
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Experiments with SAG algorithm

@ rcv1 data set (n = 20242, p = 47236)

.lOD _= 1 1 | 1 1 1
== FG (1.0e-04) H
== AFG (1.0e-03)
—tt |-BFGS
IS Peg (1.06+00/kA)
S ., SG (1.0e-01)
£ 107 == ASG (1.0e+00) |-
=
Q
O
w
2 v
€ 107 -
o
=
S
O}
Q |
O 10° =
T T T T

T T
0 5 10 15 20 25 30 35
Effective Passes
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Experiments with SAG algorithm

@ rcv1 data set (n = 20242, p = 47236)

10° . ro .
=0=FG (1.0e-04 [
== AFG (1.0e-03)
= [ -BFGS
I ~ Peg (1.0e+00/k\) M
=} ‘o = == s (1.00-01) ¥
£ . ASG (1.0e+00)
B 1070 4 “\ =3 = SAG (10e+00) |1
2
g -~
= 5* 3
£ .
Cl>> -
= 4710 S
O 10 " N -
-q—>. e -~
Ko} .
[¢) e
~ -
~
A
SN
T T T T T T
0 5 10 15 20 25 30 35

Effective Passes
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Reducing memory requirements

@ SAG algorithm:
N
B N at it7
i=1
where y! is the last gradient computed on datapoint i.

@ Memory requirement: O(NP)
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Reducing memory requirements

@ SAG algorithm:
N

X =yt 2 !
i=1
where y! is the last gradient computed on datapoint i.
@ Memory requirement: O(NP)
@ Smaller for structured models, e.g., linear models:
o If fi(x) = £(a x), then f/(x) = /(g x)a;
e Memory requirement: O(N)
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Reducing memory requirements

@ SAG algorithm:
T xt = ’Z vl

where y! is the last gradient computed on datapoint i.
@ Memory requirement: O(NP)
@ Smaller for structured models, e.g., linear models:
o If fi(x) = £(a x), then f/(x) = /(g x)a;
e Memory requirement: O(N)

@ Smaller for unstructured models using batches.
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Conclusion and Open Problems

@ Fast theoretical convergence using the ‘sum’ structure.
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Conclusion and Open Problems

@ Fast theoretical convergence using the ‘sum’ structure.
@ Simple algorithm, empirically better than theory predicts.
@ Allows line-search and stopping criteria.

@ Open problems:

e Large-scale distributed implementation.

e Reduce the memory requirements.

e Constrained and non-smooth problems.

@ Non-uniform sampling and non-Euclidean metrics.
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Conclusion and Open Problems

@ Fast theoretical convergence using the ‘sum’ structure.
@ Simple algorithm, empirically better than theory predicts.
@ Allows line-search and stopping criteria.

@ Open problems:

e Large-scale distributed implementation.

e Reduce the memory requirements.

e Constrained and non-smooth problems.

@ Non-uniform sampling and non-Euclidean metrics.

@ Thanks for coming!
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