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Motivation for Graphical Model Structure Learning

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

What words are related?

Is a post with (car,drive,hockey,pc,win) spam?

What is p(car|drive)? What about p(car|drive,files)?

Given the values of some variables, what is the most likely
way to fill-in the other variables?
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Example of Learned Graph Structure
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Graphical Model Structure Learning with `1-Regularization
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We consider parameter estimation in graphical models without
a known structure.

There has been growing interest in `1-regularization:

Gives regularized estimate (like `2-regularization).
Gives sparse estimate (like subset selection).
Formulated as a convex optimization.
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Example: Ising Graphical Models of Binary Data

In Ising graphical models the probability of binary variables xi
is:

p(x |w,b) ∝ exp(

p∑
i=1

xibi +
∑

(i ,j)∈E

xixjwij)

Our goal is to estimate the weights {w,b} and edge set E .

Note that wij = 0 is equivalent to removing (i , j) from E .

So we can fit a fully connected model with `1-regularization
for simultaneous parameter and structure learning:

min
w,b

M∑
m=1

− log p(x |w,b) + λ

p∑
i=1

p∑
j=i+1

|wij |

When each edge has multiple parameters, we can use group
`1-regularization.
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Limitations of Prior Work and Contributions

Existing optimization methods are innefficient for these
non-smooth, high-dimensional problems with costly objectives.

Further, existing work on `1-regularization for structure
learning has focused on:

Undirected models.
One-to-one correspondence between parameters and edges.
Pairwise potentials.

In this thesis we:

Describe limited-memory quasi-Newton methods for
optimizing high-dimensional costly objective functions with:

Chapter 2: `1-regularization
Chapter 3: Group `1-regularization

Consider using `1-regularization for structure learning with:

Chapter 4: Directed acyclic graphical models.
Chapter 5: Multi-parameter edges and edge groups.
Chapter 6: Higher-order dependencies.
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Optimization with `1-Regularization Problem

We want to optimize a differentiable function L(w) with
(non-differentiable) `1-regularization:

min
w

f (w) , L(w) +
∑
i

λi |wi |

We focus on the case of logistic regression.

In the maximum likelihood case, L-BFGS methods are among
the most efficient.

Methods proposed for addressing the non-differentiability are
typically slower than maximum likelihood L-BFGS methods.
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Adapting L-BFGS to `1-Regularization

Can we adapt L-BFGS to solve `1-regularization problems?

Yes, but previous methods all lose something:

Algorithm may get stuck.
Double the number of variables.
Only make 1 variable non-zero at a time.
Iterations require more than O(p).
Iterations are not sparse.
Only take L-BFGS step on subset of the non-zero variables.

This work: L-BFGS method for solving `1-regularization
problems without any of these disadvantages.
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Projected Scaled Sub-Gradient (Gafni-Bertsekas variant)

Basic L-BFGS step on non-zero variables N

wN ← wN − αH−1N ∇N f (w)

Diagonally-scaled steepest descent step on zero variables Z:

wZ ← wZ − αD∇̃Z f (w)

Project both steps onto orthant containing previous iteration:

wN ← PO[wN − αH−1N ∇N f (w)]

wZ ← PO[wZ − αD∇̃Z f (w)]

α selected by Armijo condition along projection arc.

Simple method that doesn’t have any of these drawbacks.

Chapter 2 describes two other PSS methods.
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Comparing PSS methods to non-L-BFGS methods

PSS against methods not based on L-BFGS (sido data):
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Selected Extensions, Completed Work, and Future Work

(Completed) PSS methods can be applied to optimize any
differentiable function subject to `1-regularization:

Generalized linear models.
Huber and student t robust regression models.
Gaussian graphical models.
Ising graphical models.
Conditional random fields.
Neural networks.
etc.

(Future work) Can generalize to problems of the form:

min
l�w�r

L(w) + R(w),

where R(w) is separable and each component is differentiable
almost everywhere.
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Optimization with Group `1-Regularization Problem

We now consider the more general group `1-regularization:

min
x

L(w) +
∑
A

λA||wA||2.

Non-differentiable when a whole group wA is zero.

We focus on the case of discrete undirected graphical models,
where function evaluations are very expensive.

We can generalize the methods of Chapter 2 that are not
based on L-BFGS (SPG).

We can’t generalize the methods of Chapter 2 that are based
on L-BFGS (PSS).

Since the methods based on L-BFGS require fewer evaluations,
we want a different generalization of L-BFGS methods.
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Formulating as a Constrained Optimization

We re-write the non-smooth

min
w

L(w) +
∑
A

λA||wA||2

as a differentiable optimization over a convex set:

min
w,g

L(w) +
∑
A

λA gA

s.t. ||wA||2 ≤ gA,∀A

We can efficiently project onto the feasible set:

P(wA, gA) =


(wA, gA) if ||wA||2 ≤ gA
1+gA/||wA||2

2 (wA, ||wA||2) if ||wA||2 > |gA|
(0, 0) if ||wA||2 ≤ −gA

18
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Optimizing Costly Functions with Simple Constraints

This formulation has:

a large number of parameters.
an expensive objective function.
constraints on the parameters.

But, projecting onto the constraints is cheap compared to
evaluating the objective function.

We give a new method for problems with this structure:

At the outer level, L-BFGS updates build a quadratic
approximation to the function.
At the inner level, SPG iterations approximately minimize this
quadratic over the convex set.

The inner level uses projections but not function evaluations.

The iteration cost is still O(p).
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Limited-Memory Projected Quasi-Newton Method

1 Use a fixed number of SPG iterations to approximately
minimize the L-BFGS approximation over the convex set:

w∗ ← arg min
w∈C

f (wk)+(w−wk)T∇f (wk)+
1

2
(w−wk)TBk(w−wk)

2 If we initialize with wk , this gives a feasible descent direction

dk ← w∗ −wk

3 Select α ∈ (0, 1] by a backtracking line search to satisfy the
Armijo condition and set:

wk+1 ← wk + αdk .

4 Update the L-BFGS approximation and repeat.

Chapter 3 describes a variant for non-smooth optimization that
can directly solve group `1-regularization problems.
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4 Update the L-BFGS approximation and repeat.

Chapter 3 describes a variant for non-smooth optimization that
can directly solve group `1-regularization problems.
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Comparing L-BFGS to non-L-BFGS Methods

PQN/QNST vs. methods not based on L-BFGS (cyto data):
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Selected Extensions, Completed Work, and Future Work

(Completed) PQN/QNST can be applied to optimize any
differentiable function with simple constraints/regularizers:

Blockwise-sparse Gaussian graphical models.
Feature selection in conditional random fields.
Variational mean field.
Other group-norms (Chapter 5).
Overlapping groups (Chapter 6).
Etc.
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Outline

1. Introduction

2. Optimization with `1-Regularization

3. Optimization with Group `1-Regularization

4. Directed Graphical Model Structure Learning
Schmidt, Niculescu-Mizil, Murphy, AAAI 2007.

5. Undirected Graphical Model Structure Learning

6. Hierarchical Log-Linear Model Structure Learning

7. Discussion
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Motivation for Directed Acyclic Graphical Models

Prior work on structure learning with `1-regularization has
largely focused on undirected models.

However, it is NP-hard (or worse) to perform standard
operations in general undirected graphical models.

In directed acyclic graph models we can perform some
operations in polynomial-time:

Calculate probability of a vector.
Generate unbiased samples.
Approximate arbitrary marginals.
Approximate some conditionals.

Futher, parameter independence lets us:

Locally estimate parameters.
Locally tune hyper-parameters.
Mix variable types.

However, enforcing acyclicity makes structure learning hard.
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DAG Structure Learning given an Ordering

We focus on DAGs with logistic regression conditional
probability distributions (CPDs):

p(xi |xπ(i),wi , bi ) =
1

1 + exp(−xi (wTxπ(i) + bi ))

Prior work focuses on using `1-regularization to fit each CPD
given an ordering.

In general we don’t have an ordering, and without this the
graph is unlikely to be acyclic.
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DAG Structure Learning without an Ordering

State of the art methods for DAG learning without an ordering
have two components:

1 Pruning: Use a series of (conditional) (in-)dependence tests
to prune the set of possible edges.

2 Search: Search for a structure that optimizes a scoring
criteria (BIC, validation set likelihood)

In current methods:

The pruning phase ignores structure in the CPDs.

The pruning phase ignores the score.
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A Hybrid Method based on `1-Regularization

We propose the following simple method:
1 L1MB: Fit each CPD with all parents and `1-regularized

logistic regression, using the scoring citerion to select λ.
2 DAG-Search: Search through the space of possible DAG

structures, restricted to candidate edges.

The pruning phase uses the scoring criterion and the structure
of the CPDs.

Chapter 4 extends this algorithm to causal DAGs, and the
Appendix gives structures for testing whether edge
additions/reversals cause a cycle in O(1).

27



A Hybrid Method based on `1-Regularization

We propose the following simple method:
1 L1MB: Fit each CPD with all parents and `1-regularized

logistic regression, using the scoring citerion to select λ.
2 DAG-Search: Search through the space of possible DAG

structures, restricted to candidate edges.

The pruning phase uses the scoring criterion and the structure
of the CPDs.

Chapter 4 extends this algorithm to causal DAGs, and the
Appendix gives structures for testing whether edge
additions/reversals cause a cycle in O(1).

27



A Hybrid Method based on `1-Regularization

We propose the following simple method:
1 L1MB: Fit each CPD with all parents and `1-regularized

logistic regression, using the scoring citerion to select λ.
2 DAG-Search: Search through the space of possible DAG

structures, restricted to candidate edges.

The pruning phase uses the scoring criterion and the structure
of the CPDs.

Chapter 4 extends this algorithm to causal DAGs, and the
Appendix gives structures for testing whether edge
additions/reversals cause a cycle in O(1).

27



Comparing Edge Pruning Strategies

L1MB vs. other pruning strategies (5000 synthetic data samples):
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Comparing DAG-Search Strategies

L1MB+DAG-search vs. other search strategies (synthetic/real
data):
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Selected Extensions, Completed Work, and Future Work

(Completed) We can use the same procedure with other
linearly-parameterized CPDs

Gaussian
Student’s t
Probit
Extreme-value
Multinomial
Ordinal
Etc.

(Completed by another group) We can replace the
DAG-search with other search strategies:

Greedy equivalence search
Constrained optimal search.

30



Selected Extensions, Completed Work, and Future Work

(Completed) We can use the same procedure with other
linearly-parameterized CPDs

Gaussian
Student’s t
Probit
Extreme-value
Multinomial
Ordinal
Etc.

(Completed by another group) We can replace the
DAG-search with other search strategies:

Greedy equivalence search
Constrained optimal search.

30



Outline

1. Introduction

2. Optimization with `1-Regularization

3. Optimization with Group `1-Regularization

4. Directed Graphical Model Structure Learning

5. Undirected Graphical Model Structure Learning
Schmidt, Murphy, Fung, Rosales, CVPR 2008.

6. Hierarchical Log-Linear Model Structure Learning

7. Discussion
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Undirected Graphical Model Structure Learning

Prior work has largely focused on sparsity in the individual
parameters.

In many scenarios we want sparsity in parameter groups:

In multi-state models each edge has multiple parameters.
In blockwise-sparse models we want sparsity in groups of edges.
In conditional random fields (CRFs) each edge has multiple
features.

In these cases, `1-regularization does not encourage the
appropriate sparsity patterns.
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Example: Multi-Parameter Edges

In binary Ising models, each edge has only one parameter:

log φij(xi , xj) = xixjwij

In multi-state models, each edge can have multiple
parameters:

log φij (xi , xj ) = I(xi = 1, xj = 1)wij11 + I(xi = 1, xj = 2)wij12 + I(xi = 1, xj = 3)wij13

+ I(xi = 2, xj = 1)wij21 + I(xi = 2, xj = 2)wij22 + I(xi = 2, xj = 3)wij23

+ I(xi = 3, xj = 1)wij31 + I(xi = 3, xj = 2)wij32 + I(xi = 3, xj = 3)wij23,

Removing the edge is equivalent to setting all edge
parameters to zero.
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Different Choices of Norm

With multi-parameter edges, we can encourage graphical
sparsity with group `1-regularization:

min
w,b
−

n∑
m=1

log p(xm;w,b) + λ

p∑
i=1

p∑
j=i+1

||wij ||2

We can also consider different choices of the group norm

Different choices encourage structure in the edge potentials:

The `∞ norm encourages parameter tieing.
The nuclear norm encourages low rank.
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Optimization with General Norms

The optimization methods of Chapter 3 can easily be
extended to use a general norm:

min
x

L(x) +
∑
A

λA||xA||p.

The corresponding constrained formulation:

min
x,g

L(x) +
∑
A

λA gA, subject to gA ≥ ||xA||p,∀A.

For the `∞ norm, the projection can be computed in
O(|A| log |A|) using sorting.

For the nuclear norm, the projection can be computed in
O(|A|3/2) using SVD.
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Comparison of Different Norms

Comparing regularization types on traffic data
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Comparison of Different Norms

Comparing regularization types on usps8 data:
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Comparing Methods for CRF Structure Learning

Comparing CRF structure learning methods (synthetic data):
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Selected Extensions, Completed Work, and Future Work

(Completed) We can use these ideas in more advanced
scenarios:

Learn conditional graphical sparsity with binary features.
Learn the variables types in blockwise-sparse models.
Causal learning with interventional potentials/nodes.

(Future Work) Could use more advanced approximate
objectives:

Block pseudo-likelihood
More advanced variational methods
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Outline

1. Introduction

2. Optimization with `1-Regularization

3. Optimization with Group `1-Regularization

4. Directed Graphical Model Structure Learning

5. Undirected Graphical Model Structure Learning

6. Hierarchical Log-Linear Model Structure Learning
Schmidt and Murphy, AI-Stats 2010.
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General Log-Linear Model Structure Learning

Nearly all of the prior work on using `1-regularization for
structure learning has focused on pairwise models.

For some data sets, higher-order interactions may be
important.

We could consider learning general log-linear models using

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA||wA||2

However, the exponential number of variables makes this
difficult without a severe cardinality restriction.

Further, group sparsity does not correspond to conditional
independence.
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Hierarchical Log-Linear Model Structure Learning

We consider an alternative to a cardinality restriction:

Hierarchical Inclusion Restriction: If wA = 0 and A ⊂ B,
then wB = 0.

The class of hierarchical log-linear models.

Allows interactions of any order.

Group sparsity corresponds to conditional independence.

But, imposes sparsity constraints that can’t be obtained using
disjoint group `1-regularization.

42



Hierarchical Log-Linear Model Structure Learning

We consider an alternative to a cardinality restriction:

Hierarchical Inclusion Restriction: If wA = 0 and A ⊂ B,
then wB = 0.

The class of hierarchical log-linear models.

Allows interactions of any order.

Group sparsity corresponds to conditional independence.

But, imposes sparsity constraints that can’t be obtained using
disjoint group `1-regularization.

42



Encouraging Hierarchical Sparsity

However, we can encourage hierarchical sparsity using
overlapping group `1-regularization.

We can encourage the solution to be a hierarchical using:

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA(
∑

{B|A⊆B}

||wB ||22)1/2.

We can extend the methods of Chapter 3 to solve overlapping
group `1-regularization problems using Dykstra’s cyclic
projection algorithm.
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Hierarchical Search for Hierarchical Models

We still have an exponential number of variables to consider.

But we know the solution is hierarchical.

We propose a heuristic search through the space of
hierarchical models:

1 Find non-zero groups, and other groups that satisfy
hierarchical inclusion and violate optimality conditions.

2 Solve the problem with respect to these groups.
3 Repeat.

This procedure converges to a solution satisfying necessary
optimality conditions, and a weak form of sufficient optimality
conditions.
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Experiments with Different Orders

Experiments on traffic data with models of different orders:
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Experiments on Structure Learning
False positives of different orders for data generated from
(1)(2,3)(4,5,6)(7,8,9,10):
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Selected Extensions, Completed Work, and Future Work

(Future Work) We can apply the methods in more general
scenarios:

Conditional hierarchical log-linear models.
Interventional hierarchical log-linear models.

(Future Work) We can modify the search to satisfy stronger
sufficient optimality conditions:

Test optimality conditions for an extended boundary.
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Other Selected Extensions

Some topics not discussed in main body:

The methods can be extended to handle missing data or
hidden variables.

We can consider mixtures of sparse graphical models.

We can use projection and stochastic approximation to allow
stochastic inference methods.

Methods can be applied to other types of structure learning,
such as chain graphs and relational models.

Methods can be useful as sub-routines for variational Bayesian
methods.

Code is on-line (or will be soon).
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Summary of Contributions

Chapter 2: Limited-memory quasi-Newton methods for
`1-regularization with several appealing properties.

Chapter 3: Limited-memory quasi-Newton methods for
optimizing costly functions with simple constraints or
regularizers.

Chapter 4: Edge pruning strategy for linearly-parameterized
DAG structure learning based on `1-regularization that takes
advantage of the structure of the CPDs and the score.

Chapter 5: Different choices of the group norm (including
nuclear norm) for multi-parameter, blockwise-sparse, and
conditional undirected graphical models, the latter is the first
structured classification method that simultaneously and
discriminatively learns structure and parameters.

Chapter 6: Overlapping group `1-regularization formulation
for learning hierarchical log-linear models (with no restriction
on the cardinality of the potentials), and an active set method
for searching the exponential space of higher-order potentials.
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Other Work

(Vishwanathan et al., ICML 2006): Accelerated Training of
Conditional Random Fields with Stochastic Gradient Methods.

(Carbonetto et al., NIPS 2008): An interior-point stochastic
approximation method and an `1-regularized delta rule.

(van den Berg et al., TR 2008): Group Sparsity via
Linear-Time Projection.

(Cobzas and Schmidt, CVPR 2009): Increased Discrimination
in Level Set Methods with Embedded Conditional Random
Fields.

(Marlin et al., UAI 2009): Group Sparse Priors for Covariance
Estimation.

(Schmidt and Murphy, UAI 2009): Modeling Discrete
Interventional Data using Directed Cyclic Graphical Models.

(Duvenaud et al., JMLR W&CP 2010): Causal Learning
without DAGs.

(Yan et al., AI-Stats 2010): Modeling annotator expertise:
Learning when everybody knows a bit of something.
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