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Context: Machine Learning for “Big Data”

Large-scale machine learning: large N, large P

N: number of observations (inputs)
P: dimension of each observation

Examples: vision, bioinformatics, speech, language, etc.

Pascal large-scale datasets: N = 5 · 105,P = 103

ImageNet: N = 107

Industrial datasets: N > 108,P > 107

Main computational challenge:

Design algorithms for very large N and P.
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Example: Supervised Machine Learning

Data: n observations (ai ,bi), i = 1, . . . ,N.

Prediction as linear function xT ai of features ai ∈ RP .

Regularized empirical risk minimization: find x∗ solution of

min
x∈RP

1
N

N∑

i=1

`(bi , xT ai) + λr(x)

data fitting term + regularizer

Applications to any data-oriented field:

Vision, bioinformatics, speech, natural language, web.

Main practical challenges:

Designing/learning good features ai .
Efficiently solving the problem when N or P are very large.
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Big-N Problems

We want to minimize the sum of a finite set of smooth functions:

min
x∈RP

g(x) :=
1
N

N∑

i=1

fi(x).

We are interested in cases where N is very large.

We will focus on strongly-convex functions g.

Simplest example is `2-regularized least-squares,

fi(x) := (aT
i x − bi)

2 +
λ

2
‖x‖2.

Other examples include any `2-regularized convex loss:

logistic regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
n

∑N
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αtg′(xt) = xt −
αt

n

N∑

i=1

f ′i (xt).

Linear convergence rate: O(ρt).
Iteration cost is linear in N.

Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of i(t) from {1, 2, . . . ,N},

xt+1 = xt − αt fi(t)(xt).

Iteration cost is independent of N.
Sublinear convergence rate: O(1/t).
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing g(x) = 1
n

∑N
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Motivation for New Methods

FG method has O(N) cost with linear rate.

SG method has O(1) cost with sublinear rate.

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Goal is O(1) cost with linear rate.
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Prior Work on Speeding up SG Methods

A variety of methods have been proposed to speed up SG methods:

Momentum, gradient averaging, iterate averaging,
stochastic version of FG methods:
[Polyak & Juditsky, 1992, Tseng ,1998, Schraudolph, 1999, Nesterov, 2009, Sunehag, 2009,

Ghadimi & Lan, 2010, Martens, 2010, Xiao, 2010, Hazan & Kale, 2011, Rakhlin et al. 2012]

None of these methods improve on the O(1/t) rate.

Constant step-size SG, accelerated SG:
[Kesten, 1958, Delyon & Juditsky, 1993, Solodov, 1998, Nedic & Bertsekas, 2000]

Linear rate, but only up to a fixed tolerance.

Hybrid Methods, Incremental Average Gradient:
[Bertsekas, 1997, Blatt et al., 2007]

Linear rate, but iterations make full passes through the data.
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Overview of Contributions

Is a linear rate possible, without requiring full passes?

1 Control the sample size to interpolate between FG and SG.

Linear convergence rate.
Iteration cost grows from O(1) to O(N).

2 SAG algorithm: sequence of estimates converging to g′(x t) as
‖x t − x t−1‖ → 0.

Linear convergence rate.
Iteration cost is O(1).
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SG methods with a larger subsample

Approach 1: control the sample size.

The FG method uses the exact gradient,

1
N

N∑

i=1

fi(x t) = g′(x t).

The SG method approximates it with 1 sample,

fi(t)(x t) ≈ 1
N

N∑

i=1

fi(x t).

A common variant is to use larger sample Bt ,

1
|Bt |

∑

i∈Bt

f ′i (x
t) ≈ 1

N

N∑

i=1

fi(x t).
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SG methods with a larger subsample

The SG method with a sample Bt uses iterations

x t+1 = x t − αt

|Bt |
∑

i∈Bt

fi(x t).

For a fixed sample size |Bt |, the rate is sublinear.

Gradient error decreases as sample size |Bt | increases.

Common to gradually increase the sample size |Bt |.
[Bertsekas & Tsitsiklis, 1996]

We can choose |Bt | to achieve a linear convergence rate.

Early iterations are cheap like SG iterations.
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Convergence of gradient method with bounded error

We first analyze the basic gradient method with error et ,

x t+1 = x t − αt(g′(x t) + et).

We assume:

g′ is L-Lipschitz continuous.
g is µ-strongly convex.
The step size αt is set to 1/L.

For twice-differentiable g, equivalent to (with µ > 0)

µI � g′′(x) � LI

We analyze how ‖et‖ affects the convergence rate.
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Convergence of gradient method with bounded error

Proposition 1. If the sequence {E[‖et‖2]} is in O(γt), then

E[g(x t)− g(x∗)] 6 (1− µ/L)t [g(x0)− g(x∗)] + O(ρt),

where ρ = max{γ,1− µ/L + ε} for any ε > 0.

If γ < 1− µ/L, rate is the same as error-free case.

If γ > 1− µ/L, the rate is γ.

We also obtain a bound on the iterates because

µ

2
‖x t − x∗‖2 6 g(x t)− g(x∗) 6

L
2
‖x t − x∗‖2.
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Convergence of methods with increasing sample sizes

How can we set the sample size |Bt | to control ‖et‖?

To have E[‖et‖2] = O(γt), we need

for sampling uniformly with replacement:

1
|Bt | = O(γ t).

for any sampling without replacement strategy:[
N − |Bt |

N

]2

= O(γ t).

for sampling uniformly without replacement:

N − |Bt |
N

· 1
|Bt | = O(γ t).
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Sample Size needed for Linear Rate
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Advanced Algorithms and Practical Implementation

We also give sequence E[‖et‖2] to achieve strong linear rate:

E[g(x t)− g(x∗)] 6 (1− ρ)t [g(x0)− g(x∗)],

for any ρ > 1− µ/L.

We can analyze more advance algorithms:

Nesterov’s accelerated gradient method (faster rate).
Newton-like second-order methods (faster rate)
Proximal methods (constrained/non-smooth).

We made a practical implementation:

L-BFGS Hessian approximation.
Armijo line-search on the batch.
Eventually reduces to standard quasi-Newton method.
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Evaluation on Chain-Structured CRFs

Results on chain-structured conditional random field:
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Hybrid

Deterministic

Hybrid uses |Bt+1| = dmin{1.1 · |Bt |+ 1,N}e.
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Stochastic Average Gradient

Growing |Bt | eventually requires O(N) iteration cost.

Is it possible to have a linearly convergent algorithm with
iteration cost independent of N?

YES! The stochastic average gradient (SAG) algorithm:
Randomly select i(t) from {1, 2, . . . , n} and compute f ′i(t)(x

t ).

x t+1 = x t −
αt

N

N∑
i=1

f ′i (x
t )

Memory: y t
i = f ′i (x

k ) from the last k where i was selected.

Stochastic variant of increment average gradient (IAG).
[Blatt et al. 2007]
Assumes that gradients of other examples don’t change.
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Convergence Rate of SAG

Assume each f ′i is L−continuous, g is µ-strongly convx.

Theorem. With αt =
1

16L the SAG iterations satisfy

E[g(x t)− g(x∗)] 6
(

1−min
{

µ

16L
,

1
8N

})t

C,

with

C = [g(x0)− g(x∗)] +
4L
N
‖x0 − x∗‖2 +

σ2

16L
.

Linear convergene with iteration cost independent of N.

“despite 60 years of extensive research on SG methods, with a
significant portion of the applications focusing on finite datasets,
we are not aware of any other SG method that achieves a linear
convergence rate while preserving the iteration cost of standard
SG methods.”
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(
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,

1
8N

})t

C,

with

C = [g(x0)− g(x∗)] +
4L
N
‖x0 − x∗‖2 +

σ2

16L
.

Further, this rate is “very fast”:
For well-conditioned problems, constant reduction per pass:(

1− 1
8N

)N

≤ exp
(
−1

8

)
= 0.8825.

For ill-conditioned problems, almost same as deterministic method.
(but N times faster)
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Rate of Convergence Comparison

Assume that L = 100, µ = .01, and n = 80000:

Gradient method has rate
(

L−µ
L+µ

)2
= 0.9996.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.9900.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.8825.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2
= 0.9608.

SAG beats two lower bounds:

Stochastic gradient bound.
Full gradient bound (for appropriate L, µ, and N).

O(1/k) rate in convex case (vs. O(1/
√

k) for SG methods).

Algorithm is adaptive to µ around optimum.

Can improve C by clever initialization of x0 and y0
i .
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Experiments with SAG algorithm

rcv1 data set (n = 20242, p = 47236)
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Reducing memory requirements

SAG algorithm:

x t+1 = x t − αt

n

N∑

i=1

y t
i ,

where y t
i is the last gradient computed on datapoint i .

Memory requirement: O(NP)

Smaller for structured models, e.g., linear models:

If fi(x) = `(a>i x), then f ′i (x) = `′(a>i x)ai

Memory requirement: O(N)

Smaller for unstructured models using batches.
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Conclusion and Open Problems

Fast theoretical convergence using the ‘sum’ structure.

Simple algorithm, empirically better than theory predicts.

Allows line-search and stopping criteria.

Open problems:

Large-scale distributed implementation.
Reduce the memory requirements.
Constrained and non-smooth problems.
Non-uniform sampling and non-Euclidean metrics.

Thanks for coming!
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