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Motivation: Why Learn about Convex Optimization?

Why learn about optimization?
@ Optimization is at the core of many ML algorithms.

@ ML is driving a lot of modern research in optimization.



Motivation: Why Learn about Convex Optimization?

Why learn about optimization?
@ Optimization is at the core of many ML algorithms.

@ ML is driving a lot of modern research in optimization.

Why in particular learn about convex optimization?
@ Among only efficiently-solvable continuous problems.
@ You can do a lot with convex models.
(least squares, lasso, generlized linear models, SVMs, CRFs)

@ Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)
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@ Convex Functions

© Smooth Optimization

© Non-Smooth Optimization

@ Stochastic Optimization
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Convexity: Zero-order condition

A real-valued function is convex if
f(Ox + (1 —0)y) < 0f(x)+ (1 — 0)f(y),

for all x, y € R" and all 0 < 0 < 1.

@ Function is below a linear interpolation from x to y.

@ Implies that all local minima are global minima.

(contradiction otherwise)
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Not convex
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Convexity: Zero-order condition
A real-valued function is convex if
f(Ox + (1= 0)y) < 0f(x) + (1 —0)f(y),

forall x, y ¢ R" and all 0 < 0 < 1.

@ Function is below a linear interpolation from x to y.

@ Implies that all local minima are global minima.

(contradiction otherwise)

/

Non-global
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Convexity of Norms

We say that a function f is a norm |f:

Q 7(0)=0.
Q@ f(0x) =10|f(x).
Q f(x+y) < f(x)+f(y).

Stochastic Optimization

Examples:

Ixlla = [> - xF = VxTx

1
Ixlh =3 I
i
Ixll = VXT Hx
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Convexity of Norms

We say that a function f is a norm |f:
Q f(0)=0.
Q@ f(6x) = |0|f(x).
Q f(x+y) <f(x)+f(y)

Stochastic Optimization

Examples:

Ixlla = [> - xF = VxTx

1
Ixlly = I
i
Ixl|lg = VxT Hx

Norms are convex:
f(Ox + (1 —0)y) < f(0x)+ F((1 - 0)y)
=0f(x)+ (1 —0)f(y)
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Strict Convexity

A real-valued function is strictly convex if
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),

forall x #y € R" and all 0 < 6§ < 1.

@ Strictly below the linear interpolation from x to y.



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Strict Convexity

A real-valued function is strictly convex if
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),

forall x #y € R" and all 0 < 6§ < 1.

@ Strictly below the linear interpolation from x to y.

@ Implies at most one global minimum.

(otherwise, could construct lower global minimum)
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Convexity: First-order condition
A real-valued differentiable function is convex iff
Fy) = f(x) + V) (v —x),

for all x, y € R".

@ The function is globally above the tangent at x.
(if VF(y) = 0 then y is a a global minimizer)



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Convexity: First-order condition

A real-valued differentiable function is convex iff
Fly) > f(x) + VF(x)T(y — x),

for all x, y € R".

@ The function is globally above the tangent at x.
(if Vf(y) = 0 then y is a a global minimizer)




Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Convexity: First-order condition

A real-valued differentiable function is convex iff
Fly) > f(x) + VF(x)T(y = x),

for all x, y € R".

@ The function is globally above the tangent at x.
(if Vf(y) = 0 then y is a a global minimizer)
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Convexity: First-order condition

A real-valued differentiable function is convex iff
Fly) > f(x) + VF(x)T(y = x),

for all x, y € R".

@ The function is globally above the tangent at x.
(if Vf(y) = 0 then y is a a global minimizer)
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Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff
V2f(x) = 0

for all x € R",

@ The function is flat or curved upwards in every direction.
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Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff
V2f(x) = 0

for all x € R",

@ The function is flat or curved upwards in every direction.

A real-valued function f is a quadratic if it can be written in the
form:

1
f(x) = ixTAx +b"x+c.

Since Vf(x) = Ax + b and V2f(x) = A, it is convex if A = 0.
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Examples of Convex Functions

Some simple convex functions:

o f(x)=c

o f(x)=a'x

o f(x)=xa°+b

e f(x) = exp(ax)

e f(x) = xlogx (for x > 0)
o (x) = [IxIP

o f(x) = max;{x;}
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Examples of Convex Functions

Some simple convex functions:

o f(x)=c

o f(x)=a'x

o f(x)=xa°+b

e f(x) = exp(ax)

e f(x) = xlogx (for x > 0)
o f(x) = |x|I?

o f(x) = max;{x;}
Some other notable examples:
o f(x,y) =log(e* + &)
e f(X) = logdet X (for X positive-definite).
o f(x,Y)=xTY1x (for Y positive-definite)

Stochastic Optimization
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Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 01fi(x) + O2>(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:

f(x) = mlgax{f,-(x)}.
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© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = mlgax{f,-(x)}.
Show that least-residual problems are convex for any ¢,-norm:

F(x) = [|Ax = bl|,
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Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = max{f(x)}.
Show that least-residual problems are convex for any ¢,-norm:
F(x) = [|Ax = bl|,

We know that || - ||, is a norm, so it follows from (2).
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Operations that Preserve Convexity

© Non-negative weighted sum:
f(x) = 01f1(x) + O2f2(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = miax{f,-(x)}.

Show that SVMs are convex:

1 n
f(x) = §||XH2 + CZ max{0,1 — b;a] x}.
i=1



Convex Functions
Operations that Preserve Convexity
© Non-negative weighted sum:
f(x) = 601f(x) + O22(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = miax{f,-(x)}.
Show that SVMs are convex:
f(x) = %||XH2 + Czn; max{0,1 — b;a] x}.

The first term has Hessian / > 0, for the second term use (3) on
the two (convex) arguments, then use (1) to put it all together.
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Outline

© Smooth Optimization
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How hard is real-valued optimization?
How long to find an e-optimal minimizer of a real-valued function?

min f(x).
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(think about arbitrarily small value at some infinite decimal expansion)
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How long to find an e-optimal minimizer of a real-valued function?
min f(x).
@ General function: impossible!
(think about arbitrarily small value at some infinite decimal expansion)
We need to make some assumptions about the function:

@ Assume f is Lipschitz-continuous: (can not change too quickly)

[F(x) = F)l < Llix = yll-
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Non-Smooth Optimization

Stochastic Optimization
How hard is real-valued optimization?
How long to find an e-optimal minimizer of a real-valued function?
min f(x).

x€RNM
@ General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)
We need to make some assumptions about the function:
@ Assume f is Lipschitz-continuous:

(can not change too quickly)
[F(x) = f)l < Llx =yl




Convex Functions

Smooth Optimization

Non-Smooth Optimization

Stochastic Optimization
How hard is real-valued optimization?

How long to find an e-optimal minimizer of a real-valued function?

min f(x).
min £(x)
@ General function: impossible!

(think about arbitrarily small value at some infinite decimal expansion)
We need to make some assumptions about the function:
@ Assume f is Lipschitz-continuous:

(can not change too quickly)
[f(x) = fy)l < Llx =yl




Smooth Optimization

How hard is real-valued optimization?

How long to find an e-optimal minimizer of a real-valued function?

min f(x).

@ General function: impossible!
(think about arbitrarily small value at some infinite decimal expansion)
We need to make some assumptions about the function:

@ Assume f is Lipschitz-continuous: (can not change too quickly)

[F(x) = fy)l < Llx =y

o After t iterations, the error of any algorithm is Q(1/t'/").

(this is in the worst case, and note that grid-search is nearly optimal)
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How hard is real-valued optimization?

How long to find an e-optimal minimizer of a real-valued function?

min f(x).

@ General function: impossible!
(think about arbitrarily small value at some infinite decimal expansion)
We need to make some assumptions about the function:

@ Assume f is Lipschitz-continuous: (can not change too quickly)
[£(x) = f(¥) < LlIx = y].

o After t iterations, the error of any algorithm is Q(1/t'/").

(this is in the worst case, and note that grid-search is nearly optimal)

@ Optimization is hard, but assumptions make a big difference.

(we went from impossible to very slow)
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¢>-Regularized Logistic Regression

Consider ¢>-regularized logistic regression:

Fx) = 3 log(1+ exp(—bi(x"a)) + S x|
i=1

Objective f is convex.

First term is Lipschitz continuous.

Second term is not Lipschitz continuous.
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¢>-Regularized Logistic Regression

o Consider ¢»-regularized logistic regression:

g A

f(x) = Z; log(1 + exp(—bi(x" a;))) + §|1X1\2-

=
@ Objective f is convex.
@ First term is Lipschitz continuous.
@ Second term is not Lipschitz continuous.
@ But we have

pl = V2f(x) < LI
(L=ZlAIZ+X p=2A)

o Gradient is Lipschitz-continuous.
@ Function is strongly-convex.

(implies strict convexity, and existence of unique solution)
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

Fy) = F60 + V()T (y = x) + 50y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ V)T =)+ 5y — X2

@ Global quadratic upper bound on function value.
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ V)T =)+ 5y — X2

@ Global quadratic upper bound on function value.

f(x) | =

1) + VIOT(y )]
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ V)T =)+ 5y — X2

@ Global quadratic upper bound on function value.

S\, 109 + ¥i00Tlyx) + (L2)llyxiP] [
A I

‘\\\ !

\ /

f(x) /

1) + V)T
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ V)T =)+ 5y — X2

@ Global quadratic upper bound on function value.

S\, 109 + ¥i00Tlyx) + (L2)llyxiP] [
A I
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\ /

f(x) /
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Properties of Lipschitz-Continuous Gradient

@ From Taylor’s theorem, for some z we have:

Fy) = F60 + V()T (y = x) + 50y — 20T F(2)(y —x)

o Use that V2f(z) < LI.

Fy) < 700+ V)T =)+ 5y — X2

@ Global quadratic upper bound on function value.
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Properties of Lipschitz-Continuous Gradient

From Taylor's theorem, for some z we have:
1
Fly) = f(x)+ VF(x)T(y — x) + S = x)TV2f(z)(y — x)

Use that V2f(z) < LI.

Fy) < 700+ VT =)+ 5y — I

Global quadratic upper bound on function value.
Set x* to minimize upper bound in terms of y:

xT=x— %Vf(x).

(gradient descent with step-size of 1/L)

Plugging this value in:
1
Fx) < Fx) = o IV,

(decrease of at least Z- ||V £(x)|[?)
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

Fy) = F60 + V()T (y = x) + 50y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic upper bound on function value.
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic upper bound on function value.
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic upper bound on function value.

f(x)| e

f(x) + VF)T(y-x)

I
v
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Properties of Strong-Convexity

@ From Taylor’s theorem, for some z we have:

F(y) = F6) + TFG)T(y = x) + 5y — 20T F(2)(y —x)
o Use that V2f(z) = ul.
F(y) 2 F(x) + V)T (y = x) + Slly = xIP

@ Global quadratic upper bound on function value.

f(x)

f(x) + VI T(y-x)}

f(x) + VE(X)T(y-X) + (W2)y-xI2[* < -
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Properties of Strong-Convexity

From Taylor's theorem, for some z we have:
fly)=f VE(x) T (y - Ly =TV -
() =f0) + V) (y =x) + 50y = x) (2)(y —x)
o Use that V2f(z) = ul.

F(y) 2 F(x) + V)T (y = x) + Slly = xIP

Global quadratic upper bound on function value.

Minimize both sides in terms of y:

Fx*) > F(x) - ;Mw(x)\%

Upper bound on how far we are from the solution.
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Linear Convergence of Gradient Descent
@ We have bounds on x™ and x*:

) < £ = 7 IVFRIE, () 2 7x) = 5 VA
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Linear Convergence of Gradient Descent

@ We have bounds on xt and x*:

) < £ = 37 IVFRIE, () = 7x) = 5 VA0

/
f(X) \ 4|Guaranteed
il Progress /
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Stochastic Optimization

Linear Convergence of Gradient Descent

@ We have bounds on x* and x*:

F) < FO) = S IVFGIIR, ) > F(x) - ;LHW(XV.
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Linear Convergence of Gradient Descent

@ We have bounds on xt and x*:

Fx) < FO) = S IVFGOIP, F() 2 F(x) ;Muwm?
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Smooth Optimization

Linear Convergence of Gradient Descent

Non-Smooth Optimization

@ We have bounds on xt and x*:

Stochastic Optimization

) < £00 = S IVAIR A7) 2 70 = 5 V()P

H ’
S v

’

/
/
/
Guaranteed
il Progress /

’
’

!
I
1
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Linear Convergence of Gradient Descent

@ We have bounds on xt and x*:

1 1
) < F00 = 5 IVFIE, Ax) 2 () — [V
combine them to get

Fx) < F(x) = ZIFG) = F()]

F) = F(x) < (1= 5) 1700 = £()
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Linear Convergence of Gradient Descent

@ We have bounds on xt and x*:

fwﬂ<fu»—QJVﬂwW7fuw>fu»—§JVNm2.

combine them to get

Fx) < F(x) = ZIFG) = F()]

F) = F(x) < (1= 5) 1700 = £()
@ This gives a linear convergence rate:
Fxt) — F(x) < (1= 4) 1FG2) — )

@ Each iteration multiplies the error by a fixed amount.

(very fast if u/L is not too close to one)



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Maximum Likelihood Logistic Regression

@ What maximum-likelihood logistic regression?

f(x) = log(1 + exp(—bi(x"a;)))-

i=1
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Maximum Likelihood Logistic Regression

@ What maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;)))-

i=1

o We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)
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Maximum Likelihood Logistic Regression

@ What maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;)))-

i=1

o We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)

/
1

\
\

!
\
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Maximum Likelihood Logistic Regression

@ What maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;)))-

i=1

o We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)

1
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Maximum Likelihood Logistic Regression

@ What maximum-likelihood logistic regression?

n

f(x) = log(1 + exp(—bi(x"a;)))-
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o We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x)+ Vf(X)T(X* - Xx)




Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Maximum Likelihood Logistic Regression

@ Consider maximum-likelihood logistic regression:

n

F(x) =) log(1+ exp(—bi(x" a))).

i=1

@ We now only have
0 < V2f(x) < LI.
e Convexity only gives a linear upper bound on f(x*):
f(x*) < f(x) + VFx)T(x* = x)

@ If some x* exists, we have the sublinear convergence rate:

F(x") — f(x*) = O(1/1)

(compare to slower Q(1/t~1/N) for general Lipschitz functions)
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Maximum Likelihood Logistic Regression
@ Consider maximum-likelihood logistic regression:
F(x) =) log(1+ exp(—bi(x" a))).
i=1
@ We now only have

0 < V2f(x) < LI.

Convexity only gives a linear upper bound on f(x*):

f(x*) < f(x)+ Vf(X)T(X* - X)

If some x* exists, we have the sublinear convergence rate:

F(x") — f(x") = O(1/t)
(compare to slower Q(1/t~1/N) for general Lipschitz functions)

o If f is convex, then f + \||x||? is strongly-convex.
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Gradient Method: Practical Issues

@ In practice, searching for step size (line-search) is usually
much faster than o = 1/L.

(and doesn't require knowledge of L)
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Gradient Method: Practical Issues

@ In practice, searching for step size (line-search) is usually
much faster than o = 1/L.
(and doesn't require knowledge of L)
@ Basic Armijo backtracking line-search:
@ Start with a large value of .
@ Divide « in half until we satisfy (typically value is v = .0001)

F(x™) < F(x) = yal [ V()|
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Gradient Method: Practical Issues

@ In practice, searching for step size (line-search) is usually
much faster than o = 1/L.
(and doesn't require knowledge of L)
@ Basic Armijo backtracking line-search:
@ Start with a large value of .
@ Divide « in half until we satisfy (typically value is v = .0001)

F(x) < £(x) = yal[VE(x)II%.
@ Practical methods may use Wolfe conditions (so « isn't too

small), and/or use interpolation to propose trial step sizes.

(with good interpolation, & 1 evaluation of f per iteration)
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Gradient Method: Practical Issues

In practice, searching for step size (line-search) is usually
much faster than o = 1/L.
(and doesn't require knowledge of L)
Basic Armijo backtracking line-search:
@ Start with a large value of «.
@ Divide « in half until we satisfy (typically value is v = .0001)

F(x*) < f(x) =7l [V,
Practical methods may use Wolfe conditions (so « isn't too
small), and/or use interpolation to propose trial step sizes.

(with good interpolation, & 1 evaluation of f per iteration)

Also, check your derivative code!
f(x + dej) — f(x)
4]
For large-scale problems you can check a random direction d:
f(x+dd) — f(x)
0

Vif(x) =~

Vi(x)Td ~



Smooth Optimization

Convex Optimization Zoo

We are going to explore the ‘convex optimization zoo':

Algorithm ‘ Assumptions ‘ Rate

Gradient Lipshitz Gradient, Convex O(1/t)
Gradient | Lipshitz Gradient, Strongly-Convex | O((1 — u/L)")
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Convex Optimization Zoo

We are going to explore the ‘convex optimization zoo':

Algorithm ‘ Assumptions ‘ Rate

Gradient Lipshitz Gradient, Convex O(1/t)
Gradient | Lipshitz Gradient, Strongly-Convex | O((1 — u/L)")

@ Rates are the same if only once-differentiable.

@ Line-search doesn’t change the worst-case rate.
(strongly-convex slightly improved with a = 2/(u + L))



Smooth Optimization

Convex Optimization Zoo

We are going to explore the ‘convex optimization zoo':

Algorithm ‘ Assumptions ‘ Rate

Gradient Lipshitz Gradient, Convex O(1/t)
Gradient | Lipshitz Gradient, Strongly-Convex | O((1 — u/L)")

@ Rates are the same if only once-differentiable.

@ Line-search doesn’t change the worst-case rate.
(strongly-convex slightly improved with a = 2/(u + L))

@ Is this the best algorithm under these assumptions?
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Accelerated Gradient Method

@ Nesterov's accelerated gradient method:

Xt+1 = Yt — Oétf’()/t),
Y1 = Xe + Bt(Xt—&—l — Xt)’

for appropriate «a;, 5.

Stochastic Optimization
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Accelerated Gradient Method

@ Nesterov's accelerated gradient method:

Xt+1 = Yt — Oétf/()/t),
Y1 = Xe + 5t(Xt+1 — Xt),

for appropriate «a;, 5.

@ Motivation: “to make the math work”

(but similar to heavy-ball/momentum and conjugate gradient method)
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Convex Optimization Zoo

Algorithm Assumptions ‘ Rate
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex 0(1/t?)

Gradient | Lipshitz Gradient, Strongly-Convex | O((1 — p/L)")
Nesterov | Lipshitz Gradient, Strongly-Convex | O((1 — /p/L)")

e O(1/t?) is optimal given only these assumptions.
(sometimes called the optimal gradient method)

@ The faster linear convergence rate is close to optimal.

@ Also faster in practice, but implementation details matter.
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Newton's Method

@ The oldest differentiable optimization method is Newton's.
(also called IRLS for functions of the form f(Ax))
@ Modern form uses the update

T =x—ad,

X
where d is a solution to the system

2 _
\V4 f(X)d — Vf(X) (Assumes V2f(X) = 0)



Smooth Optimization

Newton's Method

@ The oldest differentiable optimization method is Newton's.
(also called IRLS for functions of the form f(Ax))
@ Modern form uses the update

+

xT =x—ad,

where d is a solution to the system

2 —
VEF(x)d = VE(X):  (assumes v27() = 0)

@ Equivalent to minimizing the quadratic approximation:

1
F(y) = () + VATl =)+ 5y = Xl

recall that ||x =X Hx
Il th 2 =xTH
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Newton's Method

The oldest differentiable optimization method is Newton's.
(also called IRLS for functions of the form f(Ax))
Modern form uses the update

+

xT =x—ad,

where d is a solution to the system
2 —

V7 (x)d = VF(x). (Assumes V2f(x) = 0)

Equivalent to minimizing the quadratic approximation:
1
f(y) = F() + V) Ty =) + o lly = xS
(recall that ||x||3, = xT Hx)
We can generalize the Armijo condition to
f(xt) < f(x) +yaVF(x)"d.

Has a natural step length of o = 1.

(always accepted when close to a minimizer)
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Newton's Method
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Newton's Method
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Convergence Rate of Newton's Method

e If V2f(x) is Lipschitz-continuous and V2f(x) = p, then close
to x* Newton's method has superlinear convergence:

F(x™) = F(x") < pel F(xF) = F(x7)],

@ Converges very fast, use it if you can!
@ But requires solving V2f(x)d = Vf(x).
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Convex Optimization Zoo

Algorithm Assumptions Rate
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t?)

Gradient | Lipshitz Gradient, Strongly-Convex O((1—u/L)Y)

Nesterov | Lipshitz Gradient, Strongly-Convex | O((1 — \/u/L)")
Newton Lipschitz Hessian, Strongly-Convex | O([Ti_; pt), pr — 0

@ Here the classical analysis gives a local rate.

@ Recent work gives global rates under various assumptions
(cubic-regularization /accelerated /self-concordant).
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Newton's Method: Practical Issues
There are many practical variants of Newton's method:
@ Modify the Hessian to be positive-definite.
@ Only compute the Hessian every m iterations.
@ Only use the diagonals of the Hessian.
o

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (BFGS, L-BFGS).



Smooth Optimization

Newton's Method: Practical Issues

There are many practical variants of Newton's method:

Modify the Hessian to be positive-definite.
Only compute the Hessian every m iterations.
Only use the diagonals of the Hessian.

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (BFGS, L-BFGS).
Hessian-free: Compute d inexactly using Hessian-vector
products:

Y2007 d = lim VF(x + 0d) — VF(x)
6—0 1)

Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:
_ (X" =) T(VF(x!) - VI(x))
IVE(xT) = £(x)]]?

Another related method is nonlinear conjugate gradient.



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Outline

© Non-Smooth Optimization
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Motivation: Sparse Regularization

o Consider ¢1-regularized optimization problems,
min f(x) = g(x) + Allx[|1,

where g is differentiable.

@ For example, £1-regularized least squares,
min | Ax — b]|* + Allx[|x

@ Regularizes and encourages sparsity in x

Stochastic Optimization
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Motivation: Sparse Regularization

Consider ¢1-regularized optimization problems,
min f(x) = g(x) + Allx[|1,

where g is differentiable.

For example, ¢1-regularized least squares,

min | Ax — b]|* + Allx[|x

Regularizes and encourages sparsity in x

The objective is non-differentiable when any x; = 0.

@ How can we solve non-smooth convex optimization problems?
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x)+ VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x) +d" (y — x),Vy.




Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.




Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.

f(x)
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A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.




Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

F(y) > F(x) + VF(x)T(y = x), ¥x, .

A vector d is a subgradient of a convex function f at x if

fFly) > f(x) +d" (y — x),Vy.
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

fly) > f(x) + VF(x)T(y — x),¥x, y.

A vector d is a subgradient of a convex function f at x if

fly) > f(x)+d"(y — x),Vy.

f is differentiable at x iff Vf(x) is the only subgradient.
At non-differentiable x, we have a set of subgradients.
Set of subgradients is the sub-differential Of(x).

Note that 0 € 9f(x) iff x is a global minimum.
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Sub-Differential of Absolute Value and Max Functions

@ The sub-differential of the absolute value function:

1 x>0
Jdlx] =< -1 x<0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Absolute Value and Max Functions

@ The sub-differential of the absolute value function:

1 x>0
Jdlx] =< -1 x<0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)

f(x)
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1 x>0
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Sub-Differential of Absolute Value and Max Functions

@ The sub-differential of the absolute value function:

1 x>0
dlx| =< -1 x<0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)
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Sub-Differential of Absolute Value and Max Functions

@ The sub-differential of the absolute value function:

1 x>0
x| =< -1 x<0
[-1,1] x=0

(sign of the variable if non-zero, anything in [—1,1] at 0)

@ The sub-differential of the maximum of differentiable f;:

Vﬂ(X) fl(X)
dmax{fi(x), h(x)} = ¢ VH(x)
OVi(x) + (1 = 0)Vh(x) f(x) = f(x)

(any convex combination of the gradients of the argmax)
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Sub-gradient method

@ The sub-gradient method:

+

xT =x—ad,

for some d € Of(x).

Stochastic Optimization
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Sub-gradient method

@ The sub-gradient method:
xT =x—ad,
for some d € Of(x).
o The steepest descent step is given by arg mingear( {[/d||}-
(often hard to compute, but easy for ¢1-regularization)
@ Otherwise, may increase the objective even for small «.
e But |[xT — x*|| < ||x — x*|| for small enough «a.
@ For convergence, we require o — 0.



Non-Smooth Optimization

Sub-gradient method

The sub-gradient method:

+

xT =x—ad,

for some d € Of(x).

The steepest descent step is given by arg mingeyr(x){/d|l}-
(often hard to compute, but easy for ¢1-regularization)

Otherwise, may increase the objective even for small «.

But [[xT — x*|| < ||x — x*|| for small enough .

For convergence, we require o — 0.

Many variants average the iterations:

k—1
xk = E w;x'.
i=0

Many variants average the gradients (‘dual averaging'):

k—1
(_jk = Z W,'di.
i=0
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Convex Optimization Zoo

Algorithm Assumptions Rate
Subgradient | Lipschitz Function, Convex O(1//t)
Subgradient | Lipschitz Function, Strongly O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t?)
Gradient Lipshitz Gradient, Strongly O((1—p/L)Y)
Nesterov Lipshitz Gradient, Strongly O((1— /L)Y
Newton Lipschitz Hessian, Strongly | O(T]'_; pt), pr — 0
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Convex Optimization Zoo

Algorithm Assumptions Rate
Subgradient | Lipschitz Function, Convex O(1//t)
Subgradient | Lipschitz Function, Strongly O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t?)
Gradient Lipshitz Gradient, Strongly O((1—p/L)Y)
Nesterov Lipshitz Gradient, Strongly O((1— /L)Y
Newton Lipschitz Hessian, Strongly | O(T]'_; pt), pr — 0

@ Alternative is cutting-plane/bundle methods:

o Minimze an approximation based on all subgradients {d;}.
o But have the same rates as the subgradient method.
(tend to be better in practice)
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Convex Optimization Zoo

Algorithm Assumptions Rate
Subgradient | Lipschitz Function, Convex O(1//t)
Subgradient | Lipschitz Function, Strongly O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t?)
Gradient Lipshitz Gradient, Strongly O((1—p/L)Y)
Nesterov Lipshitz Gradient, Strongly O((1— /L)Y
Newton Lipschitz Hessian, Strongly | O(T]'_; pt), pr — 0

@ Alternative is cutting-plane/bundle methods:

o Minimze an approximation based on all subgradients {d;}.
o But have the same rates as the subgradient method.
(tend to be better in practice)

@ Bad news: Rates are optimal for black-box methods.
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Convex Optimization Zoo

Algorithm Assumptions Rate
Subgradient | Lipschitz Function, Convex O(1//t)
Subgradient | Lipschitz Function, Strongly O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t?)
Gradient Lipshitz Gradient, Strongly O((1—p/L)Y)
Nesterov Lipshitz Gradient, Strongly O((1— /L)Y
Newton Lipschitz Hessian, Strongly | O(T]'_; pt), pr — 0

@ Alternative is cutting-plane/bundle methods:

o Minimze an approximation based on all subgradients {d;}.
o But have the same rates as the subgradient method.
(tend to be better in practice)

@ Bad news: Rates are optimal for black-box methods.
@ But, we often have more than a black-box.
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Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..

@ Apply a fast method for smooth optimization.
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Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.

@ Smooth approximation to the absolute value:

Ix| = Vx%2 4.
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Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.

@ Smooth approximation to the absolute value:

Ix| = Vx%2 4.
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Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.
@ Smooth approximation to the absolute value:

Ix| = VX% + .

Smooth approximation to the max function:

max{a, b} ~ log(exp(a) + exp(b))

@ Smooth approximation to the hinge loss:
0 x>1
max{0,x} ~ ¢ 1 — x? t<x<l1

(1-t)2+21-t)(t—x) x<t



Non-Smooth Optimization

Smoothing Approximations of Non-Smooth Functions

@ Smoothing: replace non-smooth f with smooth f..
@ Apply a fast method for smooth optimization.
@ Smooth approximation to the absolute value:

Ix| = VX% + .

Smooth approximation to the max function:

max{a, b} ~ log(exp(a) + exp(b))

@ Smooth approximation to the hinge loss:
0 x>1
max{0,x} ~ ¢ 1 — x? t<x<l1

(1-t)2+21-t)(t—x) x<t

Generic strategy for constructing € approximation with
O(1/€)-Lipschitz gradient: strongly-convex regularization of
convex conjugate. (but we won't discuss this in detail)



Non-Smooth Optimization

Convex Optimization Zoo

Algorithm Assumptions Rate
Subgradient | Lipschitz Function, Convex O(1/V't)
Subgradient | Lipschitz Function, Strongly O(1/t)
Gradient Smoothed to 1/€, Convex O(1/Vt)
Nesterov Smoothed to 1/¢, Convex O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t?)
Gradient Lipshitz Gradient, Strongly O((1—pu/L)Y)
Nesterov Lipshitz Gradient, Strongly O((1 - +/p/L)Y)
Newton Lipschitz Hessian, Strongly | O(T]'_; pt), pr — O



Non-Smooth Optimization

Convex Optimization Zoo

Algorithm Assumptions Rate
Subgradient | Lipschitz Function, Convex O(1/V't)
Subgradient | Lipschitz Function, Strongly O(1/t)
Gradient Smoothed to 1/€, Convex O(1/Vt)
Nesterov Smoothed to 1/¢, Convex O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t?)
Gradient Lipshitz Gradient, Strongly O((1—pu/L)Y)
Nesterov Lipshitz Gradient, Strongly O((1 - +/p/L)Y)
Newton Lipschitz Hessian, Strongly | O(T]'_; pt), pr — O

@ Smoothing is only faster if you use Nesterov's method.
@ In practice, faster to slowly decrease smoothing level.

@ You can get the O(1/t) rate for min, max{fi(x)} for f; convex
and smooth using Nemirosky's mirror-prox method.
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Converting to Constrained Optimization

@ Re-write non-smooth problem as constrained problem.
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Converting to Constrained Optimization

@ Re-write non-smooth problem as constrained problem.

@ The problem
min g(x) + Allx]l1,

is equivalent to the problem

i ToxT)+ ) T X
e gxT—x7)+ Z;:(X' +x;7),

or the problems

min g(x)+)\Zy,-, | min  g(x) + At

—y<x<y [x[l1<T
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Converting to Constrained Optimization

@ Re-write non-smooth problem as constrained problem.

@ The problem
min g(x) + Allx]l1,

is equivalent to the problem

i ToxT)+ ) T X
e gxT—x7)+ Z;:(X' +x;7),

or the problems

min g(x)+)\Zy,-, | min  g(x) + At

—y<x<y Ixll <7
@ These are smooth objective with ‘simple’ constraints.

in f(x).
g )
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Optimization with Simple Constraints

@ Recall: gradient descent minimizes quadratic approximation:

1
xt = argmin{f(x) + VF(x)T(y —x) + EHY —XHQ}.
y
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Optimization with Simple Constraints

@ Recall: gradient descent minimizes quadratic approximation:

. 1
xT = argmin {f(x) + V) (y = x)+ —ly - XHZ} )
y 2«
@ Consider minimizing subject to simple constraints:

1
= angmin { £ + V7007 =) + 5y~ <12}
yeC 2a
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Optimization with Simple Constraints

@ Recall: gradient descent minimizes quadratic approximation:

1
xt = argmin{f(x) + VF(x)T(y —x) + 5”)/ —XH2}.
y

@ Consider minimizing subject to simple constraints:

1
= angmin { £ + V7007 =) + 5y~ <12}
yeC 2a

@ Equivalent to projection of gradient descent:

x®P = x — aVf(x),

x* = argmin { |y - x%°| }
yeC
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Gradient Projection
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Gradient Projection

=

f(x)
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Gradient Projection

f(x)
Feasible Set
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Gradient Projection

Feasible Set
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Gradient Projection

Feasible Set

xk - aVE(xK)

\ [xk - a VE(xk)]*
j
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Projection Onto Simple Sets

Projections onto simple sets:
e argmin, s [y — x|| = max{x,0}
e argmin<, <, |ly — x|| = max{/, min{x, u}}
o argmin,r,_; ly — x|l = x+(b—a"x)a/| a||?.
alx>b
+(b—a"x)a/lla]|> aTx<b

argming <, lly = x| = mx/|x].

. X
o argmin,r > [ly — x|| = ;

Linear-time algorithm for ¢1-norm ||y|1 < 7.

Linear-time algorithm for probability simplex y > 0,> y = 1.

Intersection of simple sets: Dykstra's algorithm.



Non-Smooth Optimization

Convex Optimization Zoo

Algorithm Assumptions Rate
P(Subgradient) | Lipschitz Function, Convex O(1//'t)
P(Subgradient) | Lipschitz Function, Strongly O(1/t)

P(Nesterov) Smoothed to 1/¢, Convex O(1/t)

P(Gradient) Lipshitz Gradient, Convex O(1/t)

P(Nesterov) Lipshitz Gradient, Convex 0(1/t?)

P(Gradient) Lipshitz Gradient, Strongly O((1 —p/L)Y)

P(Nesterov) Lipshitz Gradient, Strongly O((1—+/u/L)Y)

P(Newton) Lipschitz Hessian, Strongly | O(T]i_; pt), pt — O



Non-Smooth Optimization

Convex Optimization Zoo

Algorithm Assumptions Rate
P(Subgradient) | Lipschitz Function, Convex O(1//'t)
P(Subgradient) | Lipschitz Function, Strongly O(1/t)

P(Nesterov) Smoothed to 1/¢, Convex O(1/t)

P(Gradient) Lipshitz Gradient, Convex O(1/t)

P(Nesterov) Lipshitz Gradient, Convex 0(1/t?)

P(Gradient) Lipshitz Gradient, Strongly O((1 —p/L)Y)

P(Nesterov) Lipshitz Gradient, Strongly O((1—+/u/L)Y)

P(Newton) Lipschitz Hessian, Strongly | O(T]i_; pt), pt — O

@ Convergence rates are the same for projected versions!
e Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Barzilai-Borwein, quasi-Newton).
@ For Newton, you need to project under || - [[g2£(x)
(expensive, but special tricks for the case of simplex or lower/upper bounds)

@ You don't need to compute the projection exactly.
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Proximal-Gradient Method

@ A generalization of projected-gradient is Proximal-gradient.
@ The proximal-gradient method addresses problem of the form

min £(x) = g(x) + h(x),

X

where g is smooth but h is a general convex function.
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Proximal-Gradient Method

@ A generalization of projected-gradient is Proximal-gradient.
@ The proximal-gradient method addresses problem of the form

min £(x) = g(x) + h(x),

X
where g is smooth but h is a general convex function.
@ Applies proximity operator of h to gradient descent on g:
x®P = x — aVg(x),

1
x* = argmin {zuy XD ah(y)} ,
y
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Proximal-Gradient Method

A generalization of projected-gradient is Proximal-gradient.

The proximal-gradient method addresses problem of the form

min £(x) = g(x) + h(x),

X

where g is smooth but h is a general convex function.

Applies proximity operator of h to gradient descent on g:

x®P = x — aVg(x),

1
x* = argmin {zuy XD ah(y)} ,
y

If h(x) = Al|x||1, then

1
arg min EHy — x|> 4 aX||y |l = sgn(x) max{0, |x| — Ao}
y

Convergence rates are still the same as for minimizing g.
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Proximal-Gradient Method

@ lterative Soft-Thresholding methods are a special case:
h(x) = Allx[1-

o In this case prox,, [x]; is sgn(x) max{0, [x| — A}

T

=
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Proximal-Gradient Method

@ lterative Soft-Thresholding methods are a special case:
h(x) = Allx|l1.

@ In this case prox,, [x]; is sgn(x) max{0, [x| — Aa}

xx - oug’(xk)
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Proximal-Gradient Method

@ lterative Soft-Thresholding methods are a special case:
h(x) = Allx[1-

o In this case prox,, [x]; is sgn(x) max{0, [x| — A}

=

Xr - og’ (Xx)
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Proximal-Gradient Method

@ lterative Soft-Thresholding methods are a special case:
h(x) = Allx[l1.

@ In this case prox,, [x]; is sgn(x) max{0, [x| — Aa}

Xk - akg > (xk)

r=
i \—ﬂ l‘OXmIXA ){/kg (Xk)\]
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Frank-Wolfe Method

@ The projected gradient step

xt

yeC

may be hard to compute.

@ Frank-Wolfe method simply uses:

xt = argmin{f(x) + VF(x)T(y —X)} ,

yeC

Stochastic Optimization

= argmin { £ + V707 =) + 5.y — <12}

requires compact C, takes convex combination of x and x™.



Non-Smooth Optimization

Frank-Wolfe Method

The projected gradient step

1

xt = arg min {f(x) + V()T (y — x) + THY - tz} ,
yeC o

may be hard to compute.

Frank-Wolfe method simply uses:

xT = argmin{f(x) + Vf(x)T(y —X)} )

yeC
requires compact C, takes convex combination of x and x™.
Iterate can be written as convex combination of vertices of C.

O(1/t) rate for smooth convex objectives, some linear
convergence results for smooth and strongly-convex.
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Alternating Direction Method of Multipliers

@ Alernating direction method of multipliers (ADMM) solves:

i h(y).
AxTéE:cg(X) + h(y)
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Alternating Direction Method of Multipliers

@ Alernating direction method of multipliers (ADMM) solves:

i h(y).
AXTé;:Cg(X) + h(y)

@ Can introduce constraints to convert to this form:
min g(x) + Allyll1.
x=y

o Alternate between prox-like operators with respect to x and y.

@ Useful method for large-scale parallelization.
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Dual Methods

@ Stronly-convex problems have smooth duals.

@ Solve the dual instead of the primal.
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Dual Methods

@ Stronly-convex problems have smooth duals.
@ Solve the dual instead of the primal.

@ SVM non-smooth strongly-convex primal:

N
: 1
min C E 1 max{0,1 — b;a] x} + E”XHZ
=

@ SVM smooth dual:

min —a' AA T« Za,
0<a<C 2

@ There are many fast methods for bound-constrained problems.
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Outline

@ Stochastic Optimization
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Stochastic Gradient Method

@ Stochastic gradient method uses the iteration

+

xT =x—ad,

where d is an unbiased estimator of V£ (x), so E[d] = Vf(x).

(often using averaging over x or d)

@ As in subgradient method, we require a — 0.

(but better in practice with constant step size)
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Stochastic Gradient Method

@ Stochastic gradient method uses the iteration

xT =x—ad,

where d is an unbiased estimator of Vf(x), so E[d] = Vf(x).

(often using averaging over x or d)

@ As in subgradient method, we require o — 0.

(but better in practice with constant step size)
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Stochastic Gradient Method

@ Stochastic gradient method uses the iteration
xT =x—ad,

where d is an unbiased estimator of Vf(x), so E[d] = Vf(x).

(often using averaging over x or d)

@ As in subgradient method, we require a — 0.
(but better in practice with constant step size)

@ For problems of the form

1N

mXin N Z fi(x),
i=1
we take d = Vfi(x) for a random i.

@ lterations require N times fewer gradient evaluations.
@ Appealing when N is large, but how fast is it?



Convex Optimization Zoo

Stochastic Optimization

Algorithm Assumptions Exact Stochastic
Subgradient LF, Convex O(1/V't) O(1/V't)
Subgradient LF, Strongly O(1/t) O(1/t)
Nesterov Smoothed, Convex O(1/t) O(1/Vt)
Gradient LG, Convex O(1/t) O(1/V't)
Nesterov LG, Convex O(1/t?) O(1/V't)
Gradient LG, Strongly O((1—u/L)Y) O(1/t)
Nesterov LG, Strongly O((1— +/u/L)Y) O(1/t)
Newton LG,LH, Strongly | O(T]i_;pe)spe — 0 | O(1/t)



Convex Optimization Zoo

Stochastic Optimization

Algorithm Assumptions Exact Stochastic
Subgradient LF, Convex O(1/V't) O(1/V't)
Subgradient LF, Strongly O(1/t) O(1/t)
Nesterov Smoothed, Convex O(1/t) O(1/Vt)
Gradient LG, Convex O(1/t) O(1/V't)
Nesterov LG, Convex O(1/t?) O(1/V't)
Gradient LG, Strongly O((1—u/L)Y) O(1/t)
Nesterov LG, Strongly O((1— +/u/L)Y) O(1/t)
Newton LG,LH, Strongly | O(T]i_;pe)spe — 0 | O(1/t)

@ Good news: for general non-smooth problems, stochastic is as
fast as deterministic

@ We can solve non-smooth problems N times faster!



Convex Optimization Zoo

Stochastic Optimization

Algorithm Assumptions Exact Stochastic
Subgradient LF, Convex O(1/V't) O(1/V't)
Subgradient LF, Strongly O(1/t) O(1/t)
Nesterov Smoothed, Convex O(1/t) O(1/Vt)
Gradient LG, Convex O(1/t) O(1/V't)
Nesterov LG, Convex O(1/t?) O(1/V't)
Gradient LG, Strongly O((1—u/L)Y) O(1/t)
Nesterov LG, Strongly O((1— +/u/L)Y) O(1/t)
Newton LG,LH, Strongly | O(T]i_;pe)spe — 0 | O(1/t)

@ Good news: for general non-smooth problems, stochastic is as
fast as deterministic
@ We can solve non-smooth problems N times faster!
@ Bad news: smoothness assumptions don't help stochastic
methods (most of these rates are optimal).

(recent work shows that O(1/t) for Newton may not require strong convexity)
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Motivation for Hybrid Methods for Smooth Problems
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Motivation for Hybrid Methods for Smooth Problems

stochastic

deterministic

log(excess cost)

hybrid

Y

time
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Stochastic Average Gradient Method

@ Should we use stochastic methods for smooth problems?
@ Problem is that noise doesn't go to 0.

@ Solution: make the noise go to zero ‘fast enough’.
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Stochastic Average Gradient Method

@ Should we use stochastic methods for smooth problems?
@ Problem is that noise doesn't go to 0.
@ Solution: make the noise go to zero ‘fast enough’.

@ Possible in the case of finite data sets:

mm—Zf

@ Stochastic average gradient (SAG) method:

—X—*Zy,,

on each iteration replace a random y; with Vf;(x).



Stochastic Optimization

Convex Optimization Zoo

Algorithm Assumptions Rate Grads
S(Subgrad) LF, Convex O(1/V't) 1
S(Subgrad) LF, Strongly O(1/t) 1
SAG LG, Convex O(1/t) 1
SAG LG, Strongly O((1 — min{ 3L, s DY) 1
Nesterov Smoothed, Convex O(1/t) N
Gradient LG, Convex O(1/t) N
Nesterov LG, Convex O(1/t2) N
Gradient LG, Strongly O((1—u/L)Y) N
Nesterov LG, Strongly O((1—+/u/L)Y) N
Newton LH, Strongly O(ITi=y pt)spt — O N?



Convex Optimization Zoo

Stochastic Optimization

Algorithm Assumptions Rate Grads
S(Subgrad) LF, Convex O(1/V't) 1
S(Subgrad) LF, Strongly O(1/t) 1
SAG LG, Convex O(1/t) 1
SAG LG, Strongly O((1 — min{ 3L, s DY) 1
Nesterov Smoothed, Convex O(1/t) N
Gradient LG, Convex O(1/t) N
Nesterov LG, Convex O(1/t2) N
Gradient LG, Strongly O((1—u/L)Y) N
Nesterov LG, Strongly O((1—+/u/L)Y) N
Newton LH, Strongly O(ITi=y pt)spt — O N?

@ L;is the Lipschitz constant over all f/ (L; > L).
@ SAG has a similar speed to the gradient method, but only

looks at one training example per iteration.
@ Recent work gives prox, ADMM, and memory-free variants.
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Coordinate Descent Methods

@ In coordinate descent methods we only update one variable:

+ .
X" = Xj ad.

@ We can often cheaply perform a very precise line-search.
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Coordinate Descent Methods

@ In coordinate descent methods we only update one variable:
+ .
X" =Xj— ad.

We can often cheaply perform a very precise line-search.

The steepest descent choice is j = arg min; {V;f(x)}.

(but only efficient to calculate in some special cases)

Choosing a random j has the same convergence rate.

Faster rate if j sampled according to Lipschitz constants.



Stochastic Optimization

Coordinate Descent Methods

In coordinate descent methods we only update one variable:

+ .
X" = Xj ad.

We can often cheaply perform a very precise line-search.
The steepest descent choice is j = arg min; {V;f(x)}.

(but only efficient to calculate in some special cases)
Choosing a random j has the same convergence rate.

Faster rate if j sampled according to Lipschitz constants.
Various extensions:

Accelerated version (may lose sparsity of update)
Projected coordinate descent (product constraints)
Frank-Wolfe coordinate descent (product constraints)
Proximal coordinate descent (separable non-smooth term)

(exact step size for ¢1-regularized least squares)
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Convex Optimization Zoo

Algorithm Assumptions Rate
S(Subgrad) LF, Convex O(1/V't)
S(Subgrad) LF, Strongly O(1/t)

SAG LG, Convex O(1/t)

SAG LG, Strongly O((1 — min{ gL =15
CD-Uniform LP, Convex O(1/t)
CD-Uniform LP, Strongly O((1 — u/L1P)Y)
CD-Lipschitz LP, Strongly O((T—p/ > L)Y
Nesterov Smoothed, Convex O(1/t)
Gradient LG, Convex O(1/t)
Nesterov LG, Convex O(1/t?)
Gradient LG, Strongly O((1 —p/L)Y)
Nesterov LG, Strongly O((1 - +/u/L)Y)
Newton LH, Strongly O(ITi—y pt),pt — 0

@ Ly > Ly >...Lp are Lipschitz constants of the partials V;f

(Ly < L < PLy).
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References

A reference to start with for each part:

e Part 1. Convex Optimization (Boyd and Vandenberghe)

o Part 2: Introductory Lectures on Convex Optimization
(Nesterov)

o Part 3: Convex Optimization Theory (Bertsekas)

o Part 4: Efficient Methods in Convex Programming
(Nemirovski)

E-mail me for the other references (mark.schmidt@sfu)
Come talk to me in TASC 9404.

For tutorial material and code:
http://www.di.ens.fr/~mschmidt/MLSS

Come join the MLRG:
http://www.di.ens.fr/~mschmidt/MLRG.html


http://www.di.ens.fr/~mschmidt/MLSS
http://www.di.ens.fr/~mschmidt/MLRG.html
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