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Motivation: Why Learn about Convex Optimization?

Why learn about optimization?

Optimization is at the core of many ML algorithms.

ML is driving a lot of modern research in optimization.

Why in particular learn about convex optimization?

Among only efficiently-solvable continuous problems.

You can do a lot with convex models.
(least squares, lasso, generlized linear models, SVMs, CRFs)

Empirically effective non-convex methods are often based
methods with good properties for convex objectives.

(functions are locally convex around minimizers)
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Convexity: Zero-order condition

A real-valued function is convex if

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y),

for all x, y ∈ Rn and all 0 ≤ θ ≤ 1.

Function is below a linear interpolation from x to y .

Implies that all local minima are global minima.
(contradiction otherwise)
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Convexity of Norms

We say that a function f is a norm if:

1 f (0) = 0.

2 f (θx) = |θ|f (x).

3 f (x + y) ≤ f (x) + f (y).

Examples:

‖x‖2 =

√∑

i

x2
i =
√

xT x

‖x‖1 =
∑

i

|xi |

‖x‖H =
√

xTHx

Norms are convex:

f (θx + (1− θ)y) ≤ f (θx) + f ((1− θ)y) (3)

= θf (x) + (1− θ)f (y) (2)
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Strict Convexity

A real-valued function is strictly convex if

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y),

for all x 6= y ∈ Rn and all 0 < θ < 1.

Strictly below the linear interpolation from x to y .

Implies at most one global minimum.
(otherwise, could construct lower global minimum)
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Convexity: First-order condition

A real-valued differentiable function is convex iff

f (y) ≥ f (x) +∇f (x)T (y − x),

for all x, y ∈ Rn.

The function is globally above the tangent at x .
(if ∇f (y) = 0 then y is a a global minimizer)
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Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff

∇2f (x) � 0

for all x ∈ Rn.

The function is flat or curved upwards in every direction.

A real-valued function f is a quadratic if it can be written in the
form:

f (x) =
1

2
xTAx + bT x + c .

Since ∇f (x) = Ax + b and ∇2f (x) = A, it is convex if A � 0.
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Examples of Convex Functions

Some simple convex functions:

f (x) = c

f (x) = aT x

f (x) = xa2 + b

f (x) = exp(ax)

f (x) = x log x (for x > 0)

f (x) = ||x ||2
f (x) = maxi{xi}

Some other notable examples:

f (x , y) = log(ex + ey )

f (X ) = log det X (for X positive-definite).

f (x ,Y ) = xTY−1x (for Y positive-definite)
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Operations that Preserve Convexity

1 Non-negative weighted sum:

f (x) = θ1f1(x) + θ2f2(x).

2 Composition with affine mapping:

g(x) = f (Ax + b).

3 Pointwise maximum:

f (x) = max
i
{fi (x)}.

Show that least-residual problems are convex for any `p-norm:

f (x) = ||Ax − b||p

We know that ‖ · ‖p is a norm, so it follows from (2).
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2 Composition with affine mapping:

g(x) = f (Ax + b).

3 Pointwise maximum:

f (x) = max
i
{fi (x)}.

Show that SVMs are convex:

f (x) =
1

2
||x ||2 + C

n∑

i=1

max{0, 1− bia
T
i x}.

The first term has Hessian I � 0, for the second term use (3) on
the two (convex) arguments, then use (1) to put it all together.
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How hard is real-valued optimization?
How long to find an ε-optimal minimizer of a real-valued function?

min
x∈Rn

f (x).

General function: impossible!
(think about arbitrarily small value at some infinite decimal expansion)

We need to make some assumptions about the function:

Assume f is Lipschitz-continuous: (can not change too quickly)

|f (x)− f (y)| ≤ L‖x − y‖.
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After t iterations, the error of any algorithm is Ω(1/t1/n).
(this is in the worst case, and note that grid-search is nearly optimal)

Optimization is hard, but assumptions make a big difference.
(we went from impossible to very slow)
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`2-Regularized Logistic Regression

Consider `2-regularized logistic regression:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))) +
λ

2
‖x‖2.

Objective f is convex.

First term is Lipschitz continuous.

Second term is not Lipschitz continuous.

But we have
µI � ∇2f (x) � LI .

(L = 1
4
‖A‖2

2 + λ, µ = λ)

Gradient is Lipschitz-continuous.

Function is strongly-convex.
(implies strict convexity, and existence of unique solution)
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Properties of Lipschitz-Continuous Gradient
From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � LI .

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖2

Global quadratic upper bound on function value.
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Properties of Lipschitz-Continuous Gradient
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Set x+ to minimize upper bound in terms of y :

x+ = x − 1

L
∇f (x).

(gradient descent with step-size of 1/L)

Plugging this value in:

f (x+) ≤ f (x)− 1

2L
‖∇f (x)‖2.

(decrease of at least 1
2L
‖∇f (x)‖2)
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Properties of Strong-Convexity
From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1
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Properties of Strong-Convexity
From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1
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Use that ∇2f (z) � µI .

f (y) ≥ f (x) +∇f (x)T (y − x) +
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Properties of Strong-Convexity

From Taylor’s theorem, for some z we have:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

Use that ∇2f (z) � µI .

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
‖y − x‖2

Global quadratic upper bound on function value.

Minimize both sides in terms of y :

f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.

Upper bound on how far we are from the solution.
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Linear Convergence of Gradient Descent

We have bounds on x+ and x∗:

f (x+) ≤ f (x)− 1

2L
‖∇f (x)‖2, f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.
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Linear Convergence of Gradient Descent

We have bounds on x+ and x∗:

f (x+) ≤ f (x)− 1

2L
‖∇f (x)‖2, f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2.

combine them to get

f (x+) ≤ f (x)− µ

L
[f (x)− f (x∗)]

f (x+)− f (x∗) ≤
(

1− µ

L

)
[f (x)− f (x∗)]

This gives a linear convergence rate:

f (x t)− f (x∗) ≤
(

1− µ

L

)t
[f (x0)− f (x∗)]

Each iteration multiplies the error by a fixed amount.
(very fast if µ/L is not too close to one)
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Maximum Likelihood Logistic Regression
What maximum-likelihood logistic regression?

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)
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Maximum Likelihood Logistic Regression

Consider maximum-likelihood logistic regression:

f (x) =
n∑

i=1

log(1 + exp(−bi (xTai ))).

We now only have

0 � ∇2f (x) � LI .

Convexity only gives a linear upper bound on f (x∗):

f (x∗) ≤ f (x) +∇f (x)T (x∗ − x)

If some x∗ exists, we have the sublinear convergence rate:

f (x t)− f (x∗) = O(1/t)

(compare to slower Ω(1/t−1/N) for general Lipschitz functions)

If f is convex, then f + λ‖x‖2 is strongly-convex.
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Gradient Method: Practical Issues
In practice, searching for step size (line-search) is usually
much faster than α = 1/L.

(and doesn’t require knowledge of L)

Basic Armijo backtracking line-search:
1 Start with a large value of α.
2 Divide α in half until we satisfy (typically value is γ = .0001)

f (x+) ≤ f (x)− γα||∇f (x)||2.
Practical methods may use Wolfe conditions (so α isn’t too
small), and/or use interpolation to propose trial step sizes.

(with good interpolation, ≈ 1 evaluation of f per iteration)

Also, check your derivative code!

∇i f (x) ≈ f (x + δei )− f (x)

δ
For large-scale problems you can check a random direction d :

∇f (x)Td ≈ f (x + δd)− f (x)

δ
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Convex Optimization Zoo

We are going to explore the ‘convex optimization zoo’:

Algorithm Assumptions Rate

Gradient Lipshitz Gradient, Convex O(1/t)
Gradient Lipshitz Gradient, Strongly-Convex O((1− µ/L)t)

Rates are the same if only once-differentiable.

Line-search doesn’t change the worst-case rate.
(strongly-convex slightly improved with α = 2/(µ+ L))

Is this the best algorithm under these assumptions?
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Accelerated Gradient Method

Nesterov’s accelerated gradient method:

xt+1 = yt − αt f
′(yt),

yt+1 = xt + βt(xt+1 − xt),

for appropriate αt , βt .

Motivation: “to make the math work”
(but similar to heavy-ball/momentum and conjugate gradient method)
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Convex Optimization Zoo

Algorithm Assumptions Rate

Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t2)
Gradient Lipshitz Gradient, Strongly-Convex O((1− µ/L)t)

Nesterov Lipshitz Gradient, Strongly-Convex O((1−
√
µ/L)t)

O(1/t2) is optimal given only these assumptions.
(sometimes called the optimal gradient method)

The faster linear convergence rate is close to optimal.

Also faster in practice, but implementation details matter.
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Newton’s Method

The oldest differentiable optimization method is Newton’s.
(also called IRLS for functions of the form f (Ax))

Modern form uses the update

x+ = x − αd ,

where d is a solution to the system

∇2f (x)d = ∇f (x).
(Assumes ∇2f (x) � 0)

Equivalent to minimizing the quadratic approximation:

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2α
‖y − x‖2

∇2f (x).

(recall that ‖x‖2
H = xTHx)

We can generalize the Armijo condition to

f (x+) ≤ f (x) + γα∇f ′(x)Td .

Has a natural step length of α = 1.
(always accepted when close to a minimizer)
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Newton’s Method

f(x)
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Newton’s Method

f(x)

f(x) + ∇f(x)T(y-x) + (1/2)(y-x)T∇2f(x)(y-x)
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Convergence Rate of Newton’s Method

If ∇2f (x) is Lipschitz-continuous and ∇2f (x) � µ, then close
to x∗ Newton’s method has superlinear convergence:

f (x t+1)− f (x∗) ≤ ρt [f (x t)− f (x∗)],

with limt→∞ ρt = 0.

Converges very fast, use it if you can!

But requires solving ∇2f (x)d = ∇f (x).
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Convex Optimization Zoo

Algorithm Assumptions Rate

Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t2)
Gradient Lipshitz Gradient, Strongly-Convex O((1− µ/L)t)

Nesterov Lipshitz Gradient, Strongly-Convex O((1−
√
µ/L)t)

Newton Lipschitz Hessian, Strongly-Convex O(
∏t

i=1 ρt), ρt → 0

Here the classical analysis gives a local rate.

Recent work gives global rates under various assumptions
(cubic-regularization/accelerated/self-concordant).
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Newton’s Method: Practical Issues
There are many practical variants of Newton’s method:

Modify the Hessian to be positive-definite.

Only compute the Hessian every m iterations.

Only use the diagonals of the Hessian.

Quasi-Newton: Update a (diagonal plus low-rank)
approximation of the Hessian (BFGS, L-BFGS).

Hessian-free: Compute d inexactly using Hessian-vector
products:

∇2f (x)Td = lim
δ→0

∇f (x + δd)−∇f (x)

δ

Barzilai-Borwein: Choose a step-size that acts like the Hessian
over the last iteration:

α =
(x+ − x)T (∇f (x+)−∇f (x))

‖∇f (x+)− f (x)‖2

Another related method is nonlinear conjugate gradient.
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Motivation: Sparse Regularization

Consider `1-regularized optimization problems,

min
x

f (x) = g(x) + λ‖x‖1,

where g is differentiable.

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

How can we solve non-smooth convex optimization problems?



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Motivation: Sparse Regularization

Consider `1-regularized optimization problems,

min
x

f (x) = g(x) + λ‖x‖1,

where g is differentiable.

For example, `1-regularized least squares,

min
x
‖Ax − b‖2 + λ‖x‖1

Regularizes and encourages sparsity in x

The objective is non-differentiable when any xi = 0.

How can we solve non-smooth convex optimization problems?



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y .

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dT (y − x),∀y .
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y .

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

f is differentiable at x iff ∇f (x) is the only subgradient.

At non-differentiable x , we have a set of subgradients.

Set of subgradients is the sub-differential ∂f (x).

Note that 0 ∈ ∂f (x) iff x is a global minimum.
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Sub-Differential of Absolute Value and Max Functions

The sub-differential of the absolute value function:

∂|x | =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)
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The sub-differential of the maximum of differentiable fi :

∂max{f1(x), f2(x)} =





∇f1(x) f1(x) > f2(x)
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θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

(any convex combination of the gradients of the argmax)
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Sub-gradient method
The sub-gradient method:

x+ = x − αd ,

for some d ∈ ∂f (x).

The steepest descent step is given by argmind∈∂f (x){‖d‖}.
(often hard to compute, but easy for `1-regularization)

Otherwise, may increase the objective even for small α.
But ‖x+ − x∗‖ ≤ ‖x − x∗‖ for small enough α.
For convergence, we require α→ 0.
Many variants average the iterations:

x̄k =
k−1∑

i=0

wix
i .

Many variants average the gradients (‘dual averaging’):

d̄k =
k−1∑

i=0

wid
i .
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Convex Optimization Zoo

Algorithm Assumptions Rate

Subgradient Lipschitz Function, Convex O(1/
√

t)
Subgradient Lipschitz Function, Strongly O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t2)
Gradient Lipshitz Gradient, Strongly O((1− µ/L)t)

Nesterov Lipshitz Gradient, Strongly O((1−
√
µ/L)t)

Newton Lipschitz Hessian, Strongly O(
∏t

i=1 ρt), ρt → 0

Alternative is cutting-plane/bundle methods:
Minimze an approximation based on all subgradients {dt}.
But have the same rates as the subgradient method.

(tend to be better in practice)

Bad news: Rates are optimal for black-box methods.

But, we often have more than a black-box.
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√

x2 + ν.
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Smoothing Approximations of Non-Smooth Functions

Smoothing: replace non-smooth f with smooth fε.

Apply a fast method for smooth optimization.

Smooth approximation to the absolute value:

|x | ≈
√

x2 + ν.

Smooth approximation to the max function:

max{a, b} ≈ log(exp(a) + exp(b))

Smooth approximation to the hinge loss:

max{0, x} ≈





0 x ≥ 1

1− x2 t < x < 1

(1− t)2 + 2(1− t)(t − x) x ≤ t

Generic strategy for constructing ε approximation with
O(1/ε)-Lipschitz gradient: strongly-convex regularization of
convex conjugate. (but we won’t discuss this in detail)
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Convex Optimization Zoo

Algorithm Assumptions Rate

Subgradient Lipschitz Function, Convex O(1/
√

t)
Subgradient Lipschitz Function, Strongly O(1/t)
Gradient Smoothed to 1/ε, Convex O(1/

√
t)

Nesterov Smoothed to 1/ε, Convex O(1/t)
Gradient Lipshitz Gradient, Convex O(1/t)
Nesterov Lipshitz Gradient, Convex O(1/t2)
Gradient Lipshitz Gradient, Strongly O((1− µ/L)t)

Nesterov Lipshitz Gradient, Strongly O((1−
√
µ/L)t)

Newton Lipschitz Hessian, Strongly O(
∏t

i=1 ρt), ρt → 0

Smoothing is only faster if you use Nesterov’s method.

In practice, faster to slowly decrease smoothing level.

You can get the O(1/t) rate for minx max{fi (x)} for fi convex
and smooth using Nemirosky’s mirror-prox method.
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Converting to Constrained Optimization

Re-write non-smooth problem as constrained problem.

The problem
min
x

g(x) + λ‖x‖1,

is equivalent to the problem

min
x+≥0,x−≥0

g(x+ − x−) + λ
∑

i

(x+
i + x−i ),

or the problems

min
−y≤x≤y

g(x) + λ
∑

i

yi , min
‖x‖1≤τ

g(x) + λτ

These are smooth objective with ‘simple’ constraints.

min
x∈C

f (x).
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Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x+ = argmin
y

{
f (x) +∇f (x)T (y − x) +

1

2α
‖y − x‖2

}
.

Consider minimizing subject to simple constraints:

x+ = argmin
y∈C

{
f (x) +∇f (x)T (y − x) +

1

2α
‖y − x‖2

}
.

Equivalent to projection of gradient descent:

xGD = x − α∇f (x),

x+ = argmin
y∈C

{
‖y − xGD‖

}
,
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Gradient Projection

f(x)
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Feasible Set
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Projection Onto Simple Sets

Projections onto simple sets:

argminy≥0 ‖y − x‖ = max{x , 0}
argminl≤y≤u ‖y − x‖ = max{l ,min{x , u}}
argminaT y=b ‖y − x‖ = x + (b − aT x)a/‖a‖2.

argminaT y≥b ‖y − x‖ =

{
x aT x ≥ b

x + (b − aT x)a/‖a‖2 aT x < b

argmin‖y‖≤τ ‖y − x‖ = τx/‖x‖.
Linear-time algorithm for `1-norm ‖y‖1 ≤ τ .

Linear-time algorithm for probability simplex y ≥ 0,
∑

y = 1.

Intersection of simple sets: Dykstra’s algorithm.



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Convex Optimization Zoo

Algorithm Assumptions Rate

P(Subgradient) Lipschitz Function, Convex O(1/
√

t)
P(Subgradient) Lipschitz Function, Strongly O(1/t)
P(Nesterov) Smoothed to 1/ε, Convex O(1/t)
P(Gradient) Lipshitz Gradient, Convex O(1/t)
P(Nesterov) Lipshitz Gradient, Convex O(1/t2)
P(Gradient) Lipshitz Gradient, Strongly O((1− µ/L)t)

P(Nesterov) Lipshitz Gradient, Strongly O((1−
√
µ/L)t)

P(Newton) Lipschitz Hessian, Strongly O(
∏t

i=1 ρt), ρt → 0

Convergence rates are the same for projected versions!
Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Barzilai-Borwein, quasi-Newton).
For Newton, you need to project under ‖ · ‖∇2f (x)

(expensive, but special tricks for the case of simplex or lower/upper bounds)

You don’t need to compute the projection exactly.
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Proximal-Gradient Method

A generalization of projected-gradient is Proximal-gradient.

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is smooth but h is a general convex function.

Applies proximity operator of h to gradient descent on g :

xGD = x − α∇g(x),

x+ = argmin
y

{
1

2
‖y − xGD‖2 + αh(y)

}
,

If h(x) = λ‖x‖1, then

argmin
y

1

2
‖y − x‖2 + αλ‖y‖1 = sgn(x) max{0, |x | − λα}

Convergence rates are still the same as for minimizing g .



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Proximal-Gradient Method

A generalization of projected-gradient is Proximal-gradient.

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is smooth but h is a general convex function.

Applies proximity operator of h to gradient descent on g :

xGD = x − α∇g(x),

x+ = argmin
y

{
1

2
‖y − xGD‖2 + αh(y)

}
,

If h(x) = λ‖x‖1, then

argmin
y

1

2
‖y − x‖2 + αλ‖y‖1 = sgn(x) max{0, |x | − λα}

Convergence rates are still the same as for minimizing g .



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Proximal-Gradient Method

A generalization of projected-gradient is Proximal-gradient.

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is smooth but h is a general convex function.

Applies proximity operator of h to gradient descent on g :

xGD = x − α∇g(x),

x+ = argmin
y

{
1

2
‖y − xGD‖2 + αh(y)

}
,

If h(x) = λ‖x‖1, then

argmin
y

1

2
‖y − x‖2 + αλ‖y‖1 = sgn(x) max{0, |x | − λα}

Convergence rates are still the same as for minimizing g .



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Proximal-Gradient Method

Iterative Soft-Thresholding methods are a special case:

h(x) = λ‖x‖1.

In this case proxαk
[x ]i is sgn(x) max{0, |x | − λα}

g(x)

xk
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Frank-Wolfe Method

The projected gradient step

x+ = argmin
y∈C

{
f (x) +∇f (x)T (y − x) +

1

2α
‖y − x‖2

}
,

may be hard to compute.

Frank-Wolfe method simply uses:

x+ = argmin
y∈C

{
f (x) +∇f (x)T (y − x)

}
,

requires compact C, takes convex combination of x and x+.

Iterate can be written as convex combination of vertices of C.

O(1/t) rate for smooth convex objectives, some linear
convergence results for smooth and strongly-convex.
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Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

min
Ax+By=c

g(x) + h(y).

Can introduce constraints to convert to this form:

min
x=y

g(x) + λ‖y‖1.

Alternate between prox-like operators with respect to x and y .

Useful method for large-scale parallelization.
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Dual Methods

Stronly-convex problems have smooth duals.

Solve the dual instead of the primal.

SVM non-smooth strongly-convex primal:

min
x

C
N∑

i=1

max{0, 1− bia
T
i x}+

1

2
‖x‖2.

SVM smooth dual:

min
0≤α≤C

1

2
αTAATα−

N∑

i=1

αi

There are many fast methods for bound-constrained problems.
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Stochastic Gradient Method

Stochastic gradient method uses the iteration

x+ = x − αd ,

where d is an unbiased estimator of ∇f (x), so E[d ] = ∇f (x).
(often using averaging over x or d)

As in subgradient method, we require α→ 0.
(but better in practice with constant step size)
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Stochastic Gradient Method

Stochastic gradient method uses the iteration

x+ = x − αd ,

where d is an unbiased estimator of ∇f (x), so E[d ] = ∇f (x).
(often using averaging over x or d)

As in subgradient method, we require α→ 0.
(but better in practice with constant step size)

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic Gradient Method

Stochastic gradient method uses the iteration

x+ = x − αd ,

where d is an unbiased estimator of ∇f (x), so E[d ] = ∇f (x).
(often using averaging over x or d)

As in subgradient method, we require α→ 0.
(but better in practice with constant step size)

For problems of the form

min
x

1

N

N∑

i=1

fi (x),

we take d = ∇fi (x) for a random i .

Iterations require N times fewer gradient evaluations.

Appealing when N is large, but how fast is it?
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Convex Optimization Zoo

Algorithm Assumptions Exact Stochastic

Subgradient LF, Convex O(1/
√

t) O(1/
√

t)
Subgradient LF, Strongly O(1/t) O(1/t)
Nesterov Smoothed, Convex O(1/t) O(1/

√
t)

Gradient LG, Convex O(1/t) O(1/
√

t)
Nesterov LG, Convex O(1/t2) O(1/

√
t)

Gradient LG, Strongly O((1− µ/L)t) O(1/t)

Nesterov LG, Strongly O((1−
√
µ/L)t) O(1/t)

Newton LG,LH, Strongly O(
∏t

i=1 ρt), ρt → 0 O(1/t)

Good news: for general non-smooth problems, stochastic is as
fast as deterministic
We can solve non-smooth problems N times faster!
Bad news: smoothness assumptions don’t help stochastic
methods (most of these rates are optimal).

(recent work shows that O(1/t) for Newton may not require strong convexity)
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Motivation for Hybrid Methods for Smooth Problems

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic
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Motivation for Hybrid Methods for Smooth Problems

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
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Stochastic Average Gradient Method

Should we use stochastic methods for smooth problems?

Problem is that noise doesn’t go to 0.

Solution: make the noise go to zero ‘fast enough’.

Possible in the case of finite data sets:

min
x

1

N

N∑

i=1

fi (x),

Stochastic average gradient (SAG) method:

x+ = x − α

N

N∑

i=1

yi ,

on each iteration replace a random yi with ∇fi (x).



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Stochastic Average Gradient Method

Should we use stochastic methods for smooth problems?

Problem is that noise doesn’t go to 0.

Solution: make the noise go to zero ‘fast enough’.

Possible in the case of finite data sets:

min
x

1

N

N∑

i=1

fi (x),

Stochastic average gradient (SAG) method:

x+ = x − α

N

N∑

i=1

yi ,

on each iteration replace a random yi with ∇fi (x).



Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Convex Optimization Zoo

Algorithm Assumptions Rate Grads

S(Subgrad) LF, Convex O(1/
√

t) 1
S(Subgrad) LF, Strongly O(1/t) 1
SAG LG, Convex O(1/t) 1
SAG LG, Strongly O((1−min{ µ

16Li
, 1

8N })t) 1

Nesterov Smoothed, Convex O(1/t) N
Gradient LG, Convex O(1/t) N
Nesterov LG, Convex O(1/t2) N
Gradient LG, Strongly O((1− µ/L)t) N

Nesterov LG, Strongly O((1−
√
µ/L)t) N

Newton LH, Strongly O(
∏t

i=1 ρt), ρt → 0 N2

Li is the Lipschitz constant over all f ′i (Li ≥ L).
SAG has a similar speed to the gradient method, but only
looks at one training example per iteration.
Recent work gives prox, ADMM, and memory-free variants.
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Coordinate Descent Methods

In coordinate descent methods we only update one variable:

x+
j = xj − αd .

We can often cheaply perform a very precise line-search.

The steepest descent choice is j = argminj{∇j f (x)}.
(but only efficient to calculate in some special cases)

Choosing a random j has the same convergence rate.

Faster rate if j sampled according to Lipschitz constants.

Various extensions:

Accelerated version (may lose sparsity of update)
Projected coordinate descent (product constraints)
Frank-Wolfe coordinate descent (product constraints)
Proximal coordinate descent (separable non-smooth term)

(exact step size for `1-regularized least squares)
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Convex Optimization Zoo

Algorithm Assumptions Rate

S(Subgrad) LF, Convex O(1/
√

t)
S(Subgrad) LF, Strongly O(1/t)
SAG LG, Convex O(1/t)
SAG LG, Strongly O((1−min{ µ

16Li
, 1

8N })t)
CD-Uniform LP, Convex O(1/t)
CD-Uniform LP, Strongly O((1− µ/L1P)t)
CD-Lipschitz LP, Strongly O((1− µ/∑i Li )

t)
Nesterov Smoothed, Convex O(1/t)
Gradient LG, Convex O(1/t)
Nesterov LG, Convex O(1/t2)
Gradient LG, Strongly O((1− µ/L)t)

Nesterov LG, Strongly O((1−
√
µ/L)t)

Newton LH, Strongly O(
∏t

i=1 ρt), ρt → 0

L1 ≥ L2 ≥ . . . LP are Lipschitz constants of the partials ∇i f
(L1 ≤ L ≤ PL1).
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References

A reference to start with for each part:

Part 1: Convex Optimization (Boyd and Vandenberghe)
Part 2: Introductory Lectures on Convex Optimization
(Nesterov)
Part 3: Convex Optimization Theory (Bertsekas)
Part 4: Efficient Methods in Convex Programming
(Nemirovski)

E-mail me for the other references (mark.schmidt@sfu)

Come talk to me in TASC 9404.

For tutorial material and code:
http://www.di.ens.fr/~mschmidt/MLSS

Come join the MLRG:
http://www.di.ens.fr/~mschmidt/MLRG.html

http://www.di.ens.fr/~mschmidt/MLSS
http://www.di.ens.fr/~mschmidt/MLRG.html
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