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Motivation for Graphical Model Structure Learning

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

What words are related?

Is a post with (car,drive,hockey,pc,win) spam?

What is p(car|drive)? What about p(car|drive,files)?

Can we ‘fill in’ some variables given the others?

Can we generate more items that look like this?
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Estimation in Graphical Models with Unknown Structure
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Undirected graphical models are used to efficiently represent
probability distributions in various applications.

Often the graph structure is known (or assumed).

We consider parameter estimation with an unknown structure.
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Motivations for doing Structure Learning

One approach to this task is to simply fit a dense model.

Alternately, we can search for a sparse set of edges.

Reasons why we might prefer the sparse approach:

Statistical efficiency
Computational efficiency
Structural discovery

There are two classical methods for estimating sparse models:

Constraint-based approaches
Search and score approaches
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Constraint-based Methods 1: Marginal Independence

Perform a series of (in)dependence tests to discover the edges.

One approach is using a pairwise (in)dependence statistic to:

Select the ‘top-k’ neighbors.
Select those above a threshold.

Assesses marginal instead of conditional dependence:

‘true’ neighbors may not have highest marginal dependence.
all variables may be marginally dependent in sparse graphs.
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Constraint-based Methods 2: Conditional Independence

More advanced methods use conditional independence tests.
[Verman & Pearl, 1990, Spirtes and Glymour, 1991]

In some cases, these methods recover the true structure.

However, there are several practical drawbacks:

Number and size of possible conditioning sets is exponential.
Multiple testing gives low statistical power.
Potential for propagation of errors.
Tests don’t assess ability of structure to model the data.

Modern methods alleviate these, but aren’t the focus of talk.
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Search and Score 1: Greedy Forward/Backward

Classical search and score methods:

Start with the empty structure
Add the edge that improves the likelihood the most.
Test for sufficient improvement in the likelihood.
Stop when the test fails.

[Dempster, 1972, Goodman, 1971]
(you can also start with the full structure and work backwards)

Very expensive in high dimensions:

Fits O(p2) models at each of O(p2) steps.
In Gaussian graphical models, fitting model require O(p3).
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Search and Score 2: Restricted Model Classes

Modern search and score methods:

Define a score on structure and parameters.
Use combinatorial-search techniques to optimize the score.
Consider a restricted class of models (chordal, low treewidth).
Use heuristics to approximately evaluate O(p2) candidates.

But these methods still have drawbacks:

The search space is enormous, 2p(p−1)/2 possible models.
Each step may still be very expensive, still need to re-fit.
Restricted classes may be inefficient or ineffective for modelling
some distributions.
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Motivation for NOT doing Structure Learning

Recall the reasons we wanted to do structure learning:

Statistical efficiency
Computational efficiency
Structural discovery

But, even greedy search methods are extremely expensive.

A high-dimensional alternative is fit single dense model but:

use regularization to improve statistical efficiency
use approximations to improve computational efficiency
interpret our parameter estimates for structural discovery.
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Graphical Model Structure Learning with `1-Regularization

We focus on an intermediate between fitting a dense and
sparse model:

Fit a single dense model (possibly with approximations).
Use `1-regularization to encourage parameter sparsity.

We parameterize the model so that parameter sparsity is
equivalent to graph sparsity.

Estimates a sparse model by fitting a single dense model.
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Summary of Contributions

There has been growing interest in this approach:

Gives regularized estimate (like `2-regularization).
Gives sparse estimate (like search methods).
Formulated as a convex optimization.

But previous work usually makes two unrealistic assumptions:

Parameters and edges have a one-to-one correspondence.
The model only includes pairwise dependencies.

This talk outlines methods that remove these assumptions.
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Pairwise Undirected Graphical Models (UGMs)

Pairwise UGMs represent multivariate distributions as a
normalized product of non-negative potential functions:

p(x1, x2, . . . , xp) =
1

Z

p∏
i=1

φi (xi )
∏

(i ,j)∈E

φij(xi , xj)

Z is the constant that makes the distribution integrate to one.

Models the pairwise statistics of all pairs of variables in E .
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Continuous Structure Learning in UGMs

Pairwise UGMs represent multivariate distributions as a
normalized product of non-negative potentials functions:

p(x1, x2, . . . , xp) =
1

Z

p∏
i=1

φi (xi )
∏

(i ,j)∈E

φij(xi , xj)

Structure learning is the task of choosing the edge set E.

Removing the edge is the same as setting φij(xi , xj) = 1,∀ij .
We parameterize so that zero parameters make φij(xi , xj) = 1.

This lets us perform structure learning with `1-regularization.

Mark Schmidt Structure Learning in Undirected Graphical Models



Motivation, Classical Methods
Gausian and Ising graphical models: `1-Regularization

General pairwise models: Group `1-Regularization
High-order models: Structured Sparsity

Further Extensions

Pairwise Undirected Graphical Models
Optimization with `1-Regularization
Gaussian and Ising Graphical Models

Continuous Structure Learning in UGMs

Pairwise UGMs represent multivariate distributions as a
normalized product of non-negative potentials functions:

p(x1, x2, . . . , xp) =
1

Z

p∏
i=1

φi (xi )
∏

(i ,j)∈E

φij(xi , xj)

Structure learning is the task of choosing the edge set E.

Removing the edge is the same as setting φij(xi , xj) = 1,∀ij .
We parameterize so that zero parameters make φij(xi , xj) = 1.

This lets us perform structure learning with `1-regularization.

Mark Schmidt Structure Learning in Undirected Graphical Models



Motivation, Classical Methods
Gausian and Ising graphical models: `1-Regularization

General pairwise models: Group `1-Regularization
High-order models: Structured Sparsity

Further Extensions

Pairwise Undirected Graphical Models
Optimization with `1-Regularization
Gaussian and Ising Graphical Models

Continuous Structure Learning in UGMs

Pairwise UGMs represent multivariate distributions as a
normalized product of non-negative potentials functions:

p(x1, x2, . . . , xp) =
1

Z

p∏
i=1

φi (xi )
∏

(i ,j)∈E

φij(xi , xj)

Structure learning is the task of choosing the edge set E.

Removing the edge is the same as setting φij(xi , xj) = 1,∀ij .
We parameterize so that zero parameters make φij(xi , xj) = 1.

This lets us perform structure learning with `1-regularization.
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Optimization with `1-Regularization

Various fields are now interested in `1-regularization:

min
w

f (w) +

p∑
i=1

λi |wi |

There are efficient algorithms for solving this type of problem.

Under suitable assumptions, yields a sparse solution:

Many coefficients wi are exactly zero.
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`2-Regularization vs. `1-Regularization

`2-regularization is equivalent to optimization over an `2-norm ball:

Unconstrained Solution

L2-Regularized Solution
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Continuous Variables: Gaussian Graphical Models (GGMs)

Structure learning with `1-regularization was first explored for
Gaussian graphical models (GGMs).

GGMs model a multivariate distribution over continuous
variables as a multivariate Gaussian distribution:

p(x1, x2, . . . , xp) =
1

Z
exp(−1

2
(x− b)TW (x− b))

The normalizing constant Z is

Z = (2π)p/2|W |−1/2

Edges correspond to non-zero elements of the precision W .
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Continuous Variables: Gaussian Graphical Models (GGMs)

GGM structure learning with `1-regularization of the precision:

min
W�0,b

−
n∑

m=1

log p(xm|W ,b) +

p∑
i=1

p∑
j=1

λij |Wij |

First explored in [Dahl et al., 2005, Banerjee et al., 2006,
Meinshausen & Buhlmann, 2006, Yuan and Lin, 2007].

Sometimes called the graphical LASSO.

Convex optimization is easily solved with 1000s of variables.
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Binary Variables: Ising Graphical Models (IGMs)

This idea was next explored for Ising graphical models:

p(x1, x2, . . . , xp) =
1

Z
exp(

p∑
i=1

xibi +
∑

(i ,j)∈E

xixjWij)

The normalizing constant Z is

Z =
∑
x′

exp(

p∑
i=1

x ′i bi +
∑

(i ,j)∈E

x ′i x
′
jWij)

Setting the edge weight Wij to zero removes the edge.
IGM structure learning with `1-regularization:

min
W ,b
−

n∑
m=1

log p(xm|W ,b) +

p∑
i=1

p∑
j=1

λij |Wij |
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Approximations for IGMs

IGM case is more difficult than GGM case because of Z :

Z can be computed in O(p3) for GGMs
In general, it is #P-hard to evaluate Z in IGMs.

Several ways to address this have been explored:

Asymmetric pseudo-likelihood [Wainwright et al., 2006].
Bethe approximation [Lee et al., 2006].
Symmetric pseudo-likelihood [Schmidt et al., 2008].
Mean-field approximation, convex Bethe approximation.
Logdet approximation [Banerjee et al., 2008].
Cutting-plane refinement [Kolar and Xing, 2008].
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Structure Learning with Group `1-Regularization

In GGMs/IGMs, there is a one-to-one correspondence between
parameters and edges.

In some case, we want sparsity in groups of parameters:

General log-linear models [Lee et al., 2006].
Blockwise-sparse models [Duchi et al., 2008].
Conditional random fields [Schmidt et al., 2008].

In these cases, we can use group `1-regularization.
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General Pairwise Log-Linear Models

In log-linear models, the log-potentials are linear functions.

IGMs are a special case with binary variables.

log φij(xi , xj ,wij) = xixjwij

But log-linear models allow non-binary discrete variables.

Also useful for (discretized) non-Gaussian continuous data.

The potentials for an edge between three-state variables:

log φij(·, ·,wij) =

 wij11 wij12 wij13

wij21 wij22 wij23

wij31 wij32 wij33


We must set all 9 elements to zero to remove the edge.
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General Pairwise Log-Linear Models
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Blockwise Sparsity
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In blockwise-sparse models, each variable has a type.

We expect some types to be conditionally independent.
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Blockwise Sparsity

In GGMs/IGMs, corresponds to blockwise-sparsity in matrix.
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Conditional Random Fields
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In some scenarios, we also have covariates.

We can consider doing conditional structure learning.

Here, we have a tensor of variables associated with each edge.
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Group `1-Regularization

In all these cases, we want sparsity in groups of parameters.

This can be accomplished with group `1-regularization:

min
w

f (w) +
∑
g

λg ||wg ||2

Applies `1-regularization to the lengths of the groups.

An alternative is group `1-regularization with the `∞-norm:

min
w

f (w) +
∑
g

λg ||wg ||∞

Applies `1-regularization to the maximums of the groups.
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Group `1-Regularization
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Group `1-Regularization with Matrix Groups

In several of the examples, the groups form matrices.

For matrix groups, an alternative is the nuclear norm:

min
W1,W2,...,WG

f (W1,W2, . . . ,WG ) +
∑
g

λg ||Wg ||σ

The nuclear norm, ||Wg ||σ, is the sum of singular values.

Applies `1-regularization to the singular values of the groups.

Encourages the matrices to be low-rank.
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Structure Learning with Group `1-Regularization
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Group `1-Regularization with the `2 group norm.

Encourage group sparsity.
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Group `1-Regularization with the `∞ group norm.

Encourage group sparsity and parameter tieing.
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Group `1-Regularization with the nuclear group norm.

Encourage group sparsity and low-rank.
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Experiments Comparing Parameterizations and Norms

We tested three log-linear edge parameterizations:

log φij(·, ·,wij) =

 wij 0 0
0 wij 0
0 0 wij

 (Ising potentials)

log φij(·, ·,wij) =

 wij1 0 0
0 wij2 0
0 0 wij3

 (gIsing potentials)

log φij(·, ·,wij) =

 wij11 wij12 wij13

wij21 wij22 wij23

wij31 wij32 wij33

 (full potentials)
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Experiments Comparing Parameterizations and Norms

We also tested six regularization strategies:

Tree: Maximum-likelihood tree structure.
L2: `2-Regularization (squared).
L1: `1-Regularization.
L12: Group `1-Regularization (`2-norm).
L1inf: Group `1-Regularization (`∞-norm).
L1nuc: Group `1-Regularization (nuclear norm).
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Experimental Comparison of Different Norms

Results on heart wall motion abnormality data (16 nodes, 5 states):
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Results on USPS digits data (256 nodes, 4 discretization levels):

full

0

0.005

0.01

0.015

0.02

0.025

L2 L1 L12 L1inf L1nuc

te
st

 s
e

t 
re

la
ti
v

e
 n

e
g

a
ti
v

e
 lo

g
−

p
se

u
d

o
−

lik
e

lih
o

o
d

Mark Schmidt Structure Learning in Undirected Graphical Models



Motivation, Classical Methods
Gausian and Ising graphical models: `1-Regularization

General pairwise models: Group `1-Regularization
High-order models: Structured Sparsity

Further Extensions

Group-Sparse Models
Group `1-Regularization
Experiments

Experimental Comparison of Different Norms

Results on USPS digits data (256 nodes, 8 discretization levels):
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Estimated structure on USPS data:
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Structure Learning with `1-Regularization

A list of papers on this topic (incomplete):

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et

al., 2006], [Lee et al., 2006], [Meinshausen & Bühlmann, 2006],

[Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007],

[Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al.,

2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008],

[Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],

[Schmidt et al., 2008], [Fan & Feng, 2009], [Höling & Tibshirani, 2009],

[Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin

et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt &

Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al.,

2010].
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Many of these papers have made the pairwise assumption:

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et

al., 2006], [Lee et al., 2006], [Meinshausen & Bühlmann, 2006],

[Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007],
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Beyond Pairwise Potentials

The pairwise assumption is inherent to Gaussian models.

The pairwise assumption has not traditionally been associated
with log-linear models [Goodman, 1971], [Bishop et al., 1975].

The assumption is restrictive if higher-order statistics matter.

Eg. Mutations in both gene A and gene B lead to cancer.

We want to go beyond pairwise potentials.
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General Log-Linear Models

In log-linear models [Bishop et al., 1975] we write the probability
of a vector x ∈ {1, 2, . . . , k}p as a normalized product

p(x) ,
1

Z

∏
A⊆S

φA(xA),

over each subset A of S , {1, 2, . . . , p},
(except the null set)

We consider gIsing and full parameterizations of these potentials.
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General Log-Linear Models

The full parameterization for a threeway potential on binary nodes,

log φijk (xijk ) = I(xi = 1, xj = 1, xk = 1)wijk111 + I(xi = 1, xj = 1, xk = 2)wijk112

+ I(xi = 1, xj = 2, xk = 1)wijk121 + I(xi = 1, xj = 2, xk = 2)wijk122

+ I(xi = 2, xj = 1, xk = 1)wijk211 + I(xi = 2, xj = 1, xk = 2)wijk212

+ I(xi = 2, xj = 2, xk = 1)wijk221 + I(xi = 2, xj = 2, xk = 2)wijk222.

φA(xA) has k |A| parameters wA.

Setting wA = 0 is equivalent to removing the potential.

In pairwise models we assume wA = 0 if |A| > 2.
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Group `1-Regularization for General Log-Linear Models

We can extend the work on pairwise models to the general case by
solving [Dahinden et al., 2007]:

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA||wA||2,

However,

Sparsity in the groups A does not correspond to conditional
independence.

Without a cardinality restriction, we have an exponential
number of variables.
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Hierarchical Log-Linear Models

Instead of using a cardinality restriction, we use:

Hierarchical Inclusion Restriction:
If wA = 0 and A ⊂ B, then wB = 0.

We can only have (1, 2, 3) if we also have (1, 2), (1, 3), and (2, 3).
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Hierarchical Log-Linear Models

This is the well-known class of hierarchical log-linear models
[Bishop et al., 1975].

Much larger than the set of pairwise models.

Can represent any positive distribution.

Group-sparsity corresponds to conditional independence.

But, we can’t enforce the hierarchical constraint with
(disjoint) group `1-regularization.
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Structured Sparsity for Hierarchical Constraints

Bach [2008], Zhao et al. [2009] enforce hierarchical inclusion
restrictions with overlapping group `1-regularization.
(also known as structured sparsity)

Example:

We can enforce that B is zero whenever A is zero by using
two groups: {B} and {A,B}.
The resulting regularizer is λB ||wB ||2 + λA,B ||wA,B ||2
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Structured Sparsity for Hierarchical Log-Linear Models

We can learn hierarchical log-linear models by solving

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA(
∑

{B|A⊆B}

||wB ||22)1/2.

Under reasonable assumptions, a minimizer of this convex
optimization problem will satisfy hierarchical inclusion.
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Active Set Method

We want to avoid considering the exponential number of
possible higher-order potentials.

We know the solution will be hierarchical, so we propose to
only consider groups that satisfy hierarchical inclusion.

The resulting method guarantees a weak form of global
optimality.
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Active, Inactive, Boundary Groups

We call A an active group if A or some superset of A is
non-zero.

If A is not active, and some subset of A is zero, we call A an
inactive group.

The remaining groups are called boundary group.

Boundary groups can be made non-zero without violating
hierarchical inclusion.
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Active Set Method

Similar to Bach [2008], we use an active set method:

Find the active groups, and sub-optimal boundary groups.

Solve the problem with respect to these variables.

This adds groups that satisfy hierarchical inclusion, and where the
model poorly estimates the higher-moment in the data.

(analogous to the greedy method of [Gevarter, 1987] for fitting
maximum entropy distributions subject to marginal constraints
[Cheeseman, 1983]).
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Example of Active Set Method

Initial boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5

Mark Schmidt Structure Learning in Undirected Graphical Models



Motivation, Classical Methods
Gausian and Ising graphical models: `1-Regularization

General pairwise models: Group `1-Regularization
High-order models: Structured Sparsity

Further Extensions

Hierarchical Log-Linear Models
Active Set Method
Experiments

Example of Active Set Method
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No new boundary groups, so we are done.
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1 2 3 4 5
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Example of Active Set Method

We only considered 4 of 10 possible threeway interactions, 1
of 5 fourway interactions, and no fiveway interactions.

The active set method can save us from looking at an
exponential number of higher-order factors.
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Multivariate Flow Cytometry Experiments

Does it empirically help to have higher-order potentials?

We first consider a small data set where we can tractably compute
the normalizing constant:

Multivariate flow cytometry [Sachs et al., 2005].

We compared:

Pairwise with `2-regularization and group `1-regularization.

Threeway with `2-regularization and group `1-regularization.

Hierarchical with overlapping group `1-regularization.

We trained on 1/3, used 1/3 to select λ, and used 1/3 as a test
set (for 10 random splits).
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Traffic and USPS Experiments

We next consider two larger data sets:

USPS digits data discretized into four states.

Traffic flow level [Shahaf et al., 2009].

On these experiments we used gIsing potentials, and used a
pseudo-likelihood for training/test.
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Structure Estimation

We sought to test whether the HLLM model could recover a
true structure.

We generated samples from a 10-node data set with potentials
(2, 3)(4, 5, 6)(7, 8, 9, 10) and parameters from N (0, 1).

We recorded the number of false positives of different orders
for the first model along the regularization path that includes
the true model.

Eg., with 20000 samples the order was
(8,10)(7,9)(9,10)(7,10)(4,5)(8,9)(2,3)(4,6)(8,9,10)(7,8)
(7,8,9)(7,8,10)(5,6)(1,8)(5,9)(3,8)(3,7)(4,5,6)(1,7)(7,9,10)
(7,8,9,10)
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Synethetic Data: Types of Errors

Types of errors made by HLLM:
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Group Sparse Priors for Covariance Estimation

Earlier we discussed blockwise-sparse models.

What if the blocks aren’t completely sparse?

What if we don’t know the variable types?

We give bounds on integrals of priors over positive-definite
matrices, and a variational method that learns the types.
[Marlin, Schmidt, Murphy, 2009]

Mark Schmidt Structure Learning in Undirected Graphical Models



Motivation, Classical Methods
Gausian and Ising graphical models: `1-Regularization

General pairwise models: Group `1-Regularization
High-order models: Structured Sparsity

Further Extensions

Extensions
Summary

Group Sparse Priors for Covariance Estimation

Earlier we discussed blockwise-sparse models.

What if the blocks aren’t completely sparse?

What if we don’t know the variable types?

We give bounds on integrals of priors over positive-definite
matrices, and a variational method that learns the types.
[Marlin, Schmidt, Murphy, 2009]

Mark Schmidt Structure Learning in Undirected Graphical Models



Motivation, Classical Methods
Gausian and Ising graphical models: `1-Regularization

General pairwise models: Group `1-Regularization
High-order models: Structured Sparsity

Further Extensions

Extensions
Summary

Group Sparse Priors for Covariance Estimation

Earlier we discussed blockwise-sparse models.

What if the blocks aren’t completely sparse?

What if we don’t know the variable types?

We give bounds on integrals of priors over positive-definite
matrices, and a variational method that learns the types.
[Marlin, Schmidt, Murphy, 2009]

Mark Schmidt Structure Learning in Undirected Graphical Models



Motivation, Classical Methods
Gausian and Ising graphical models: `1-Regularization

General pairwise models: Group `1-Regularization
High-order models: Structured Sparsity

Further Extensions

Extensions
Summary

Group Sparse Priors for Covariance Estimation

Learned variable types on mutual fund data:
[Scott & Carvalho, 2008]

The methods discover the ‘stocks’ and ‘bonds’ groups.
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Causality: Modeling Interventions

The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:

If I see that my watch says 11:55, then it’s almost lunch time
If I set my watch so it says 11:55, it doesn’t help

Without knowing the difference, predictions may be useless.

Methods that model interventions are typically called causal.
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Causality: Modeling Interventions

Interventional Cell Signaling Data [Sachs et al., 2005]
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Causality: Modeling Interventions

Causal learning methods are usually evaluated in terms of a
‘true’ underlying DAG.

For real data, the structure may not be known, or even a DAG.

Why not evaluate causal models in terms of modeling the
effects of interventions?

Given this task, there are a variety of approaches to causality.
[Eaton & Murphy, 2007]
[Schmidt & Murphy, 2009]
[Duvenaud, Eaton, Murphy, Schmidt, 2010]
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Other Selected Extensions

Some topics not discussed:

The methods can be extended to handle missing data or
hidden variables.

We can consider mixtures of sparse graphical models.

Stochastic approximation methods allow MCMC for inference.

Can be used as sub-routines in variational Bayes methods.

Can be used as sub-routines in consistent estimation methods.

Methods might be useful for other types of structure learning.

Non-convex alternatives to `1-regularization.
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Summary

`1-Regularization is an appealing approach for graphical model
structure learning.

Prior work focuses on Gaussian and Ising graphical models.

We considered models with group sparsity:

General discrete pairwise models.
Blockwise-sparse models.
Conditional models.

We discussed methods for going beyond pairwise potentials.

Code is on-line (or will be soon).

Thank you for inviting me!
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