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Abstract

This work looks at fitting probabilistic graphical models to data when the structure is not known.
The main tool to do this is `1-regularization and the more general group `1-regularization. We
describe limited-memory quasi-Newton methods to solve optimization problems with these types
of regularizers, and we examine learning directed acyclic graphical models with `1-regularization,
learning undirected graphical models with group `1-regularization, and learning hierarchical log-
linear models with overlapping group `1-regularization.
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• OPG: Optimal projected gradient.

• OWL: Orthant-wise learning.

• PSS: Projected scaled sub-gradient.

• PSSas: PSS active set.

• PSSgb: PSS Gafni-Bertsekas.

• PSSsp: PSS sign projection.

• PQN: Projected quasi-Newton.

• QNST: Quasi-Newton soft-threshold.

• SC: Sparse candidate.

• SCAD: Smoothly clipped absolute deviation.

• SPG: Spectral projected gradient.

• TMP: Two-metric projection.
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Chapter 1

Introduction

Graphical models [Whittaker, 1990, Lauritzen, 1996, Koller and Friedman, 2009] are used as efficient
representations for probability distributions in a wide variety of applications. In many cases,
the graphical structure describing the dependencies in the model is known. However, in some
applications it is not clear what graphical structure should be used. Alternately, we may want to
model a data set using a graphical model but not assume a particular graphical structure a priori.
In this thesis we examine the problem of estimating the parameters of a graphical model given a
data set, when the graphical structure is not given.

One approach to this task is to assume a graphical model where all possible interactions are
present (a dense model), and estimate the parameters of this model given the data set. An alterna-
tive approach is to try and find a sparse set of edges that optimize a criterion assessing the quality
of the structure. There are several reasons why we might prefer the sparse approach:

• Statistical efficiency: Since there are fewer parameters in the sparse model, we may be able
to estimate them more effectively. For example, the number of parameters to be estimated in
the dense model will grow quadratically or exponentially (depending on the particular model)
in the number of variables present in the data. In contrast, the number of parameters needed
by a sparse model might be much smaller.

• Computational efficiency: Due to the smaller number of parameters in a sparse structure,
typically it will be much less costly to estimate the parameters. Further, performing inference
tasks in the graphical model will require quadratic, cubic, or exponential time (depending on
the particular model) in the dense model, while it may be possible to do these tasks more
efficiently in a sparse model.

• Structural discovery: If we believe the dependencies in our data set can be accurately
described within the class of graphical models we are searching over, then we might hope
to find the ‘true’ structure that describes the dependencies in the data set. Even if the
dependencies in the data set do not conform precisely to a particular graphical model, the
edges discovered by a structure learning method may still be indicative of the dependencies
(or independencies) present in the data. There has been substantial recent interest in this
task due to applications in systems biology, such as [Sachs et al., 2005].

The disadvantage of taking the sparse approach is simply that there are an enormous number
of possible structures. For example, in the case of the directed acyclic models we describe in
Section 1.3, there are a super-exponential number of possible structures, and finding the optimal
structure (under various definitions of optimality) is known to be NP-hard [Chickering, 1995].
Further, it can be computationally expensive to search through the space of graph structures. For
example, in undirected graphical models we must re-fit all parameters if any edge is added or
removed from the graph. Since fitting all parameters is typically computationally expensive, this
means that even greedy apporaches that attempt to add/remove one edge at time are extremely
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expensive. For these reason, in some scenarios we might want to consider fitting a single dense
model, but use regularization to address the issue of statistical efficiency, use approximations to
address the issue of computational efficiency, and try to interpret our estimates of the parameters
for structural discovery.

In this work, we take an approach that is intermediate between fitting a single regularized dense
model, and searching for an optimal sparse model. Specifically, we consider fitting a single dense
model with a penalty on the `1-norm on the parameters. This `1-regularization has a sparsity-
inducing property [Tibshirani, 1996, Chen et al., 1998]; if the penalty on the `1-norm is strong
enough, then many of the parameters in the optimal solution will be zero. Further, we parameterize
the dense graphical model such that if the parameters associated with an edge are set to zero, it is
equivalent to removing the edge from the model. This allows us to learn a sparse graphical model
by fitting a single dense graphical model. In addition to combining regularization and sparsity
within a convex optimization framework, in Section 1.1 we discuss other appealing properties that
are known about `1-regularization.

This idea of using `1-regularization to learn a sparse graphical model has recently been explored
by various authors, and in this chapter we review related work on this topic. However, previous
work on `1-regularization for structure learning has largely been used in very restricted scenarios.
Specifically, nearly all of the previous work makes the assumptions that:

• The graphical model is undirected.

• There is a one-to-one correspondence between parameters and edges.

• The model only includes pairwise dependencies.

In Chapters 4, 5, and 6, we examine models that do not make these assumptions. Specifically, these
chapters outline methods for structure learning using `1-regularization for the following scenarios:

• Chapter 4: Directed acyclic graphical models.

• Chapter 5: Undirected models with multi-parameter edges or edge groups.

• Chapter 6: Undirected models with higher-order dependencies.

Interspersed with our discussion of prior work, we discuss the motivations for examining these sce-
narios throughout the remainder of this chapter. In the latter two cases, we consider generalizations
of `1-regularization that penalize groups of variables. In Chapter 2, we describe non-differentiable
extensions of limited-memory quasi-Newton methods for solving the `1-regularization problems
arising in Chapters 4 and 5, while in Chapter 3 we describe constrained and non-differentiable
limited-memory quasi-Newton methods for solving the group `1-regularization problems arising in
Chapters 5 and 6. Chapter 7 discusses some extensions of this work. Chapters 2-6 are based on
(and extend) existing work. In particular, Chapter 2 is based on [Schmidt et al., 2007a], Chapter 3
is based on [Schmidt et al., 2009b], Chapter 4 is based on [Schmidt et al., 2007b], Chapter 5 is
based on [Schmidt et al., 2008], and Chapter 6 is based on [Schmidt and Murphy, 2010].

The remainder of this chapter is structured as follows. First, in the next section we review
using `1-regularization for variable selection in regression and classification. Next, we move on
to using `1-regularization to learn dependency networks, a straightforward extension of the regres-
sion/classification methodology that allows us to visualize dependencies between variables, but that
does not necessarily form a consistent probabilistic model. We then consider linearly-parameterized
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directed acyclic graphical models, where we learn a dependency network under a variable ordering
to yield a consistent probabilistic model. Subsequently we consider `1-regularization for structure
learning in two special classes of undirected graphical models, namely Gaussian graphical models
and pairwise Ising models of binary data. We then consider pairwise models of general discrete
data, and higher-order log-linear models of discrete data. We then outline the data sets examined
in this work, and finally we conclude the chapter with a summary of contributions.

1.1 Regression and Binary Classification

In regression, we have are given a set n real-valued targets yi (for i = 1, 2, . . . , n), and a correspond-
ing set of n real-valued p-vectors that we denote by xi (for i = 1, 2, . . . , n). Our goal is to build a
model that predicts yi given the corresponding p-vector xi. Binary classification is similar, except
that each yi can only take values in the discrete set {−1,+1}. The most common regression method
is the linear least-squares model [see Bishop, 2006, §3.1.1], where we assume that yi is a linear
function of xi (and a bias term b), and we fit the parameters {w, b} of the model by minimizing
the least-squares objective

min
w,b

n∑
i=1

1

2
(yi −wTxi − b)2.

The least-squares estimator can also be viewed as a maximum likelihood estimator, under the
assumption that each yi follows a Gaussian distribution with mean wTxi+b and a positive variance
σ (the exact value of σ does not affect the optimal values of {w, b}). Formally,

p(yi|xi,w, b) =
1

σ
√

2π
exp

(
−(yi −wTxi − b)2

2σ2

)
.

We arrive at the least-squares objective if we consider minimizing the negative logarithm of the
likelihood, −

∑n
i=1 log p(yi|xi,w, b), under this model with σ set to 1 and ignoring constant terms

(the objective has the same minimizers for any other positive σ).
The most common binary classification method is logistic regression, where we assume that the

logarithm of the odds of yi taking on +1 (instead of −1) is a linear function of wTxi+b [see Bishop,
2006, §4.3.2]. This implies that we assume yi follows a logistic distribution with location wTxi + b
and scale 1:

p(yi|xi,w, b) =
1

1 + exp(−yi(wTxi + b))
.

Maximum likelihood estimation in this model is typically carried out by minimizing the negative
log-likelihood,

min
w,b

n∑
i=1

log(1 + exp(−yi(wTxi + b))).

Unlike the least-squares objective, in general there will not be a closed-form solution for the pa-
rameters in the logistic regression model. However, we can obtain accurate numerical maximum
likelihood estimates by minimizing the (differentiable, unconstrained, and convex) negative log-
likelihood. Nevertheless, for both of these models there are several reasons why we might not want
to use a maximum likelihood estimate of the parameters:
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• The maximum likelihood estimate tends to have all coefficients wi non-zero, even though it
may be the case that some variables are irrelevant for prediction. If a variable is irrelevant
for predicting yi, then its value should be set to zero to nullify its effect on the prediction
(and yield a more interpretable model).

• The maximum likelihood estimator may over-fit. That is, the average likelihood of the data
used for estimation might be much higher than the average likelihood for data that was not
used during estimation. This can arise if we do not have a sufficiently large sample size n
(relative to the number of features p and their complexity), because in this case the maximum
likelihood estimate of the parameters may have a high variance (the parameters can change
substantially with small changes in the data). In the language of numerical computing, we
say that estimating the parameters can be ill-posed.

Subset selection methods are a common strategy for addressing the first issue. That is, we do a
search over the possible non-zero subsets of the coefficients, and choose the subset that optimizes
some criteria judging the worthiness of the subset. Several heuristic strategies for doing the search
exist such as forward and backward selection, but the general problem of choosing the best subset
under most optimization criteria is known to be NP-hard [Huo and Ni, 2007]. Further, even if
we were given the optimal subset this may not address the second issue with maximum likelihood
estimation.

The most common method used to address the second issue is `2-regularization of the coeffi-
cients, known as Tikhonov regularization or ridge (logistic) regression [see Bishop, 2006, §3.1.4]. In
ridge (logistic) regression, we optimize the negative log-likelihood subject to a penalty (with scale
λ > 0) on the (squared) `2-norm of the regression coefficients w:

min
w,b

n∑
i=1

− log p(yi|xi,w, b) + λ||w||22.

If we interpret the `2-regularization term as the negative logarithm of a prior, then we see that find-
ing the ridge (logistic) regression parameters is equivalent to finding the parameters that maximize
the posterior distribution, p(yi|xi,w, b)p(w, b), with a prior for the parameters p(w, b) that factor-
izes into an independent zero-mean Gaussian distribution for each element wi, and an (improper)
uniform distribution for b. The effect of this prior is to decrease the variance of the estimator, by
adding a bias towards zero in the estimation of the coefficients. However, as with the maximum
likelihood estimate the `2-regularized estimate tends to have all coefficients wi non-zero.

In `1-regularized least-squares (or logistic regression), we minimize the negative log-likelihood
subject to a penalty on the `1-norm of the coefficients:

min
w,b

n∑
i=1

− log p(yi|xi,w, b) + λ||w||1. (1.1)

This type of regularization has been popularized under the name basis pursuit denoising [Chen
et al., 1998] for the least-squares loss, and least absolute shrinkage and subset selection operator
(LASSO) for the least-squares and logistic regression losses [Tibshirani, 1996]. Prior to these works
`1-regularization had also been explored for the least-squares loss [Santosa and Symes, 1986] and
least absolute error loss [Claerbout and Muir, 1973]. As opposed to problem (1.1), Tibshirani [1996]
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proposed using an explicit bound τ on the `1 norm of the parameters leading to the problem

min
w,b

n∑
i=1

− log p(yi|xi,w, b) s.t. ||w||1 ≤ τ. (1.2)

Problems (1.1) and (1.2) are very closely related; solving problem 1.1 is equivalent to minimizing
the Lagrangian of (1.2) with a fixed Lagrange multiplier λ, and for any value of τ we can find a
corresponding value of λ that gives the same solution. We focus on 1.1 since λ has the intuitive
interpretation as the strength of a Laplace prior on the parameters.

In contrast to subset selection and `2-regularization, `1-regularization simultaneously achieves
subset selection (by setting parameters wi to 0 for sufficiently large λ) and regularization (by
adding a bias towards zero in the estimation of the coefficients). Further, under suitable conditions
and an appropriate choice of λ, `1-regularization will choose the correct subset of non-zero vari-
ables [for example, see Zhao and Yu, 2006]. Even if this structural discovery task is not the goal,
`1-regularization is often still effective at building a regressor (or classifier) that predicts well on new
examples, even if irrelevant features are present in the data. For example, Ng [2004] shows that
`1-regularized logistic regression has an asymptotic sample complexity function that grows with
the logarithm of the number of irrelevant features1. This means that `1-regularization can produce
near-optimal models even if there are an exponential number of irrelevant features, in contrast to
the linear sample complexity of `2-regularized logistic regression that would require an exponential
number of samples to produce near-optimal models if there are an exponential number of irrelevant
features. The generalization performance of logistic regression with `1-regularization is examined
in [Krishnapuram et al., 2005], who prove non-trivial bounds on the generalization performance
(i.e. bounds on the error obtained on data not seen during training).

When using `1-regularization, it is important to select an appropriate value of the hyper-
parameter λ. There are a wide variety of criteria available to do this, but in this work we focus
on two. The first criterion we consider is validation set likelihood, a score that tries to assess how
effective the estimator is at modeling new instances. To compute the validation set likelihood for
a fixed value of λ, we

1. randomly choose half of our data set;

2. compute the `1-regularized estimator on this half of the data set;

3. compute the likelihood of the other half of the data set with the estimated parameters.

The validation set likelihood gives us a criterion for assessing how well the estimator for a particular
value of λ models p(yi|xi,w, b) for new instances {xi, yi}. We can choose a good value of λ by
searching for a value that maximizes this validation score (where we use the same random half of
the training data for each value of λ). In cases where the number n of training examples is small,
a variation on the validation score is the cross-validation score [Bishop, 2006, §1.3], where we train
on different subsets of the data. The advantage of this is that it makes greater use of the available
data, but the disadvantages are that it is slower and it no longer represents an independent estimate
of the generalization performance.

The validation score is used for many of our experiments, as it is typically accurate in assessing
prediction error (assuming sufficient data is available to provide reliable estimates using half of the

1The sample complexity function is a two parameter function of (ε, δ), defined as the minimum number of training
examples such that that we can be within ε of the optimal predictor with probability at least 1− δ.
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training data). However, as discussed in [Meinshausen and Buhlmann, 2006] the optimal parameters
under the prediction-optimal value of λ will in general have too many non-zero variables. Because
of this, we may want to consider a different criterion when the goal is structural discovery. When
trying to do structural discovery, in some cases we will consider the Bayesian information criterion
(BIC) [Schwarz, 1978],

BIC(yi,xi, ŵ, b̂) ,
n∑
i=1

− log p(yi|xi, ŵ, b̂) + (d/2) log n.

Here, d is the number of free parameters in the model (i.e. the number of non-zero elements of
w, plus one for the bias), while ŵ and b̂ are the maximum likelihood estimates for the set of
non-zero coefficients. That is, it simultaneously tries to maximize the model fit of the training
data while minimizing the number of free parameters used to do this. Schwarz [1978] derives this
criterion as a large-sample approximation to the marginal likelihood of the data2. It can also be
viewed as a large-sample approximation to a minimum description length criteria [Rissanen, 1978].
In particular, if we wish to compress the data set and model, optimizing the BIC approximates
the optimal level of compression (as the size of the data set increases) [see Hastie et al., 2009,
§7.8]. For exponential family models the BIC has appealing asymptotic consistency properties
in terms of variable selection; if we compute the BIC on a set of models that includes the true
model, the true model will achieve the lowest value as the size of the data set increases [Schwarz,
1978]. Further, [Haughton, 1988] shows that optimizing this criteria will choose the correct set of
variables with probability tending to one as the size of the data set increases. The BIC can also
be viewed from the perspective of regularization, in that it is equivalent to regularization by the
`0 pseudo-norm, ||w||0 , d, where the regularization strength is chosen according to the size of the
data set.

A complicating factor with using the BIC for selecting λ for `1-regularization is that the criterion
is traditionally defined for the maximum likelihood estimate. Therefore, when we use BIC for
model selection, we use `1-regularization as a filter; the `1-regularization is only used to select the
set of non-zero variables, and we subsequently compute the maximum likelihood estimate of the
coefficients when evaluating the BIC3.

1.2 Dependency Networks

Now consider the unsupervised case where we are given a set of n real-valued p-vectors xi (for
i = 1, 2, . . . , n) and no distinguished response variables yi, and we want to build a graph that
visualizes the direct dependencies between the variables. One way to do this is, for each variable
j, we make variable j the target and compute the optimal parameters in a linear regression model
xij = wT

j xi−j + bj (where we use −j to denote all variables except j). This linear regression can be
fit using the methods we describe in the previous section, and the sets of variables selected are used
to draw a graph that visualizes dependencies in the data. Specifically, we draw these dependencies
as a directed graph with p nodes (one for each variable), where the graph contains an edge going
into each node from each of the variables that was selected when regressing on the node. The model

2In the case of regression with a linear least-squares loss and `2-regularization, it is possible to compute the
marginal likelihood of the training data in closed form, but this is not possible in most scenarios.

3We discuss work on using `1-regularized estimates with the BIC at the end of Chapter 4.
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resulting from doing this conditional regression (or classification) of each variable given all others
is known as a dependency network [Heckerman et al., 2001].

Using `1-regularized least-squares to learn the structure of a dependency network on continuous
variables was examined in [Meinshausen and Buhlmann, 2006]4. Meinshausen and Buhlmann [2006]
outline conditions under which this procedure is consistent in terms of variable selection in Gaussian
graphical models (that we review in the next section), allowing the number of variables and density
of the graph to increase as a function of the sample size. Analogously, Wainwright et al. [2006]
proposed using `1-regularized logistic regression to learn the structure of a dependency network on
binary variables, and examine consistency in terms of variable selection for Ising graphical models
of binary data (that we also review in the next section).

While these approaches lead to a graph structure that may be useful in terms of visualization or
structural discovery, they can be problematic as a probabilistic model of the p-vectors because given
finite data the dependency network estimated in this way will typically be inconsistent. For example,
Heckerman et al. [2001] give the simple case where the dependency network predicts that x1 depends
on x2 in p(x1|x2) but that x2 does not depend on x1 in p(x2|x1). These inconsistencies can lead
to cases where there may be no joint distribution over the variables that is consistent with the
estimated conditional distributions. The set of consistent dependency networks is equivalent to the
set of undirected graphical models [Heckerman et al., 2001], and these dependency network methods
can be viewed as pseudo-likelihood approximations [Besag, 1975] of the corresponding undirected
graphical models. To deal with potential structural asymmetry, Meinshausen and Buhlmann [2006],
Wainwright et al. [2006] consider two heuristics to turn the directed graph into an undirected graph.
Their first strategy includes the undirected edge if either corresponding directed edge was found,
while the second strategy only includes the undirected edge if both directed edges were found. This
still leaves the problem that we have two versions of the parameter associated with each edge,
though [Hofling and Tibshirani, 2009] give two related heuristics for obtaining a single parameter.

Given that we can learn dependency networks with existing methods for regression and classi-
fication, it is useful at this point to discuss why we might want to use more complicated models
that define (consistent) joint distributions over the p-vectors. Several of the tasks we can consider
doing with a joint distribution (that can’t be accomplished in general with inconsistent dependency
networks) include:

• Compute joint probabilities: Given a new p-vector x, we can try to assess its probability
p(x1, x2, . . . , xp) under the model. Similarly, we can check which of two p-vectors has a higher
probability, search for the p-vector with highest probability (decoding), or test whether a
p-vector has a very low probability (i.e. outlier detection).

• Compute marginals and conditionals: Given a distribution over x, p(x1, x2, . . . , xp), we can
consider calculating marginal probabilities like p(xi), or conditional probabilities like p(xi|xj),
using the rules of marginalization and conditional probability.

• Generate samples: We can try to generate new p-vectors according to our estimate of the
joint distribution. This can be useful for model assessment. We can also consider generating
conditional samples from the distribution given the values of some of the variables (i.e. filling-
in missing values).

4Gustafsson et al. [2003] present a closely related approach for estimating time-series dependencies.
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While we can also perform these tasks by using heuristic methods to construct a consistent depen-
dency network from the (typically inconsistent) result of learning a dependency network, pseudo-
likelihood approximations are known to be inefficient estimators compared to using the likelihood
of the probabilistic model explicitly [Besag, 1977, Liang and Jordan, 2008]5.

1.3 Directed Acyclic Graphical Models

As we see in the next section, the prior work on structure learning in probabilistic graphical models
with `1-regularization largely focuses on pairwise undirected models. However, there are many
reasons why we might prefer to use directed acyclic graph (DAG) models:

• Efficiency of computing joint probabilities, samples, and (approximate) marginals: As we
have just mentioned, these types of operation are the main reasons for building a consistent
model of the joint distribution. However, for discrete data these operations are intractable in
general for pairwise undirected graphical models. In contrast, some of these operations can be
done in polynomial time in analogous DAG models. This includes computing the probability
of a vector and generating unbiased samples from the model. The latter can be used in Monte
Carlo methods to efficiently approximate marginals in the model. Provided we condition on
the first variables in an ordering, we can also efficiently compute the conditional probability of
the remaining variables and generate unbiased conditional samples of the remaining variables
(the latter can be used to efficiently approximate the corresponding conditionals).

• Parameter independence: The likelihood in DAG models factorizes into a product of single-
variable conditional distributions. Thus, unlike undirected graphical models where estimating
single-variable conditional distributions is used as an approximation, we can find the opti-
mal parameters in the joint likelihood of DAG models by fitting the parameters of a set of
single-variable conditional distributions. Further, DAGs allow us to mix different types of
variables in a straightforward way. For example, we can model the joint likelihood of vectors
containing both real-valued and binary-valued variables. Because parameter independence
allows parameter estimation to separate into independent sub-problems, it also allows us to
independently tune an individual regularization parameter λi in estimating the conditional
of each variable i, and allows us to use caching of results to implement efficient local search
methods for structure learning.

DAG models, also known as Bayesian networks, are one way to model the joint distribution
p(x1, x2, . . . , xp) of a set of p random variables. If we repeatedly use the definition of conditional
probability, p(x, y) = p(y|x)p(x), in the order n down to 1, then we obtain the factorization of the
joint distribution

p(x1, . . . , xp) =

p∏
i=1

p(xi|x1:i−1).

This factorization of the joint distribution is valid for any probability distribution. In DAG models,
we make the additional conditional independence assumption that

p(xi|x1:i−1) = p(xi|xπ(i)), (1.3)

5Here, the efficiency of a consistent estimator is defined as its asymptotic variance around the true parameter in
terms of the number of training samples.
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for some π(i) ⊆ {j|1 ≤ j < i}. The elements of π(i) are called the ‘parents’ of variable i (the ‘child’),
while the terms p(xi|xπ(i)) are referred to as the conditional probability distributions (CPDs) of
the DAG model.

We can visualize the conditional independence properties implied by the variable ordering and
the choices of π(i) as a directed graph, where we draw a directed edge coming into each node from
each of its parents. Since the order 1, . . . , n will constitute a topological ordering of the graph (that
is, an ordering where parents come before children), the graph is necessarily acyclic. In addition
to the conditional independence properties directly encoded in the use of (1.3), the method of d-
separation allows us to use the graph structure to test whether any other conditional independence
statement is implied by the factorization [see Koller and Friedman, 2009, §3.3]. Note that it is
possible for two different graphs to imply the same set of conditional independence statements
about the distribution. In this case, we say that the graphs are Markov equivalent.

In this work, we focus on modeling binary data using logistic regression for the CPDs:

p(xi|xπ(i),wi, bi) =
1

1 + exp(−xi(wT
i xπ(i) + bi))

.

This is sometimes referred to as a sigmoid belief network [see, for example Saul et al., 1996], and
we note that these are directed analogues to the Ising graphical models we discuss in the next
section6. While sigmoid belief networks do not have the expressive power of the tabular CPDs
traditionally used in DAG models [see Koller and Friedman, 2009, §5.1], their smaller number of
parameters allows more efficient estimation of the parameters from data. Specifically, there are
a linear number of parameters in the CPDs of a sigmoid belief net (in terms of the number of
parents), rather than the exponential number associated with tabular CPDs. This allows us to fit
DAG models where some nodes have a potentially large number of parents.

Using these CPDs, the dominant cost of evaluating the joint probability p(x) of a vector x is
the calculation of the p inner products wT

i xπ(i). In the worst case (a fully connected graph) this
will require O(p2), in contrast to the #P-hard problem of evaluating the probability of an observed
p-vector in a general binary undirected model. Similarly, we can generate an independent sample
from the distribution in O(p2) (and a set of independent samples can be used to approximate any
marginal). Further, if we use |E| to denote the number of edges in the graph, then computing all
these operations is O(p + |E|). This means that if there are more than p edges, then the cost of
performing these operations is directly proportional to the sparsity of the graph structure.

In DAG models, the negative log-likelihood function for a set of n realizations of p-vectors xi

is given by
n∑
i=1

p∑
j=1

− log p(xij |xiπ(j),wj , bj).

This objective function is separable with respect to the parameters of the different CPDs. If the
regularizer separates in the same way then we satisfy the parameter independence condition [Heck-
erman et al., 1995]. This means that we can optimize the parameters of each CPD independently.
Thus, parameter estimation in this model is similar to the parameter estimation procedure used in
dependency networks with logistic regression conditionals, except that each regression is done on
the subset of nodes earlier in the ordering, and optimizing these independent logistic regressions

6While if we use Gaussian CPDs we obtain a directed model that is analogous to the Gaussian graphical models
we discuss in the next section.
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directly optimizes the joint likelihood of a consistent probabilistic model. That is, by placing a con-
straint on the variable ordering we guarantee that the parameters yield a consistent probabilistic
model.

If we are given the variable ordering, then estimating the structure of a DAG model reduces
to the problem of independently performing variable selection to select the parents of each node.
Thus, we can learn sigmoid belief networks using `1-regularization by solving a series of independent
`1-regularized logistic regression problems. Most previous work on structure learning in DAG
models with `1-regularization has considered the case of a known ordering [Li and Yang, 2005,
Huang et al., 2006, Levina et al., 2008]7. However, in general we do not have a topological ordering
available, and sub-optimal orderings may lead to models that are much more dense than the optimal
ordering. Thus, in Chapter 4 we consider a method that uses `1-regularization for structure learning
in sigmoid belief networks that does not assume a known topological ordering of the variables.
The challenge associated with this problem is that if we relax the constraints imposed by the
ordering (corresponding to fitting a dependency network) this typically leads to a structure violating
the acyclicity constraint. Thus, our method uses a two-phase approach: in the first phase the
method learns a dependency network using `1-regularization to obtain a set of candidate edges,
then in the second phases it uses local search in the space of DAGs restricted to these candidates.
Although various methods have been proposed for restricting the set of candidate edges in DAGs,
an important aspect of the new algorithm is that the same criterion is used for variable selection in
both phases. Although we state and evaluate the method for the case of sigmoid belief networks,
it can trivially be applied to the case of Gaussian CPDs or other types of linearly-parameterized
CPDs.

1.4 Gaussian and Ising Graphical Models

We now turn to the case of fitting two special types of pairwise undirected graphical models, and
consider learning a sparse graph structure by using `1-regularization of the parameters correspond-
ing to the edges in the graph. The advantage of working with undirected models is that we have no
acyclicity constraint and thus we can use `1-regularization directly to estimate a sparse structure.
However, the disadvantage of undirected models is that the log-likelihood does not separate into a
set of independent problems, and this makes parameter estimation much more expensive.

In pairwise undirected graphical models, we model the joint distribution p(x1, x2, . . . , xp) of
a set of p random variables x as a globally normalized product of non-negative unary potentials
φi(xi) and non-negative pairwise potentials φij(xi, xj):

p(x) ,
1

Z

p∏
i=1

φi(xi)

p∏
(i,j)∈E

φij(xi, xj). (1.4)

The normalizing constant Z is defined as the constant such that the distribution integrates to one
over all possible assignments to x. The set E contains the set of pairs of variables that we want to
include a pairwise potential for. Typically, we will only include pairwise potentials for a relevant
subset of the possible pairs of variables (but unlike DAG models that must be acyclic, we do not
need to enforce any constraints on the set of edges in undirected models). If the potential φij(xi, xj)
is included in the model, we say that two nodes i and j are neighbors, and that in this case j is in

7These works use Gaussian CPDs instead of sigmoid CPDs.
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the Markov blanket of node i (and vice versa). A local Markov property follows from the pairwise
factorization (1.4) and the choice of pairwise potentials to include, namely that for node i with
Markov blanket MB(i) we have the conditional independence property

p(xi|x−i) = p(xi|xMB(i)).

Further, we can visualize all of the conditional independence properties implied by the factorization
as an undirected graph, where each variable corresponds to a node in the graph and we place an
undirected edge between each set of neighbors. Because of this we refer to unary potentials φi(xi)
as node potentials, and pairwise potentials φij(xi, xj) as edge potentials. We can then test whether
the factorization implies that two sets of variables are conditionally independent (given a third
set of variables) by testing whether the conditioning set separates the two sets in this graph. For
more details on the independence properties of undirected graphical models, we refer to [Koller and
Friedman, 2009, §4.3].

Structure learning in pairwise undirected graphical models is the task of selecting the pairs of
vairables to include as neighbors/edges in E. However, note that if a potential function φij(xi, xj)
takes the value 1 for all values of xi and xj , it is equivalent to removing the potential from the
model8. Thus, if we parameterize our pairwise potentials such that zeros in the parameterization
make φij(xi, xj) take the value 1 for all xi and xj , then we can use `1-regularization of the fully-
connected model to encourage that we learn a sparse graphical structure.

This idea was first explored for Gaussian graphical models (GGMs). In GGMs, we model
the joint distribution p(x1, x2, . . . , xp) of a set of p continuous random variables as a multivariate
Gaussian with mean b and precision (inverse-covariance) matrix W :

p(x1, x2, . . . , xp) ,
1

Z
exp(−1

2
(x− b)TW (x− b)). (1.5)

In this case the normalizing constant Z is

Z ,
1

(2π)p/2|W−1|1/2
.

This normalization constant can be computed inO(p3) time using a Cholesky factorization of W .
If we expand out the quadratic form in (1.5) we see that GGMs are a special case of (1.4), and
hence they are pairwise undirected graphical models. In particular, an edge is present between two
variables i and j in a Gaussian graphical model if and only if the corresponding element Wij of the
precision matrix W is non-zero. This type of model was introduced in [Dempster, 1972], where it
was referred to as covariance selection.

Because setting elements of the precision matrix to zero corresponds to removing edges from
the graph, we can consider simultaneously estimating the parameters and a sparse structure in
GGMs by minimizing the negative log-likelihood subject to `1-regularization of the elements of the
precision matrix. This is referred to as the graphical LASSO by [Friedman et al., 2008], and it has
been proposed by numerous authors [Dahl et al., 2005, Banerjee et al., 2006, Yuan and Lin, 2007].
In the graphical LASSO we set b to the sample mean of the training data, and then compute the

8Because of the global normalization, setting the potential to a constant value c for any choice of c is also equivalent
to removing the node from the model
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precision matrix by optimizing the negative log-likelihood with `1-regularization of the precision
matrix elements. This latter problem can be written as the convex optimization problem

min
W�0
− log detW + tr(Σ̂W ) + λ||W ||1. (1.6)

In the above ||W ||1 refers to the entry-wise `1 norm of W and Σ̂ refers to the sample covariance
matrix, Σ̂ , (1/n)

∑n
i=1(x

i − b)(xi − b)T . The positive-definite constraint W � 0 is required to
ensure that the solution is a valid distribution. Although this constraint may appear problematic
since the positive-definite cone is an open set, the log-determinant term in the objective function
acts as a log-barrier that ensures the solution is an interior point of this set9. Due to the appeal-
ing notion of combining regularization and sparsity within classical covariance selection methods,
numerous authors have explored solution methods and applications of this model. A subset of the
extensive work is [Dahl et al., 2005, Banerjee et al., 2006, Yuan and Lin, 2007, Friedman et al.,
2008, d’Aspremont et al., 2008, Duchi et al., 2008a, Krishnamurthy and d’Aspremont, 2009, Lu,
2009, 2010, Yuan, 2009]. Further, as we discuss in the last section the dependency network methods
of [Meinshausen and Buhlmann, 2006] represent pseudo-likelihood approximations to the graphical
LASSO model.

We can also consider applying `1-regularization to the joint distribution in undirected graphical
models over discrete variables; the first works to explore this were [Lee et al., 2006b, Wainwright
et al., 2006, Dahinden et al., 2007]. Most of the work in this vein has considered the special case of
pairwise undirected graphical models of binary data with Ising potentials. We refer to these models
as Ising graphical models (IGMs). In IGMs, we write the joint distribution p(x1, x2, . . . , xp) of a
set of p binary random variables as

p(x1, x2, . . . , xp) ,
1

Z
exp(

p∑
i=1

xibi +
∑

(i,j)∈E

xixjwij). (1.7)

where in this case the normalizing constant Z is

Z ,
∑
x′

exp(

p∑
i=1

x′ibi +
∑

(i,j)∈E

x′ix
′
jwij).

Some authors use a {0, 1} representation of the binary variables in (1.7) [Wainwright et al., 2006,
Hofling and Tibshirani, 2009], while other authors use a {−1, 1} representation [Banerjee et al.,
2008, Kolar and Xing, 2008]10. Clearly, (1.7) is a pairwise undirected graphical model and setting
the edge parameter wij to zero is equivalent to removing the pairwise potential from the model.
Thus we can consider minimizing the negative log-likelihood with `1-regularization of the edge
parameters to learn a regularized sparse structure. Specifically, we solve

min
W,b

n∑
m=1

[−
p∑
i=1

[−xmi bi −
n∑

j=i+1

xmi x
m
j wij ]] + n logZ(W,b) + λ

p∑
i=1

p∑
j=i+1

|wij |. (1.8)

9That the solution is an interior point of the constraint set is appealing from the perspective of optimization, since
it means that we do not necessarily have to use constrained optimization methods to solve (1.6)

10Both representations can model arbitrary positive pairwise distributions over binary data, but these two param-
eterizations do not give necessarily lead to equivalent models if we regularize the parameters
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We note that the first term in this expression is linear while the second is convex [Boyd and
Vandenberghe, 2004, §3.1], so this is a convex optimization problem.

Unfortunately, solving this optimization problem is more complicated than the GGM case, be-
cause of the combinatorial nature of the normalizing constant Z. The complexity of computing
Z and related quantities is discussed in (for example) [Koller and Friedman, 2009, §9-10]. In par-
ticular, it is #P-hard to evaluate Z. Hardness results also apply to other operations involving
discrete undirected models, such as computing the most likely configuration (NP-hard in gen-
eral) and computing marginal or conditional probabilities (#P-hard in general). In some practical
cases of interest, it is possible to efficiently solve these problems. For example, variants of the
belief-propagation message-passing algorithm can solve these problems in O(p) when the graph
is tree-structured. However, the best known general methods for solving these problems require
a runtime that is exponential in the treewidth of the graph. For more information on the com-
plexity of inference, the relation to treewidth, and general message-passing algorithms, see (for
example) [Koller and Friedman, 2009, §9-10].

Different authors have proposed different solutions to the computational intractability of eval-
uating the objective function. As we discuss in the previous section, Wainwright et al. [2006] fit a
dependency network with logistic regression conditionals. This corresponds to a pseudo-likelihood
approximation. For a generalization of IGMs, in [Schmidt et al., 2008] we considered the symmetric
pseudo-likelihood approximation11

min
W,b
−

n∑
m=1

[

p∑
i=1

log p(xmi |xm−i,W,b)] + λ

p∑
i=1

p∑
j=i+1

|wij |. (1.9)

We note that each conditional probability is the likelihood in a logistic regression model:

p(xi|x−i,W,b) =
1

Zi
exp(xibi +

∑
j 6=i

xixjwij),

where the local normalizing constant Zi only sums over possible assignments to xi (and thus can
be tractably evaluated). This is nearly identical to learning a dependency network with logistic
regression conditionals, but in this formulation we use the same parameter wij in both p(xi|x−i)
and p(xj |x−j) rather than using two versions of the parameter. [Hofling and Tibshirani, 2009]
show that this approximation gives performance that is similar to or better than the performance
of the dependency network approximation. A disadvantage of the symmetric version is that the
optimization problem is slightly more difficult since the optimization problem is no longer separable
in the conditional distributions. Instead of using a pseudo-likelihood approximation, Lee et al.
[2006b] use the non-convex Bethe variational approximation to logZ (in the special case of tree-
structured graphs, this approximation is convex and exact). Banerjee et al. [2008] proposed a
convex variational approximation to logZ, while Kolar and Xing [2008] outline a set of additional
constraints that can be imposed to improve this approximation. Hofling and Tibshirani [2009] also
consider using junction trees to evaluate the likelihood exactly, but the cost of this is exponential
in the treewidth of the graph.

Because the complexity of using the model has such a strong dependency on the graph structure,
one of the main interests in learning a sparse structure is to learn a model that is easier to use.
However, we note that the degree of sparsity of a graph is not a perfect surrogate for the treewidth

11This approximation was subsequently used in [Hofling and Tibshirani, 2009]
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of a graph12. In particular, it is possible for a graph with a large number of edges to have a lower
treewidth than a graph that is more sparse. For example, a chain-structured graph on 100 nodes
will have 99 edges and a treewidth of 1, while we if we construct a graph consisting of a three-
clique and 97 other nodes with no edges then this graph has only 3 edges but has a treewidth of 2.
Nevertheless, there is a simple local property that relates sparsity to treewidth: the treewidth of a
graph is never decreased by adding an edge. Thus, although sparsity is not a perfect measure of
treewidth, increased sparsity may lead to a decreased cost of using the model. Further, approximate
inference methods typically scale linearly in the number of edges in the model. Thus, in cases where
only high treewidth graphs provide good models of a data set, sparsity directly decreases the cost
of using the model.

1.5 Pairwise Undirected Graphical Models

As we discuss in the previous section, there has been substantial interest in using `1-regularization
for structure learning in GGMs and IGMs. However, GGMs and IGMs can only represent pairwise
distributions over Gaussian and binary data, respectively. In this section we review the class of
pairwise log-linear models, a generalization of IGMs that can be used to model arbitrary pairwise
positive distributions over discrete data.

In log-linear models of discrete vectors x ∈ {1, 2, . . . , k}p, the logarithm of each of the potentials
is a linear function of the parameters. For example, if variable xj can take four states (k = 4), we
can define the node potential φj(xj) such that

log φj(xj) = I(xj = 1)bj,1 + I(xj = 2)bj,2 + I(x3 = 3)bj,3,

where bi,j is the parameter associated with state j for node i, and I(·) denotes an indicator function
that returns a value of 1 if its argument is true and 0 otherwise. Note that even though xj has four
possible states in the example above, we only use three parameters. If we used four parameters
then one of them would be redundant because the global normalization in (1.4) allows us to rescale
each potential (or equivalently add or subtract a constant from the log-potential) without changing
the model. Thus, we consider node potentials that have k−1 parameters for nodes that can take k
possible states. We obtain node potentials that are equivalent to those used in IGMs in the special
case where we have binary states. We find it convenient to use the notation bj to denote the set of
parameters {bj,1, bj,2, . . . , bj,k−1} associated with the node potential φj(xj).

We consider several different parameterizations of the edge potentials. First, we note that in
IGMs with binary variables that take the values {0, 1} we can write each edge potential φij(xi, xj)
as

log φij(xi, xj) = xixjwij

= I(xi = 1, xj = 1)wij .

Note that this parameterization of the potentials treats the two states asymmetrically. That is, if
wij > 0 then the edge encourages x1 and x2 to both take the state 1, but if wij < 0 it encourages
them to both not take the state 1. In both cases, there is no distinction made between the three
states (1, 0), (0, 1), and (0, 0) (while as before if wij = 0 then the edge has no effect). This

12We discuss methods that use explicit constraints on the treewidth in Chapter 5
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asymmetry is not present in the edge potentials used by IGMs with binary variables that take the
values {−1, 1}:

log φij(xi, xj) = xixjwij

= I(xi = xj)wij − I(xi 6= xj)wij

≡ I(xi = xj)wij − I(xi 6= xj)wij + wij

= 2I(xi = xj)wij

= I(xi = xj)w̃ij , (1.10)

where in the third line we add the constant wij (the global normalization means this does not
change the distribution) and in the last line we re-parameterize in terms of of w̃ij , 2wij . In this
form we see that the simple change in representation leads to the states being treated symmetrically,
the edge encourages the nodes to take the same state if wij > 0 and encourages the nodes to have
different states if wij < 0 (and the edge has no effect if wij = 0).

It is often convenient to represent our edge (log-)potentials as a matrix, where each entry (i, j)
contains log φij(xi, xj). Below, we give the matrices corresponding to Ising edge potentials over
two binary variables under the {0, 1} (left) and {−1, 1} (right) representations:

log φij(·, ·, wij) =

[
wij 0
0 0

]
, log φij(·, ·, wij) =

[
wij 0
0 wij

]
.

The form of the right matrix as well as (1.10) suggests a generalization to data with more than two
states, where we place a parameter on the diagonal elements of this matrix and no parameter on
the off-diagonals. As an example, for variables with three states we use the following edge potential
matrix:

log φij(·, ·, wij) =

 wij 0 0
0 wij 0
0 0 wij

 .
In the remainder of this work we refer to potentials with this form as Ising potentials, and we call
pairwise log-linear models with these types of potentials IGMs. If we have separate node and edge
parameters for each node and edge (respectively), then Ising potentials are sufficient to model any
pairwise positive distribution over binary data. However, we can only model a set of restricted
distributions over general discrete data with Ising potentials. Thus, to model general distributions
over discrete data we must consider other parameterizations of the edge potentials.

The next set of potentials we consider are a natural generalization of Ising potentials, where
(for nodes taking values in {1, 2, . . . , k}) we include a weight for each configuration where the nodes
take the same state. For example, for an edge between two variables that can take three possible
states we would use

log φij(xi, xj) = I(xi = 1, xj = 1)wij1 + I(xi = 2, xj = 2)wij2 + I(xi = 3, xj = 3)wij3.

Alternately, we can write the edge (log-)potentials as the matrix

log φij(·, ·,wij) =

 wij1 0 0
0 wij2 0
0 0 wij3

 .
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Here, we use the notation wij to refer to the set of all parameters associated with an edge potential
φij(xij). These potentials distinguish between configurations where the variables take the same
states, and can be used to model a wider class of distributions than Ising potentials. This form of
potential was previously used in, for example, [Taskar et al., 2004] (who contrast it with the classic
Potts model). Since we obtain Ising potentials if we set all the diagonal elements to the same value,
we refer to potentials of this form as generalized Ising or gIsing potentials. However, note that
with these potentials the edge is present in the model unless wijk is set to zero for all k.

We can also consider completely general potentials over discrete variables where we parame-
terize every element of the edge potential matrix, allowing us to model arbitrary pairwise positive
distributions over discrete data. For example, for an edge between two variables that can each take
three states we would use

log φij(xi, xj) = I(xi = 1, xj = 1)wij11 + I(xi = 1, xj = 2)wij12 + I(xi = 1, xj = 3)wij13

+ I(xi = 2, xj = 1)wij21 + I(xi = 2, xj = 2)wij22 + I(xi = 2, xj = 3)wij23

+ I(xi = 3, xj = 1)wij31 + I(xi = 3, xj = 2)wij32 + I(xi = 3, xj = 3)wij23,

or in matrix form:

log φij(·, ·,wij) =

 wij11 wij12 wij13
wij21 wij22 wij23
wij31 wij32 wij33

 .
Since we assign a different potential to each configuration of the nodes, we refer to potentials of
this form as full potentials. Here, we have k2 parameters, and the edge is included in the model if
any of these k2 are non-zero. In [Schmidt et al., 2008] we used these types of potentials but fixed
the value of one of the variables to zero (as with the node potentials) to decrease the number of
parameters in the model. However, the choice of the particular variable to fix at zero can influence
the particular structure learned, so in this work we use the full representation13.

Below are the matrices for the Ising, gIsing, and full potentials:

log φij(·, ·, wij) =

 wij 0 0
0 wij 0
0 0 wij

 (Ising edge potentials);

log φij(·, ·,wij) =

 wij1 0 0
0 wij2 0
0 0 wij3

 (gIsing edge potentials);

log φij(·, ·,wij) =

 wij11 wij12 wij13
wij21 wij22 wij23
wij31 wij32 wij33

 (full edge potentials).

An edge has no effect on the model if all entries of this matrix are set to zero14. In the Ising case
this corresponds to setting wij to zero, while in the other cases we must set all elements of wij

to zero. We close our discussion on potential parameterizations by noting that we can naturally
extend the full potentials to scenarios where the two nodes have a different number of states.

13Under this parameterization, the optimal parameters are still identifiable if we use a strictly convex regularizer.
14In the case of full potentials, we could also set all the entries of the matrix to a constant.
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In pairwise undirected models of discrete data, the negative log-likelihood function for a set of
n realizations of p-vectors xi is given by

−
n∑

m=1

[

p∑
i=1

[log φi(x
m
i ,bi) +

p∑
j=i+1

log φij(x
m
i , x

m
j ,wij)]] + n logZ(w,b),

where we use the notation b to denote the set of all node parameters and w to denote the set of all
edge parameters. As in the IGM case, this is a convex function. In log-linear models, the gradient
of the average negative log-likelihood has a simple form. For example, the average gradient with
respect to a node potential parameter bi,j is

∇bi,j −
1

n

n∑
m=1

log p(xm|b,w) = p(xi = j)− 1

n

n∑
m=1

I(xmi = j).

Thus we see that at a maximum likelihood solution (where the gradient is zero), the model must
have the same unary marginals as the data. Similarly, the average gradient with respect to an edge
potential parameter wijqr (when using full potentials) is

∇wijqr −
1

n

n∑
m=1

log p(xm|b,w) = p(xi = q, xj = r)− 1

n

n∑
m=1

I(xmi = q, xmj = r),

and thus at a maximum likelihood solution the model marginals will match the empirical frequencies
for all edges that are included in the model.

The models in the previous sections have a one-to-one correspondence between parameters in
the model and edges in the graph. However, the log-linear models we discuss in this section may
have more than one parameter associated with each edge. Further, the edge is only removed from
the model if all of the parameters associated with the edge are set to zero. Thus, if we would like to
use regularization to directly encourage graphical sparsity we must consider group `1-regularization,
a generalization of `1-regularization that penalizes groups of variables in order to directly encourage
group-wise sparsity.

Utilizing group `1-regularization to encourage sparsity in terms of groups of variables was pro-
posed by Bakin [1999]15. In group `1-regularization, we penalize the `1 norm of the (non-squared)
`2 norms of the groups. For our problem, we have one group for each edge and the group contains all
parameters associated with the corresponding edge. Thus, we can write the problem of estimating
a sparse regularized structure with group `1-regularization as

min
w,b
−

n∑
m=1

[

p∑
i=1

[log φi(x
m
i ,bi) +

p∑
j=i+1

log φij(x
m
ij ,wij)]] + n logZ(w,b) + λ

p∑
i=1

p∑
j=i+1

||wij ||2, (1.11)

(using an approximate objective function gives an analogous formulation). We obtain `1-regularization
if each group contains only a single variable. We can interpret this “`1 of `2 norms” regularizer
as an `1-regularizer of the lengths of the vectors wij . Consequently, it encourages sparsity in the
lengths of the vectors, leading to the entire group being set to zero when the length becomes zero.

Utilizing (1.11) was mentioned in [Lee et al., 2006b], but this work did not discuss how to
solve the resulting optimization problem. Dahinden et al. [2007] use (1.11) to encourage graphical

15Sardy et al. [2000] discuss using `1-regularization of the complex modulus, a special case of group `1-regularization
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sparsity, but their methodology is restricted to small data sets since they did not consider using
approximate inference or efficient large-scale optimization strategies. In Chapter 3 we give large-
scale optimization strategies that are especially suited to solving problems like (1.11), where we
have a large number number of variables, a costly objective, and a regularizer (or constraints)
with a simple structure. In Chapter 5, we consider several variations on (1.11). In particular, we
show how different choices of the norm can lead to edge potentials with different properties (and in
some cases better performance). We also extend the block-wise sparse strategy proposed in [Duchi
et al., 2008a], where edges are placed in groups and we would like to encourage sparsity in terms
of groups of edges. Finally, in Chapter 5 we consider extending (1.11) to include covariates for
use in structured classification problems, leading to a discriminative structure learning method for
structured classification.

1.6 General Log-Linear Models

Due to their relatively small number of parameters, pairwise log-linear have sometimes been advo-
cated in scenarios where limited data is available [Whittaker, 1990, §9.3]. However, pairwise models
only focus on the unary and pairwise statistical properties of the data, so the pairwise assumption
can be fairly restrictive if higher-order moments of the data are important and we have sufficient
training examples available to estimate such higher-order statistics. Despite this fact, with only
one exception, all previous work on structure learning with `1-regularization has made the pairwise
assumption. The one exception is Dahinden et al. [2007] who considered log-linear models of dis-
crete data where all potentials up to a fixed order are considered, and used group `1-regularization
to learn the structure.

For general log-linear models [Bishop et al., 1975], we can write the probability of a vector
x ∈ {1, 2, . . . , k}p as a globally normalized product of potential functions φA(xA) defined for each
possible subset A of S , {1, 2, . . . , p}:

p(x) ,
1

Z

∏
A⊆S

φA(xA).

As before the normalizing constant Z enforces that the distribution sums to one, and the logarithm
of each potential φA(xA) is linear in the parameters of the potential. For models including higher-
order terms, we use the short-hand wA to refer to all the parameters associated with the potential
φA(xA) (whether it be unary, pairwise, or higher-order), and we use w to refer to the concatenation
of all wA. We define the unary potentials and pairwise potentials as before, and can define the
threeway and higher-order potentials by generalizing the Ising, gIsing, and full potentials we discuss
for pairwise models. In general, if A contains c elements that can each take k values, φA(xA) will
have kc parameters wA when we use full potentials, k parameters when we use gIsing potentials,
and one parameter when we use Ising potentials. In the case of full potentials, general log-linear
models can be used to model arbitrary positive distributions over discrete data.

In practice, it is typically not feasible to include a potential φA(xA) for all 2p subsets. As
before, removing the potential φA(xA) from the model is equivalent to setting it to one (or any
other constant) for all values of xA, or equivalently setting all elements of wA to zero (or any other
constant). We obtain the class of pairwise models if we enforce wA = 0 for all A with a cardinality
greater than two. This effectively nullifies the effects of the higher-order statistics of the data on
the model.
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The group `1-regularization strategy from the previous section can naturally be extended to the
case of general log-linear models. This results in the optimization problem

min
w
−

n∑
i=1

log p(xi|w) +
∑
A⊆S

λA||wA||2. (1.12)

Here we include a separate regularization parameter λA ≥ 0 for each group since we typically want
to use a different degree of penalization for potentials of different orders.

This is (essentially) the approach taken in [Dahinden et al., 2007]. Dahinden et al. [2007] also
consider a variant where we only consider potentials up to a certain order, and successively increase
the order. This latter strategy can be viewed as an `1-regularization version of a classic strategy for
structure learning in general log-linear models [see Bishop et al., 1975, §4.5.1]. However, a problem
with (1.12) is that sparsity in the variable groups A does not directly correspond to conditional
independencies in the model (except in the pairwise case). In particular, in a log-linear model
variable sets B and C are conditionally independent given all other variables if and only if all
elements of wA are zero for all A that contain at least one element from B and at least one element
from C [see Whittaker, 1990, Proposition 7.2.1].

In principle, we can use the optimization methods of Chapter 3 to solve (1.12) (with an approx-
imate objective function, if necessary). Indeed, in Chapter 6 we consider using this formulation to
learn the structure of threeway log-linear models. However, this formulation is only practical when
the number of nodes p or the maximum size of the factors M is very small, since if we allow for
M -way factors there are

(
p
M

)
possible subsets of size M to examine. Further, if we allow factors of

arbitrary size then there are 2p factors to consider. For example, if we have 32 variables then we
would have 232 groups, and (with full potentials) each group would contain up to k32 parameters.
This exponential number of variables makes the problem very difficult to solve if we don’t enforce a
strong cardinality restriction (such as restricting attention to pairwise or threeway models). Dahin-
den et al. [2007] did not address the problems associated with the exponential number of variables
in this formulation, since their application only had five variables.

In Chapter 6, we consider using group `1-regularization for convex structure learning in the
special case of hierarchical log-linear models, where a potential φA(xA) can only be included if the
potentials on all subsets of A are also included. Although hierarchical models are a subset of the
class of general log-linear models, they are a far larger class of models than the set of pairwise
(or threeway) models. Further, one of the advantages of hierarchical models is that sparsity in
the groups directly corresponds to conditional independencies in the model. Similar to [Bach,
2008b], we develop an active-set method that can incrementally add higher order factors, and places
no restriction on the maximum cardinality of the potentials. This method uses the hierarchical
property to potentially rule out an exponential number of higher-order potentials, and converges to
a solution satisfying a set of necessary optimality conditions. Key to the convex parameterization
of the space of hierarchical log-linear models is that we allow the groups to overlap. This results in
a more difficult optimization problem, but in Chapter 6 we give a strategy to adapt the methods of
Chapter 3 to the case of overlapping groups. Our experiments show that allowing for such higher
order interactions can result in improved prediction accuracy.
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1.7 Data Sets

In addition to experiments on synthetic data, in this work we test the performance of various
methods on several real data sets. Several of the these latter data sets are used in multiple chapters
and in multiple contexts. Thus, to avoid repeating information we introduce all of the real data
sets in this section.

When we consider testing large-scale methods for `1-regularized logistic regression in Sec-
tions 2.6.1, we consider the following binary classification data sets:

• sido: This data set contains 4932 binary variables describing properties of 12678 molecules
that have been tested against the AIDS HIV virus. The target indicates the molecular activity,
and among the variables are several artificially generated ‘probe’ variables. This data set is
made available as part of the Causality Workbench,
http://www.causality.inf.ethz.ch/home.php.

• thrombin: This data set contains 139350 binary variables describing three-dimensional prop-
erties of 1909 molecules that have been tested for their ability to bind to thrombin, a key
receptor in blood clotting. The target variables indicate whether the molecules are active
(bind well). This data set has been made available by DuPont Pharmaceuticals Research
Laboratories for the KDD Cup 2001 competition,
http://pages.cs.wisc.edu/~dpage/kddcup2001/.

• spam: This data contains 823470 binary variables describing the presence of word tokens
in 92189 e-mail messages involved in the legal investigations of the Enron corporation. The
target variable indicates whether the e-mail was spam or not. This data set was made the
TREC 2005 corpus [Cormack and Lynam, 2005],
http://plg.uwaterloo.ca/~gvcormac/treccorpus/.
This data set was prepared by Peter Carbonetto, who used the SpamBayes software for feature
extraction,
http://spambayes.sourceforge.net/.

Since many of the tasks related to learning probabilistic graphical models are NP-hard or #P-
hard, in some cases we consider data sets that have a relatively small number of nodes and states.
This makes it possible to solve the NP-hard and #P-hard problems exactly. This removes any
confounding effects associated with using approximations when comparing optimization strategies
in Sections 2.6.2 and 3.5, and comparing different models in Sections 5.8.1 and 6.5. These data
sets also allows us to compare the quality of different approximations compared to the exact case
in Section 5.8.2. We examine two small data sets:

• cyto: The data studied in [Sachs et al., 2005]. In this study, intracellular multivariate flow
cytometry was used to simultaneously measure the expression levels of 11 phosphorylated
proteins and phospholipid components in 5400 individual primary human immune system
cells over 9 different stimulatory/inhibitory conditions. We used the targets of intervention
and 3-state discretization strategy (into ‘under-expressed’, ‘baseline’, and ‘over-expressed’) of
[Sachs et al., 2005]. This data set is available at the Causality Workbench Repository (we
ignore the experimental conditions),
http://www.causality.inf.ethz.ch/repository.php.

20

http://www.causality.inf.ethz.ch/home.php
http://pages.cs.wisc.edu/~dpage/kddcup2001/
http://plg.uwaterloo.ca/~gvcormac/treccorpus/
http://spambayes.sourceforge.net/
http://www.causality.inf.ethz.ch/repository.php


• awma: The coronary heart disease data studied in [Qazi et al., 2007]. In this study, expert
cardiologists provided ratings from 1-5 of the motion of 16 segments of the left ventricle of
the heart in 2602 patients [Qazi et al., 2007]. Here, a rating of 1 indicates normal, while
classes 2-5 represent degrees of abnormality. Although the segments are rated from 1 to 5, as
in [Qazi et al., 2007] we aggregate the four abnormal states (2-5) into a single state (classes
3 to 5 are severely under-represented in the data). This data set was provided by Siemens
Medical Solutions, and is not available on-line.

When we examine learning probabilistic graphical models of larger binary data sets in Sec-
tion 4.6.2, we focus on the following data sets:

• rain: We created a data set consisting of 28-vectors, representing a binarized version of the
‘daily precipitation’ amount for the first 28 of days of the month for the weather station in
Steveston, British Columbia. We obtained values from 1896-2004, but removed months with
missing (or accumulated) values (this left 1059 months). We only used the first 28 days for
each month to make all of the samples have the same length. Measurements marked with a
zero or trace precipitation values were assigned to one class, while fields with a non-zero value
were assigned to the other class (approximately 41 percent of the values are non-zero). This
data was extracted from the Canadian Daily Climate Archive from Environment Canada’s
National Climate and Data Information Archive,
http://climate.weatheroffice.ec.gc.ca/.

• msweb: The Anonymous Microsoft Web Data, a data set measuring whether each of 294
webpages were visited by 32711 anonymous randomly-selected users of microsoft.com. We
focused on the 57 websites with greater than 250 visits. This data set is available from the
UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml/index.html.

• news: A data set measuring the occurrence of 100 words in 16242 newsgroup postings from
the 20 Newsgroups data. This data set is available from Sam Roweis’ data page,
http://www.cs.toronto.edu/~roweis/data.html.

• usps: A set of 11000 binary 16 by 16 images (256 variables), each representing a single digit.
We binarized the pixels by assigning pixels with a value of zero to one state, and pixels with
a non-zero value to the other state. This data set is available from Sam Roweis’ data page,
http://www.cs.toronto.edu/~roweis/data.html.

When we examine learning probabilistic graphical models of larger non-binary discrete data
sets in Sections 5.8.3 and 6.5, we focus on the following data sets:

• awma-5: Rather than aggregating the four abnormal states (2− 5) into one single state, we
consider the full five-state version of the awma data from [Qazi et al., 2007]. Here, 1 indicates
normal, 2 indicates hypokinetic, 3 indicates akinetic, 4 indicates dyskinetic, and 5 indicates
aneurysm.

• traffic: The traffic data contains 32 four-state variables measuring the level of traffic flow at
different San Francisco locations at 4413 time points [Krause and Guestrin, 2005]. This data
sets was also previously analyzed in Shahaf et al. [2009], and was sent to us by Dafna Shahaf.

21

http://climate.weatheroffice.ec.gc.ca/
microsoft.com
http://archive.ics.uci.edu/ml/index.html
http://www.cs.toronto.edu/~roweis/data.html
http://www.cs.toronto.edu/~roweis/data.html


• temperature: The temperature data contains 54 four-state variables measuring temperature
levels in the Intel Research, Berkeley lab [Deshpande et al., 2004]. This data set was also
previously analyzed in Shahaf et al. [2009], and was also sent to us by Dafna Shahaf.

• usps4: Rather than binarizing the usps data, in this data set we discretize the pixels’ intensity
values into four equally-space bins (and we concentrated on the 16 pixels in the center of the
images).

• usps8: This is similar to the usps4 data, but using a discretization into eight bins.

When we consider learning blockwise-sparse GGMs in Section 5.8.4, we consider the following
data set:

• genes: A subset of the data set examined in [Gasch et al., 2000], containing mRNA expression
levels of 667 genes in the yeast genome measured under 174 different conditions. This data
set was previously analyzed in [Duchi et al., 2008a], and we use the same pre-processing and
assignment of the variables to the 86 ‘types’ that they use.

Finally, when we consider structured binary classification in Section 5.8.5 we focus on the
following data set:

• awma-c: In this data set we consider the classification problem of labeling 16 segments of
the left ventricle as normal or abnormal based on multi-view ultrasound video [Schmidt et al.,
2008]. This is similar to the awma data, but consists of 345 cases where we have cardiologist
labels for all 16 segments as well as features measured from the associated videos. For this
data, we have a total of 34 features for each segment measuring properties of the motion of
the segment from the tracked contours of the ventricle. This data set was also provided by
Siemens Medical Solutions.

1.8 Summary of Contributions

Below, we briefly summarize the contributions of each chapter:

• Chapter 2: We give extensions of limited-memory quasi-Newton methods for differentiable
optimization to the case of optimizing a differentiable function with `1-regularization. We
argue that these extensions have more appealing properties than previous extensions. Our
experiments on `1-regularized logistic regression indicate that these extensions perform similar
to or better than other methods for this problem.

• Chapter 3: We give new limited-memory quasi-Newton methods for optimizing differentiable
functions subject to simple constraints or simple non-differentiable regularizers. We argue
that these extensions are appealing when the differentiable function is high-dimensional and
costly to evaluate, while the constraints (or non-differentiable regularizer) have a simple
structure. Our experiments on group `1-regularized pairwise log-linear models indicate that
these methods outperform existing methods for this problem.

• Chapter 4: We give a method that uses `1-regularization to learn a sigmoid dependency
network to prune the set of edges that are considered in a search over the space of DAG
models with sigmoid CPDs. Unlike previous pruning methods that prune based on a different
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criteria than the subsequent search, our method uses the same score in both the pruning and
the search phase. Our experiments indicate that this pruning strategy is advantageous over
previous pruning strategies that do not take advantage of the structure of the CPDs or the
form of the score. Although we concentrate on the case of sigmoid CPDs the method applies
to a more general class of linearly-parameterized CPDs.

• Chapter 5: We consider methods for learning pairwise undirected graphical models with
group `1-regularization to encourage graphical sparsity. Unlike previous work, we consider
using group `1-regularization with different choices of the group norm, and argue that the
structure offered by different choices can be advantageous. We show how to apply the methods
of Chapter 3 to the case of different group norms, and we introduce a group version of the nu-
clear norm regularizer. Our experiments indicate that different choices of the group norm can
lead to improved predictive performance, and that utilizing general pairwise log-linear models
of discrete data can lead to better predictive performance than IGMs. We extend previous
work on blockwise-sparse GGMs by considering different choices of the group. We also extend
previous work on group `1-regularization of log-linear models to the case of conditional log-
linear models, representing the first method that simultaneously and discriminatively learns
both structure and parameters in a structured classification model.

• Chapter 6: We consider using overlapping group `1-regularization for structure learning
in hierarchical log-linear models, with no restriction on the cardinality of the potentials.
We give an active-set method for searching the exponential space of possible higher-order
potentials, and show how to apply the methods of Chapter 3 to the case of overlapping
groups. Our experiments indicate that removing the cardinality restriction leads to better
predictive performance than pairwise (or threeway) models.
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Chapter 2

Optimization with `1-Regularization

Many of the models examined in this work require solving an `1-regularized logistic regression
problem. Although logistic regression is typically used for binary classification (§1.1), we must
also solve a set of `1-regularized logistic regression problems for structure learning in dependency
networks (§1.2), and for the DAG structure learning method we describe in Chapter 4. Further,
pseudo-likelihood approximations in `1-regularzied IGM models (§1.4) and general binary log-linear
models (§5.3) take the form of a set of dependent `1-regularized logistic regression problems. If we
consider models with more than two states for each node, then these problems are replaced with
the analogous multiclass logistic regression [Bishop, 2006, §4.3.4]. Further, the `1-regularized IGM
model and general binary log-linear models (§1.5) also have a similar structure. Thus, in this work
it is important to be able to efficiently optimize the parameters in `1-regularized logistic regression
and related models. Fortunately, this has recently become a well-studied problem.

In this chapter, we describe algorithms for solving the general optimization problem

min
x
f(x) , L(x) +

∑
i

λi|xi|, (2.1)

where L(x) is assumed to be convex and differentiable with respect to x ∈ Rp, and we may have
a separate regularization parameter λi ≥ 0 for each variable i. We particularly concentrate on the
special case of the `1-regularized logistic regression problem we discuss in Section 1.1. In this case,
L(x) is the negative log-likelihood in a logistic regression model, the optimization parameters x are
the concatenation of the weights w and bias b in the model, and λi is the same across all i, except
for the bias term b where λi = 0. More precisely, logistic regression is the following special case
of (2.1):

min
w,b

n∑
i=1

log(1 + exp(−yi(wTxi + b))) + λ||w||1.

In this case, the gradients of L(w, b) with respect to b and w are given by

∇bL(w, b) =
n∑
i=1

−yi/(1 + exp(yi(wTxi + b))),

∇wL(w, b) =
n∑
i=1

−yixi/(1 + exp(yi(wTxi + b))).

Although our focus is on logistic regression, we note that the algorithms we describe in this chapter
are applicable to any optimization problem of the form (2.1), including (for example) `1-regularized
IGMs.

Solving (2.1) is complicated by the non-differentiability of |xi| at xi = 0. In the next section,
we briefly discuss one of the most effective optimization methods for logistic regression when no
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regularization is used, or when (differentiable) `2-regularization is used. We then proceed to outline
several properties that we would like an optimization method for `1-regularized logistic regression
to have, followed by a discussion of existing and then new methods for solving the non-differentiable
`1-regularized logistic regression problem.

2.1 Logistic Regression with Differentiable Regularization

In the case of unregularized logistic regression or logistic regression with `2-regularization, several
comparison studies indicate that quasi-Newton methods are among the most efficient methods
available for solving large-scale (generalized) logistic regression problems [Malouf, 2002, Wallach,
2002, Minka, 2003, Sha and Pereira, 2003]. Quasi-Newton optimization algorithms are closely
related to optimization methods based on Newton’s method, but where the matrix of second partial
derivatives of the objective function (the Hessian) is replaced by an approximation. Typically, for
large-scale problems the approximation is constructed using limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) updates [Nocedal, 1980]. In this section we review a Newton-like
algorithm for unconstrained optimization, and then discuss L-BFGS updates.

Newton-like algorithms for unconstrained differentiable optimization are iterative methods,
where at each iteration we form a quadratic model

qk(x) , f(xk) + (x− xk)
T∇f(xk) +

1

2
(x− xk)

THk(x− xk),

around the current iterate xk. Here, Hk is a positive-definite matrix (the Hessian or an approxi-
mation of it). To compute the new iterate xk+1 we move to the minimum of this quadratic. This
minimum is given by

xk+1 ← xk −H−1k ∇f(xk).

Unfortunately, this new iterate may not necessarily decrease the objective function. However, the
direction of search, d , −H−1k ∇f(xk), is a descent direction at xk. That is, for sufficiently small
α > 0 we have f(xk + αd) < f(xk) provided that xk is not an optimal solution (and that Hk is
positive-definite). Therefore, we can decrease the objective function by moving in the direction d
using iterates of the form

xk+1 ← xk + αH−1k ∇f(xk),

for some sufficiently small α > 0. To choose the step length α, we can use a line search. Specifically,
to guarantee a sufficient decrease on the objective value, we start with α = 1 and decrease α until
we satisfy the Armijo condition

f(xk+1) ≤ f(xk) + ν∇f(xk)
T (xk+1 − xk), with ν ∈ (0, 1). (2.2)

A typical value of the sufficient decrease parameter ν is 10−4. In the case of logistic regression and
if Hk is a reasonable approximation to the Hessian, the value α = 1 will typically be accepted. If
this value is not accepted, we can generate a new step length α̃ in the interval (0, α). A common
approach to do this is to set α̃ to the minimum of the cubic polynomial that interpolates f(xk),
f(xk+1), and the directional derivatives ∇f(xk)

T (xk+1−xk) and ∇f(xk+1)
T (xk+1−xk). Typically,

we use some safeguards to ensure that α̃ is in the interval (0, α) and that it is not too close to either
end point. For example, we can project the minimum of the cubic interpolant into the interval
[ξ1α, ξ2α], for 0 < ξ1 ≤ ξ2 < 1. For the logistic regression objective function, the minimum of the
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cubic polynomial, α̃, will typically be accepted, but if it is not we can repeat the cubic interpolation
focusing on the interval (0, α̃). Successively refining the interval generates a decreasing sequence of
step lengths, and we must eventually find a value of α that satisfies the Armijo condition. Once a
suitable value of α is found, we set xk+1 ← xk+αd and start a new iteration at xk+1. We typically
continue this process until the iterations no longer make substantial progress (the relative change
in parameter values or function values is too small), or until we satisfy a criterion measuring the
first-order optimality of the current iterate (i.e. that ||∇f(xk)|| is too small). For more information
on Newton’s method for optimization and the other issues we discuss in this section, see [Gill et al.,
1981, Nocedal and Wright, 1999] (among many other standard references).

2.1.1 L-BFGS Approximation

Rather than explicitly using the exact Hessian Hk = ∇2f(xk), quasi-Newton methods allow us to
build an approximation to the Hessian (or its inverse) using successive differences in the parameter
vector

sk , xk+1 − xk,

and the gradient
yk , ∇f(xk+1)−∇f(xk).

Quasi-Newton methods typically begin with a scaled identity matrix approximation B0 , σI to
the Hessian (for some positive σ), and after each iteration Bk+1 is updated so that the changes in
parameters and gradients satisfy the secant equation

Bk+1sk = yk. (2.3)

The solution Bk+1 of (2.3) is not unique, and the most common way to choose a unique matrix
Bk+1 is with the BFGS formula [see Gill et al., 1981, §4.5.2]. In the limited-memory version of the
BFGS update, L-BFGS, we don’t explicitly store Bk but rather store a set of m differences sk and
yk. To pre-multiply a vector with the inverse of a matrix B0 = σkI updated m times with these
stored vectors, we can use a simple algorithm that runs in O(mp) [Nocedal, 1980].

The choice of the scaling coefficient σk can have a significant impact on the performance of
the method. A widely-used and typically very effective choice of this scaling is [Shanno and Phua,
1978]

σk ,
yTk yk

yTk sk
. (2.4)

In later sections we consider utilizing an inverse Hessian approximation that simply takes the form
σkI, with σk given by (2.4) and without any quasi-Newton updates applied to it. This was proposed
by Barzilai and Borwein [1988], and represents a σk that minimizes the squared error in (2.3) under
this simple approximation16.

16An important property of the Barzilai-Borwein approximation, as opposed to the L-BFGS approximation, is that
it only changes the magnitude of the negative gradient, and not its direction
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2.1.2 `1-Regularization over an Orthant

We define an orthant for some sign pattern {ζ1, ζ2, . . . , ζp} to be the closed subset of Rp satisfying

ζ1x1 ≥ 0,

ζ2x2 ≥ 0,

. . .

ζpxp ≥ 0,

where each ζi can take values in the set {−1, 1}. An important property that is used extensively
in this chapter is that the `1-regularization problem (2.1) is differentiable over any given orthant.
In particular, over an orthant with sign pattern element ζi the derivative of the regularizer with
respect to a variable i is given by the linear function λiζi. Thus, if we are given an orthant
containing the optimal solution, solving the `1-regularization problem (2.1) reduces to the problem
of minimizing a convex differentiable objective function with bound constraints on the variables
(the bound constraints ensure that we do not leave the orthant). Minimizing differentiable functions
subject to simple bound constraints can be solved with straightforward modifications of problems
for minimizing unconstrained differentiable functions (like quasi-Newton methods with an L-BFGS
Hessian approximation); we describe one such method in Section 2.2.3.

2.2 Logistic Regression with `1-Regularization

Typically, we do not know the orthant of the optimal solution, so we must consider methods that
deal with the non-differentiability of the regularizer. We would like to have an algorithm that
allows us to efficiently solve the optimization problem even when the number of variables or the
number of training examples is large. Toward this end, we can identify several properties that we
would like of an optimization algorithm for solving the `1-regularized logistic regression problem:

1. Block updates: the algorithm is able to move more than one variable at a time to improve
the objective function.

2. Linear time/space: the algorithm requires O(p) space, and O(p) time per iteration.

3. Warm start: if we initialize the algorithm close to the optimal solution, it will require fewer
iterations to converge.

4. Sparse iterates: if the final solution is sparse, the algorithm does not necessarily need to
evaluate the objective function with a dense parameter vector.

These four properties eliminate several of the available strategies. For example, the block-updates
requirement eliminates coordinate descent methods such as [Fu, 1998] (such methods are extremely
effective if L(x) is close to separable, but their performance degrades sharply as the dependency
between variables increases). The linear time/space requirement eliminates projected Newton meth-
ods like the constrained iteratively-reweighted least squares method [Lee et al., 2006c]. The warm-
start requirement eliminates the possibility of applying interior point methods to a constrained
re-formulation of the problem [Koh et al., 2007]. Finally, the sparse-iterates requirement also elimi-
nates such interior point methods (since variables only become zero in the limit), and also eliminates
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approaches based on the expectation maximization bound optimization algorithm [Figueiredo, 2003]
(since variables cannot move away from zero once they are set to zero in this framework).

Despite eliminating some alternatives, these requirements still leave a variety of methods avail-
able. Ideally, we would also like a method for `1-regularized logistic regression that satisfies the
following three properties:

5. Reduction to Newton’s method: If at some iteration the algorithm identifies the orthant and
set of non-zero variables in the optimal solution, and if it stays in this orthant with this set
of non-zero variables on subsequent iterations, then the algorithm will take the same steps
that an unconstrained (quasi-)Newton method applied to the non-zero variables would use to
solve (2.1) over the orthant.

6. Fast modification of non-zero set: At each iteration, the algorithm is able to make many
zero-valued variables non-zero. Similarly, it is able to make many non-zero variables take the
value zero.

7. No increase in problem size: The algorithm is able to solve the problem in terms of the original
variables, rather than solving an equivalent problem with a larger number of variables.

In [Schmidt et al., 2007a, 2009a], we review a large variety of the available methods for solving `1-
regularized logistic regression problems, and experimentally compared 14 of the available methods.
Unfortunately, none of the algorithms discussed in these reviews satisfy all 7 of the above properties.
Rather than reviewing all of the methods discussed in this prior work, in this section we only
review three of the most effective methods, namely the orthant-wise learning algorithm, active-set
methods, and applying the two-metric projection method to a bound-constrained re-formulation of
the problem. Though very effective, each one of these strategies is deficient in one of the last three
properties. After reviewing these three methods, in the next section we present extensions of these
three methods that (in two of the three cases) allow the method to satisfy all 7 properties and that
(in all three cases) lead to better practical performance.

2.2.1 Orthant-Wise Learning

Andrew and Gao [2007] present one of the most effective methods currently available for solving
large-scale `1-regularized logistic regression problems. It is based on choosing an appropriately
defined steepest descent direction on (2.1) and taking a step resembling a Newton iteration in this
direction (with an L-BFGS Hessian approximation). To define the steepest descent direction we note
that even though f(x) in (2.1) is not differentiable in general, that directional derivatives always
exist (by convexity of f(x)). Thus, analogous to the differentiable case, we can define the steepest
descent direction for f(x) at a point x as the direction that minimizes the directional derivative
(ie. the direction that locally decreases the objective most quickly). Closely related to this concept
is what Andrew and Gao [2007] refer to as the pseudo-gradient of f(x), defined as the element of
the sub-differential of f(x) at x with minimum norm. Following an argument in [Bertsekas et al.,
2003, §8.4] (replacing maximization with minimization and concavity with convexity), it follows
that the steepest descent direction (in the Euclidean norm) for a convex function is the negation
of this pseudo-gradient.

The sub-differential of f(x) in (2.1) (denoted ∂f(x)) with respect to a variable i is given by

∂if(x) = ∇iL(x) + λi sgn(xi), (2.5)
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where the set-valued function sgn(xi) is defined by [see Bertsekas, 1999, Figure B.12]

sgn(xi) ,

{
sign(xi), xi 6= 0

[−1, 1], xi = 0
.

Since the sub-differential is separable in the variables, the problem of computing the minimum-norm
element of the sub-differential is also separable in the variables. Hence, we can solve the minimum-
norm problem coordinate-wise to yield that the pseudo-gradient with respect to a variable i is:

∇̃if(x) ,


∇iL(x), λ = 0

∇iL(x) + λi sign(xi), λ > 0, |xi| > 0
∇iL(x) + λi, λ > 0, xi = 0,∇iL(x) < −λi
∇iL(x)− λi, λ > 0, xi = 0,∇iL(x) > λi

0, λ > 0, xi = 0, |∇iL(x)| ≤ λi

(2.6)

In the first two cases the function is differentiable with respect to i, so the pseudo-gradient is simply
the gradient with respect to i (the only element of the sub-differential). In the last case of (2.6) the
pseudo-gradient is zero, since we can set sgn(xi) to −∇iL(x)/λi to achieve a norm of zero. In the
remaining cases we obtain the minimum-norm solution by setting sgn(xi) to have the opposite sign
of ∇iL(x). The pseudo-gradient has several properties that are analogous to the gradient vector
in unconstrained optimization. First, as we discuss above, the negative pseudo-gradient −∇̃f(xk)
is in the direction that minimizes the directional derivative at xk. Second, it follows from the first
property that ∇̃f(xk) = 0 is a necessary and sufficient condition for an iterate xk to be a global
minimum provided that L(x) is a differentiable convex function.

Since the regularizer is piecewise-linear and is a simple linear function over a given orthant we
might be tempted to use the pseudo-gradient in a quadratic approximation of f(x) at xk, yielding
the approximation

qk(x) , f(xk) + (x− xk)
T ∇̃f(xk) +

1

2
(x− xk)

THk(x− xk), (2.7)

where Hk is a positive-definite approximation of ∇2L(x). We could then consider minimizing this
quadratic approximation to generate a search direction d , −H−1k ∇̃f(xk), leading to iterations of
the form xk+1 ← xk + αd (where α is selected by a backtracking line search to satisfy the Armijo
condition, with the gradient replaced by the pseudo-gradient). Unfortunately, there are two major
problems with this approach: (i) the line search has no mechanism to set variables to exactly zero,
and (ii) in general d will not be a descent direction.

To address the problem that the line search does not set variables to exactly zero, [Andrew
and Gao, 2007] set variables xk+1 to zero if they differ in sign from xk. We use PO to denote this
orthant projection applied to a parameter vector x for some arbitrary direction d:

PO(x + d)i ,

{
0 if xi(xi + di) < 0,

xi + di otherwise.

Applying this projection to xk+1 is effective at sparsifying the parameter vector since it sets variables
to exactly zero, and it also ensures that the line search does not cross points of non-differentiability
(since the line search is truncated along some dimensions so that xk+1 is in an orthant containing
xk).
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There are many ways to address the problem that the method may not generate a descent
direction, and the methods we discuss in this chapter will differ mainly in how they address this
problem. However, the main insight used by all the methods is that f(x) is differentiable over
any single orthant, and that if we restrict attention to variables with non-zero pseudo-gradient
then the quadratic approximation (2.7) is the truncated Taylor series expansion of the function
restricted to a particular orthant. In particular, it is the truncated Taylor series expansion for the
orthant containing xk − ε∇̃f(xk) for some extremely small ε > 0. Thus, provided that xk does
not minimize f(x) over this orthant (which would imply that xk is a global optimum), using this
quadratic approximation is guaranteed to yield a descent direction at xk if xk+1 happens to lie
in this ‘right’ orthant for sufficiently small positive α. Since in general this will not be the case,
the methods considered in this chapter will give different strategies to ensure that xk+1 lies in the
‘right’ orthant for sufficiently small α. To ensure that xk+1 leads into the correct orthant, the
sufficient condition that is used by the various methods is that the search direction d agrees with
the steepest descent direction −∇̃f(xk) for all variables that are zero17.

The orthant-wise learning algorithm of [Andrew and Gao, 2007] uses a direct approach to enforce
this sufficient condition. In particular, they compute d and set any value di in d to zero if its sign
does not agree with −∇̃f(xk). We use PS to denote this sign projection:

PS(d)i ,

{
di, if di(∇̃if(xk)) > 0
0, otherwise

(2.8)

Andrew and Gao [2007] show that the positive-definiteness of Hk implies that PS(d) will have at
least one non-zero element and will represent a descent direction at xk (for sub-optimal xk). Thus
to generate the new iterate, the orthant-wise learning method uses steps of the form

xk+1 = PO[xk + αPS [−H−1k ∇̃f(xk)]].

As with all the algorithms we discuss in this chapter, the line search parameter α is chosen to
satisfy the Armijo sufficient decrease condition (2.2) (but using the pseudo-gradient in place of the
gradient).

The orthant-wise learning method was the most effective method in experiments on `1-regularization
problems by the authors [Andrew and Gao, 2007] and us [Schmidt et al., 2009b], while it was among
the most effective methods in our comparison of quasi-Newton methods for `1-regularized logistic
regression [Schmidt et al., 2009a]. Nevertheless, we might still hope to develop a better method
since the orthant-wise learning method only satisfies six of our seven criteria; it does not reduce to
Newton’s method on the non-zero variables. This is because of the sign projection PS , that may
always restrict the method to only move along a subset of the non-zero variables.

2.2.2 Active-Set Methods

Active-set methods are widely used for solving `1-regularization problems. Osborne et al. [2000]
outline an active-set method that is one of the first methods proposed for optimizing a linear
least-squares objective subject to a constraint on the `1-norm of the parameter vector, as in (1.2).
This algorithm was extended to the case of logistic regression in [Roth, 2004], while active-set
methods have also been proposed for the λ formulation where we put a penalty of the `1-norm

17We note that this condition is trivially satisfied if the positive-definite matrix Hk is diagonal, and hence a
diagonal-scaling or the Barzilai-Borwein approximation yield a descent direction.
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of the parameter vectors [Perkins et al., 2003, Lee et al., 2006a]. Methods that seek to trace the
regularization path of optimal coefficients as λ is varied for the least-squares loss [Osborne et al.,
2000, Efron et al., 2004] or logistic regression [Rosset, 2004, Park and Hastie, 2007] are also closely
related. In this section, we discuss an active-set method that is most closely related to the method
proposed in [Perkins et al., 2003].

In the approach of [Perkins et al., 2003], we divide the variables into two sets: the working setW
containing the non-zero variables, and the active set A containing the zero-valued variables (here,
we use the terminology active set because of the analogy with active-set methods for constrained
optimization). On each iteration we only update the working set, and on a typical iteration we
generate the next iterate by projecting the Newton step:

xW ← PO[xW − αH−1W ∇Wf(x)]. (2.9)

Here, we have used ∇Wf(x) to denote the sub-vector of ∇f(x) corresponding to elements of W,
and HW to denote the sub-matrix of Hk with all rows and columns of W. Since this step is
restricted to the non-zero variables, the gradient is defined and this step has the descent property
(it decreases the objective function for sufficiently small α, provided that the non-zero variables are
not at their optimal value given the fixed values of the remaining variables). Although it was not
present in [Perkins et al., 2003], we have added the projection operator PO to allow the method to
set variables to exactly zero and to prevent the possibility that a very small absolute value in xW
will require that the line search chooses a very small value of α.

Once we have found the optimal values for the non-zero variables given the zero-valued variables,
two things can happen. First, if |∇̃if(x)| = 0 for all i ∈ A, then we terminate with the optimal
solution. Otherwise, we move a single variable from the active set to the working set. In particular,
we choose the variable i in A with the largest pseudo-gradient magnitude |∇̃if(x)| (i.e. the zero-
valued variable that gives the steepest decrease in the objective), and we move this variable from
A to W.

With the new working set W, we apply the Newton step (2.9) where we replace the gradient
with the pseudo-gradient. Interestingly, this yields a descent direction. This is because the scaling
matrix HW has positive diagonals (because Hk is positive-definite) and the pseudo-gradient with
respect to the non-zero variables is zero (because they are at their conditionally optimal values), so
the sign of (H−1W ∇̃Wf(x))i will match the sign of ∇̃if(x) for the single zero-valued variable i just
added to W. This means that the active-set method doesn’t need to use the (potentially harmful)
PS sign projection.

It is quite clear that this active-set method satisfies our definition of reducing to Newton’s
method. Once we have identified the correct working set (and its sign), and if the iterates maintain
this working set (and its sign), then the active-set method will essentially be applying Newton
iterations to optimize the working set. Unfortunately, we achieved this property at the cost of
another; the active-set method no longer allows fast changes to the set of non-zero variables. In
particular, if k variables have the value zero that must be non-zero in the optimal solution, then we
must perform at least k iterations of the method. This can be impractical for large-scale problems
with many non-zero variables.

We can imagine several solutions to this problem. First, we could consider initializing all
variables non-zero, but this would lead to the loss of the sparse iterates property. We could also
imagine trying to move more than one variable away from 0 on each iteration. Unfortunately, as
soon as we consider moving two variables away from zero in a single iteration, we can no longer
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guarantee that the Newton-like direction is a descent direction. We return to this latter idea in
Section 2.3.

2.2.3 Two-Metric Projection

A classic strategy in linear programming for addressing `1-norm minimization problems is to trans-
form the elements of the norm into positive and negative parts, then minimize a linear function of
these parts [see Bertsimas and Tsitsiklis, 1997, §1.3]. Applied to (2.1), we write each xi using new
non-negative variables x+i and x−i as xi = x+i − x

−
i , leading to the problem

min
x+,x−

L(x+ − x−) +
∑
i

λi(x
+
i + x−i ), subject to x+i ≥ 0, x−i ≥ 0, ∀i. (2.10)

This is now a smooth optimization problem with simple non-negativity constraints on the variables.
This problem shares the same minimizers as (2.1). To see this, note that the range of L(x) is
unchanged under the {x+,x−} representation. Further, the objective function is an upper bound
on (2.1), since by the non-negativity constraints and the triangle inequality we have x+i + x−i =
|x+i |+ | − x

−
i | ≥ |x

+
i − x

−
i | = |xi|. Finally, we note that the upper bound is tight at a minimizer; it

must be the case that at least one of x+i or x−i is 0, so |xi| = x+i + x−i (otherwise, it violates that
we are at a minimizer since we could decrease the regularization term without changing the value
of L(x) by decreasing x+i and x−i by some small positive constant). In the discussion below, we use
y to denote the concatenation of the positive and negative parts.

There are many efficient methods available for solving smooth optimization problems with
bound constraints. We outline one, the two-metric projection algorithm discussed in Gafni and
Bertsekas [1982]. In the two-metric projection algorithm, we divide the variables into two sets. By
analogy with the previous section, we call them the active set A and the working set W. In this
algorithm, the active set is defined as the set of variables that are sufficiently close to zero and have
a positive partial derivative. In other words, the active set is defined by

A , {i|yi < ε,∇if(y) > 0}.

The working set is the complement of this set, consisting of variables that are sufficiently non-zero
or that have a negative partial derivative. In the two-metric projection method, we simultaneously
take the projection of a Newton step for the working set and the projection of a diagonally-scaled
gradient step for the active set. Specifically, we take the simultaneous iteration

yW ← [yW − αH−1W ∇Wf(y)]+

yA ← [yA − αD∇Af(y)]+.

The diagonal matrix D must be positive-definite and the function [x]+ , max{x, 0} projects the
variables onto the non-negative orthant. A typical choice for D is the identity matrix, making
the step for the active-set variables a projected-gradient step18. This simultaneous iteration is
guaranteed to provide (feasible) descent on the objective function. Further, this iteration will
reduce to Newton’s method on the non-zero variables if the correct active set has been identified,
and it allows us to move many variables between the zero and non-zero sets at each iteration.

18It is referred to as a two-metric projection method because we can write it as a scaled projected gradient step,
but where we project using the Euclidean norm rather than a quadratic norm defined by the Hessian approximation.
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Unfortunately, this method has the obvious drawback that we have increased the problem size. A
more subtle potential disadvantage of this method lies in the re-formulation of the problem. In
particular, the Hessian of the re-formulation is necessarily singular (it contains columns that differ
only in sign), even if the Hessian of the original problem is positive-definite. This might indicate
that the re-formulation may be more difficult to solve than the original problem.

2.3 Projected Scaled Sub-Gradient

We now consider extensions of the three methods above that alleviate each of their disadvantages,
and in two of the cases give us methods that satisfy all 7 properties that we would like of an opti-
mizer. We call these methods projected scaled sub-gradient (PSS) methods, because the iterations
can be written as the projection of a scaling of a sub-gradient of the objective. In particular, the
PSS methods use specific choices of the sub-gradient, scaling, and projection:

• For the projection, we use the (Euclidean) orthant projection PO.

• For the sub-gradient, we use the pseudo-gradient ∇̃f(x).

• For the scaling, we require that the scaling leads to the correct orthant (ie. among variables
currently set to zero, no element of the scaled direction has opposite sign from the negative
pseudo-gradient).

• For the scaling, we also require that it is positive-definite with respect to some subset of the
variables with non-zero pseudo-gradient (and zero with respect to the remaining rows).

Because we use a scaling matrix but project under the Euclidean norm, these methods could alter-
nately be called two-metric sub-gradient projection methods, and we note that both the orthant-
wise learning and active-set methods of the previous section satisfy the four properties above. These
properties ensure that the method generates descent directions and, although we omit detailed con-
vergence proofs, ensure convergence under fairly weak conditions. This can be shown by suitable
modifications of the arguments made for gradient-related methods [Bertsekas, 1999, Proposition
1.2.1], as in [Andrew and Gao, 2007]

2.3.1 Gafni-Bertsekas Variant

The first variant we consider is analogous to the two-metric projection idea, but applied to `1-
regularization instead of bound constraints. We refer to this as the PSS Gafni-Bertsekas variant
(PSSgb). In this method, we define the working set as those variables that are sufficiently non-zero:

W , {i||xi| > ε}.

As usual, the active set is defined as the complement of this set. Similar to the two-metric projection
method we perform a simultaneous iteration where we take a projection of the Newton step along
the working set and a diagonally-scaled projected pseudo-gradient step for the active-set variables:

xW ← PO[xW − αH−1W ∇Wf(x)]

xA ← PO[xA − αD∇̃Af(x)].
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Provided we use a positive diagonal scaling D, this combined direction is guaranteed to be a descent
direction (ie. it has a negative directional derivative) unless x is optimal. To see this, note that
a sub-optimal x must have at least one non-zero element in ∇Wf(x) or ∇̃Af(x). If we have a
non-zero element in ∇Wf(x), then by positive-definiteness of HW it follows that the contribution
to the directional derivative of moving the variables inW in the direction −H−1W ∇Wf(x) is negative
(and similarly, if ∇Wf(x) = 0 then the contribution to the directional derivative is zero). If we
have a non-zero element in ∇̃Af(x), it similarly follows that the component of the directional
derivative with respect to the zero-valued variables is negative (while if ∇̃Af(x) = 0 then this
contribution is zero). This is because −∇̃if(x) is in the direction that coordinate-wise minimizes
the directional derivative, so all non-zero elements in ∇̃Af(x) correspond to variables that have
a negative contribution to the directional derivative (while variables with a pseudo-gradient of 0
contribute a value of zero to the directional derivative). Subsequently, in either case the overall
directional derivative is negative and the combined direction is a descent direction.

Note that after identifying the correct set of non-zero variables, these iterations will perform
Newton steps on the non-zero variables. Further, many variables can be made zero/non-zero at
each iteration, and we have not increased the size of the problem. Thus, we have a simple algorithm
that achieves all 7 properties.

In the two-metric projection algorithm, the choice of the diagonal scaling matrix D does not
have a significant effect on the performance of the algorithm (it simply controls the rate that very
small variables move towards zero). However, the choice of D in the PSSgb algorithm can have a
significant effect on the performance of the method, since if D is too large we may need to perform
several backtracking steps before the step length is accepted (while too small of a value will require
many iterations to move variables from the active set to the working set). In our implementation
of the method, we compute the Shanno-Phua/Barzilai-Borwein scaling σk of the variables given
by (2.4), and set D to σ−1k I.

2.3.2 Sign Constraint Variant

The orthant-wise learning algorithm does not satisfy the property of reducing to Newton’s method
because of the PS sign projection. The problem with this projection is that it may set elements
of the Newton direction to zero for a large portion of the zero and non-zero variables. However,
note that to lie in the correct orthant (to guarantee descent) we only require that the zero-valued
variables in the search direction agree with the negative pseudo-gradient sign. Thus, in the PSS sign
projection (PSSsp) variant we apply the orthant-wise learning iteration but use a less constrained
version of the PS sign projection. Specifically, we use

PS∗(d)i ,

{
di, if (xk)i 6= 0 or di(∇̃if(xk)) > 0
0, otherwise

The only difference between the PS∗ projection and the PS projection (2.8) is the presence of the
condition “if (xk)i 6= 0”, which stops us from unnecessarily applying the sign projection to non-zero
variables. The method still does not reduce to Newton’s method because the zero-valued variables
still affect the search direction for the non-zero variables. However, this simple modification allows
greater use of the Hessian approximation for the non-zero variables and leads to improved practical
performance.
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2.3.3 Active-Set Variant

In the final PSS variant, the PSSas method, we extend the active-set method of Section 2.2.2 above
so that it can add more than one variable to the working set at each iteration. In this method,
we augment the simple working set W above with the k zero-valued variables with the largest
(non-zero) pseudo-gradient magnitudes to obtain a new working set Wk. We then compare the
sign values of the elements of the pseudo-gradient to the signs in the product H−1Wk∇̃Wkf(x). If
the signs for all k zero-valued variables agree, then the working set is valid and we simply take the
active-set step given by (2.9), but using Wk and the pseudo-gradient. If any of the signs disagree,
then we must find a different value for k that satisfies this property (k can range from 0 up to the
number of zero-valued variables that have non-zero pseudo-gradient).

We would like k to be as large as possible, but can not test too many values because testing
each value of k costs O(mp). For example, a naive approach is to start with k = 0 (which is always
valid), and test each k in increasing order until we find an invalid value (then accept k − 1). This
would lead to a worst-case iteration cost of O(mp2), making it unsuitable for large-scale problems.
In the PSSas method, we do a binary search for a k such that k is valid and k + 1 is invalid. This
finds a value of k that is at least as large as the one found by the naive method, but has a worst-case
iteration cost of O(mp log p), only slightly higher than the iteration cost of the other methods we
discuss in this section19.

19We could re-gain the linear-time iteration cost by using a constant upper bound on k.
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2.4 Implementation

To make the PSS algorithms concrete, we now give pseudo-code for the PSS methods. Algorithm 1
outlines a general framework that can be used as a basis for implementing a PSS method.

Input: Function L(x), regularization parameters λi, initial parameter vector x0, optimality
tolerance ε, number of corrections m, sufficient decrease parameter η, line search
safeguard parameters ξ1 and ξ2, direction calculation function dir(k, g, σ, S, Y )

k ← 0;
S ← []; // initialize collection on of quasi-Newton vectors

Y ← [];
fk ← L(x0) + ||λi • x0||1 ; // evaluate initial parameter vector

gk ← ∇̃f(x0) ; // compute pseudo-gradient, see (2.6)
while ||gk||∞ > ε do

dk ← dir(k, g, σ, S, Y ); // compute algorithm-specific descent direction

α← 1 ; // initial step length

xk+1 ← PO(xk + αdk); // initial trial value

fk+1 ← L(xk+1) + ||λi • xk+1||1 ; // evaluate new parameter vector

gk+1 ← ∇̃f(xk+1) ; // compute pseudo-gradient, see (2.6)
while fk+1 > fk + ηgTk (xk+1 − xk) do

Select α ∈ (ξ1α, ξ2α) ; // safeguarded cubic interpolation

xk+1 ← PO(xk + αdk); // next trial value

fk+1 ← L(xk+1) + ||λi • xk+1||1 ;

gk+1 ← ∇̃f(xk+1) ;

sk ← xk+1 − xk ; // compute quasi-Newton differences

yk ← gk+1 − gk;
if k > m then

Remove oldest vector from S and Y ;

S ← [S sk] ; // update quasi-Newton difference matrices

Y ← [Y yk];
σ ← (yTk yk)/(y

T
k sk); // update diagonal Hessian scaling

k ← k + 1;

Algorithm 1: PSS framework for `1-regularized optimization.

A practical implementation would be slightly more complicated than Algorithm 1, because
typically we want to impose iteration or function evaluation limits, and we implement checks
that assess whether sufficient progress continues to be made. Note that we compute the quasi-
Newton vectors based on the pseudo-gradient rather than the differences in ∇L(x) as in [Andrew
and Gao, 2007], since we found this gave better performance. Although it may seem to counter-
intuitive to include the non-smooth component as part of the Hessian approximation, there has
been some empirical work showing that the BFGS approximation may be effective for certain types
of non-smooth problems [Lewis and Overton, 2008]. We have left the calculation of the descent
direction (dk) unspecified in this pseudo-code, because this is the primary difference between the
PSS methods. In particular, the orthant-wise learning method uses Algorithm 2 to calculate the
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descent direction (the PSSsp direction calculation is identical, but using the PS∗ sign projection).

Input: Iteration number k, pseudo-gradient g, scaling σ, quasi-Newton matrices S and Y
Output: Descent direction d
if k = 0 then

d← −min{1, 1/||g||1}g;

else
d← −H−1g ; // apply L-BFGS algorithm using g, S, Y , and σ
d← PS(d) ; // sign projection, see (2.8)

Algorithm 2: Direction calculation in orthant-wise learning.

In this algorithm, we use min{1, 1/||g||1} as the scaling of the gradient step on the first iteration.
For logistic regression, this heuristic tends to make the step small enough that it is typically accepted
without the need to backtrack. Algorithm 3 outlines the descent direction calculation used in the
active-set method.

Input: Iteration number k, pseudo-gradient g, scaling σ, quasi-Newton matrices S and Y
Output: Descent direction d
d← 0;
W ← {i|λi = 0}

⋃
{i|xi 6= 0} ; // default working set

if ||gW ||∞ < ε then
W ←W

⋃
{i|i = arg maxj |gj |}; // add variable to working set

if k = 0 then
dW ← −min{1, 1/||gW ||1}gW ;

else

dW ← −H−1W gW ; // apply L-BFGS algorithm using g, S, Y , and σ

Algorithm 3: Direction calculation in active-set method.

Algorithm 4 outlines the descent direction calculation in the PSSgb method. We note that the
descent direction calculation for the two-metric projection method is similar.

Input: Iteration number k, pseudo-gradient g, scaling σ, quasi-Newton matrices S and Y
Output: Descent direction d
if k = 0 then

d← −min{1, 1/||g||1}g;

else
W ← {i|λi = 0}

⋃
{i|xi 6= 0};

A ←Wc ; // active set is complement of working set

dA ← −σ−1gA ; // take steepest descent direction on active set

dW ← −H−1W gW ; // apply L-BFGS algorithm using g, S, Y , and σ

Algorithm 4: Direction calculation in PSSgb.
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Finally, Algorithm 5 outlines the descent direction calculation for the PSSas method.

Input: Iteration number k, pseudo-gradient g, scaling σ, quasi-Newton matrices S and Y
Output: Descent direction d
d← 0;
W ← {i|λi = 0}

⋃
{i|xi 6= 0} ; // default working set

if k = 0 then
dW ← −min{1, 1/||gW ||1}gW ;

else

dW ← −H−1W gW ; // default direction (k = 0)
LB ← 0 ; // k = 0 is always legal

UB ← 1 + |{i|xi = 0 and gi 6= 0}| ; // k can not be greater than the number of

zero-valued variables with non-zero pseudo-gradient

while UB − LB 6= 1 do
k ← d(UB + LB)/2e ; // new value for k

Wk ←W
⋃
{i|i among largest k values of |gk| for xi = 0};

dk ← 0;

dkWk ← −H−1WkgWk ;

if sgn(dk)i 6= sgn(g)i for some i with xi = 0 then
UB ← k; // this is not a valid value of k

else
LB ← k ; // largest valid value of k found so far

d← dk;

Algorithm 5: Direction calculation in PSSas.

We close this section by noting a final subtle but important implementation detail. On iterations
where the working set changes, it isn’t immediately obvious how the L-BFGS update should be
defined. For example, one possible strategy would be to reset the L-BFGS approximation every time
the working set changes. Unfortunately, this excludes the possibility that curvature information
gathered with a related working set might still be useful. In our implementation, we store the vector
and gradient differences from the previous m iterations for all variables, and define the L-BFGS
update based on the differences in the working set variables that satisfy

(sk)
T
W(yk)W > ε. (2.11)

This curvature condition is sufficient to guarantee that the quasi-Newton matrix is positive-definite [see
Nocedal and Wright, 1999, §8.1]. In our implementation, we compute σk based on the differences
in all variables.

2.5 Regularization Path and Active-Set Optimization

Hoerl and Kennard [1970] introduced the concept of a ridge trace, a plot of the optimal coefficients
in an `2-regularized least-squares model as the regularization parameter λ is varied. More recently,
there has been substantial interest in similar plots for `1-regularized coefficients as λ is varied, for
both least-squares [Osborne et al., 2000, Efron et al., 2004] and logistic regression [Rosset, 2004,
Park and Hastie, 2007]. In this section we consider the calculation of multiple points along this
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regularization path. That is, we would like to solve (2.1) for a set of values of λ rather than a fixed
value.

When solving (2.1) for multiple values of λ, as with many other algorithms we can improve the
performance of the PSS algorithms by using a warm-start strategy; we reduce the number of PSS
iterates needed by initializing the iterates using the solution with a closely related value of λ. This
allows us to solve the optimization problem for a set of values of λ more efficiently than we would
be able to if we ran the optimizer independently for each value of λ.

In addition to taking advantage of warm-starting (which is also possible with `2-regularization),
for `1-regularization we can take advantage of the sparsity of the coefficients along the regularization
path to solve the `1-regularized problem for a sequence of values of λ for a much smaller cost than
if we were using `2-regularization. This idea is very important in Chapters 5 and 6 where it leads to
an exponential speed-up for larger values of λ, but we introduce it here since it still yields modest
computational gains in the case of logistic regression.

Consider the following set of necessary and sufficient conditions for a vector x to be a minimizer
of f(x) for given values of λi:{

∇iL(x) + λi sign(xi) = 0, |xi| > 0
|∇iL(x)| ≤ λi, xi = 0

(2.12)

These conditions are equivalent to the necessary and sufficient optimality condition of requiring
the zero-vector to be an element of the sub-differential [Bertsekas, 1999, §B.5], or equivalently that
the pseudo-gradient is the zero vector. Rather than applying a PSS method to all the variables, we
could apply it to the set of non-zero variables combined with the variables satisfying |∇iL(x)| > λi.
Once we have computed the optimal solution restricted to this set, we update the set of variables
and repeat the optimization. That is, we alternate between two steps:

• Find variables i such that xi 6= 0, or xi = 0 and |∇iL(x)| > λi.

• Solve the problem with respect to these variables.

If the set of variables to optimize does not change between iterations of this procedure, then the
parameter vector satisfies (2.12) and hence is globally optimal (if it does change, then we are at
a sub-optimal solution and we must continue to loop between these two steps). This is essentially
the same active-set procedure discussed in Hofling and Tibshirani [2009], and note that we can use
an approximate solution in the second step provided we eventually solve the problem to optimality.
If we consider beginning with a sufficiently large value of λ and running this procedure with a
decreasing sequence of λ values (as is done in [Park and Hastie, 2007]), then most of the iterations
for large values of λ will only be run on a small subset of the variables. This is in contrast to the case
of `2-regularization, where all variables are non-zero for all values of λ and we would need to solve
the problem explicitly with respect to all variables for all values of the regularization parameter.

The optimality conditions also allow us to determine the values of the λi variables where all
of the variables that are subject to regularization are set to zero. For the `1-regularized logistic
regression problem, it follows from (2.12) that the value of λ that sets all regression weights to zero
is

λmax , max
i
|∇wiL(0, b̃)|,

where b̃ is the optimal value of the bias parameter subject to the constraint that w = 0. In general,
we can compute λmax by optimizing with respect to the unregularized variables, and then finding
the maximum gradient magnitude.
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2.6 Experiments

We compared the performance of several large-scale optimization methods for `1-regularized logistic
regression. In particular, we compared the following methods:

• OWL: the orthant-wise learning method we discuss in 2.2.1.

• AS: the active-set method we discuss in 2.2.2.

• TMP: the two-metric projection method we discuss in 2.2.3.

• PSSgb: the projected scaled sub-gradient method (Gafni-Bertsekas variant) proposed in 2.3.1.

• PSSsp: the projected scaled sub-gradient method (sign projection variant) proposed in 2.3.2.

• PSSas: the projected scaled sub-gradient method (active-set variant) proposed in 2.3.3.

• BBSG: a Barzilai-Borwein sub-gradient method where we move along the negative pseudo-
gradient with the step length given by (2.4), and project the iterates using the PO operator.

• SPG: applying a spectral projected gradient method to the bound constrained formula-
tion (2.10), similar to [Figueiredo et al., 2007].

• BBST: applying the iterative soft-thresholding algorithm with the step length given by (2.4),
similar to [Wright et al., 2009].

• DSST: applying a diagonally scaled soft-thresholding algorithm, similar to [Hofling and Tib-
shirani, 2009].

• OPG: applying Nesterov’s optimal projected gradient method to the bound-constrained for-
mulation, using the adaptive line-search suggested in [Liu et al., 2009].

For a comparison to other methods on some small-scale problems, see [Schmidt et al., 2007a, 2009a].
The list above contains three of the most effective methods in this previous work, the new PSS
methods, as well as five very effective newer methods that were not included in the previous compar-
isons. The first six methods use L-BFGS updates and a backtracking line search using the Armijo
condition. The BBSG/SPG/BBST methods use the Barzilai-Borwein step length [Barzilai and
Borwein, 1988] with a backtracking line search using the non-monotone Armijo condition [Grippo
et al., 1986, Raydan, 1997]. The DSST method uses a diagonal scaling, using the inverse of the di-
agonals of the Hessian (this is only the method that explicitly computes second-order information).
Finally, the OPG method uses Nesterov’s optimal worst-case gradient method for optimizing dif-
ferentiable objectives over simple convex sets [Nesterov, 2004, §2.2.4], augmented with the adaptive
line search and Lipschitz estimation procedure discussed in [Liu et al., 2009].

2.6.1 Logistic Regression

We tested the methods on the three binary classification data sets from Section 1.7. We measured
the performance of the methods in terms of the objective value achieved against the number of func-
tion evaluations used by the methods. The termination criteria for all methods was that the infinity
norm of the pseudo-gradient was less than 10−5, or the change in objective value between successive
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iterations, parameter values between successive iterations, or directional derivative of the descent
direction, was below 10−9. We set the initial step size of all the methods to 1/min{1, 1/||∇̃f(w)||1}
(except for the OPG method where we used 1/n as used in the code of [Liu et al., 2009], which
we found gave slightly better performance). We set the sufficient decrease parameter η in the line
search to 10−4, and the safeguard parameters for projecting the cubic interpolation {ξ1, ξ2} to .001
and 0.6. For the methods based on an L-BFGS approximation of the Hessian, we stored 10 previous
parameter and gradient vectors. For the methods that use the non-monotonic Armijo condition,
we set the number of previous function values to store at 10. For the OWL method, we used a
quadratic initialization of the line search [Nocedal and Wright, 1999, §3.4] since we found this gave
better performance than initializing the line search with α = 1.

In our experiments, we set λi to 1 for all xi (except the bias, where λi was set to zero).
Optimizing with this relatively small value of λ still leads to sparse solutions, and it makes the
optimization difficult enough that we can see a difference in performance between the methods.
For larger values of λ, the performance of the methods becomes more similar, while the relative
performance of the methods for smaller values of λi is similar to the performance with each λi set
to 1. We tested two choices for the initial parameter vector: (i) we initialized with the zero vector
(cold-start), and (ii) we initialized with the solution for λ = 2 (warm-start). We estimated the
optimal value of the objective function, f∗, in our experiments by taking the lowest objective value
found across the methods.

In Figures 2.1 (cold-start) and 2.2 (warm-start), we plot the logarithm of the objective function
minus f∗ and the number of non-zero variables against the number of function evaluations for the
PSSgb method and the five methods that are not based on an L-BFGS approximation. In these
plots, we plot the minimum objective value found by each method rather than the function value
at each evaluation (the methods may explore higher values if backtracking is required, while the
non-monotonic SPG/BBST/BBSG/OPG methods may spend multiple iterations exploring higher
values). In these figures, we see that the PSSgb method outperforms the methods that are not
based on L-BFGS. In particular, it obtains a lower objective value (for the same number of function
evaluations), it more quickly identifies the correct set of non-zero variables, and it terminates
earlier. Comparing the two figures, we see that the performance of the methods is closer if we
use warm-starting, but that the PSSgb method still outperforms the other methods based on this
measure. Among the three methods based on Barzilai-Borwein steps, the BBSG method was the
most effective, the SPG method was the least effective, while the BBST method tended to be
intermediary. There was no clearly superior method between the OPG method, the DSST method,
and the methods based on the Barzilai-Borwein steps.

In Figures 2.3 (cold-start) and 2.4 (warm-start), we focus on the six methods that are based
on an L-BFGS approximation. In these figures, we see that the three new PSS methods were the
three most effective strategies across all experiments. The TMP method also does reasonably well
on two of the data sets, but does poorly on the thrombin data. The OWL method was effective
at initially driving down the objective function, but its progress slowed down on later iterations
(presumably because the PS operator slowed down the local convergence rate). The AS method
tended to perform very poorly except on the thrombin data set, presumably because the final
solution was more sparse on this data set. Finally, we note that the PSSgb method seemed to
be the least effective among the three new PSS methods, while the PSSas method was the most
effective method in most scenarios.
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Figure 2.1: Function evaluations against objective value and number of non-zero coefficients for
logistic regression (λ = 1) with `1-regularization for different optimization strategies initialized
with the zero vector. Top to bottom: sido data, thrombin data, and spam data. This figure is best
viewed in color.
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Figure 2.2: The same experiment as Figure 2.1, but using the optimal solution for λ = 2 as the
starting vector.
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Figure 2.3: The same experiment as Figure 2.1, but focusing on methods that are based on L-BFGS.
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Figure 2.4: The same experiment as Figure 2.3, but using the optimal solution for λ = 2 as the
starting vector.
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2.6.2 Ising Graphical Models

We next tested the various optimization methods on the task of estimating `1-regularized IGMs.
We did this to see if the trends observed in the logistic regression experiments carry over to related
loss functions, and in particular if they carry over to using `1-regularization for structure learning
in log-linear models for the special case where their is a direct correspondence between edges and
parameters. Thus, we examined fitting `1-regularized IGMs to the cyto and awma data sets (where
it is possible to compute the exact IGM objective) from Section 1.7. In these experiments we set
the value of λ to 50, yielding a sufficiently difficult optimization problem that differences between
the methods become apparent (for larger values of λ the methods are all very effective). We used
essentially the same experimental set-up as in the case of logistic regression, with the following
modifications: (i) we did not test the DSST method since even computing the diagonals of the
Hessian is prohibitively expensive, and (ii) for the OPG method we used the same initial step
length that the other methods used (we found that using 1/n gave poor performance for estimating
IGMs).

In Figure 2.5, we plot the performance of the PSSgb method against the methods that are not
based on L-BFGS, where we initialize with the zero vector and with the solution for λ = 100. As in
the logistic regression experiments, the PSSgb method dominates the methods that are not based
on L-BFGS. Further, we again see that BBSG is the best and SPG is the worst among the three
methods based on the Barzilai-Borwein step size (SPG, BBST, and BBSG). However, unlike the
logistic regression experiments we see in these experiments that the methods based on the Barzilai-
Borwein step outperform the OPG method. Although it is possible that better performance could
be obtained with the OPG method with a different choice of initial step size, we note that the
performance of the other methods does not have this strong dependence on the initial step size.

In Figure 2.6, we plot the performance of the methods based on L-BFGS. In this plot, we again
see that the new PSS methods typically outperform the other methods. The one exception to this
was on the awma data with the warm-start, where the AS method proved very effective (since the
set of non-zero variables didn’t change much between λ = 100 and λ = 50). However, in the other
scenarios the AS method is dominated by the new PSS methods.

2.7 Extensions

In this section, we consider several straightforward extensions of the work we describe in this
chapter.

2.7.1 Other Objective Functions

We have presented an efficient large-scale optimization method for `1-regularized logistic regression.
However, the only assumption needed in order to use this method is that the function we want to
optimize with `1-regularization is differentiable and convex. We can further relax the assumption
of convexity if we concede that the algorithm may find a local minimum that is not also a global
minimum. Thus, we can apply this optimization algorithm in a wide variety of other scenarios.
Besides the obvious problem of learning dependency networks with logistic regression conditionals
(or other CPDs we discuss in Chapter 4), below we list several applications to structure learning:

• Solving the graphical LASSO in the primal: Most current methods for solving the
graphical LASSO optimization problem (1.6) solve a Lagrangian dual of the optimization
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Figure 2.5: Function evaluations against objective value for training IGMs (λ = 50) with `1-
regularization for different optimization strategies. Top row: cyto data. Bottom row: awma data.
Left column: zero vector used for initialization. Right column: solution with λ = 100 used for
initialization. This figure is best viewed in color.

problem [Banerjee et al., 2006, Friedman et al., 2008, Duchi et al., 2008a]. A potential
disadvantage of working with the dual formulation is that the dual parameters are not sparse.
In our experiments in [Marlin et al., 2009], we used the PSSgb algorithm to directly solve the
graphical LASSO problem in the primal. Since the PSS iterations tend to be sparse, this lets
us take advantage of techniques for sparse Cholesky factorizations [Rue and Held, 2005, §2.4]
to efficiently evaluate the objective function in (1.6).

• Sparse Conditional Random Fields: Conditionals random fields are a class of log-linear
models augmented with covariates, and they represent a natural generalization of logistic re-
gression to the case where we have multiple target variables [Lafferty et al., 2001] (we discuss
this type of model in more detail in Section 5.7). Goodman [2004] shows that training con-
ditional random fields with `1-regularization offers improved performance in several natural
language processing applications. The PSS algorithms can easily be applied in the case of
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Figure 2.6: The same experiment as Figure 2.5, but focusing on methods based on an L-BFGS
approximation.

conditional random fields (indeed, we do this in Chapter 5) to learn a sparse set of node and
edge features.

• Sparse neural networks: Neural networks are a type of model that is widely used for
non-linear regression and classification [see Bishop, 2006, §5]. In these models, the out-
puts are modeled through a sequence of non-linear transformations of the inputs. Typically,
these non-linear transformations are the cumulative distribution function values for a set
of linearly-parameterized logistic distributions with different parameters. Typically, each
linearly-parameterized logistic distribution depends on the values of all variables in the pre-
vious layer, making the model very complex and difficult to interpret. To avoid over-fitting
in these complex models, we typically use `2-regularization of the parameters. However,
we can learn a sparse neural network model if we replace this `2-regularization with `1-
regularization [Williams, 1995]. This can lead to much more parsimonious and interpretable
models, since the elements of each layer will only depend on a subset of the variables in the
previous layer. Although the objective function in this problem is non-convex, we can find a
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local minimum of the (non-convex) objective function with the PSS methods.

2.7.2 Other Extensions

We conclude this chapter with several other possible extensions:

• Hessian-Free Newton Methods: Lin et al. [2007] recently showed that Hessian-free New-
ton methods can be competitive with L-BFGS for `2-regularized logistic regression. Rather
than building a Hessian approximation, these methods seek to solve the Newton system
−∇2f(xk)

−1∇f(xk) up to a specific error tolerance by using Hessian-vector products within
a linear conjugate gradient algorithm. The method is known as a Hessian-free Newton method
because the Hessian-vector products can be computed without explicitly forming the Hessian.
They are also known as truncated or inexact Newton methods because the Newton direction is
only computed up to a specific error tolerance. It is straightforward to implement a Hessian-
free version of the PSSgb or PSSsp methods where the linear conjugate gradient algorithm is
used to solve the linear system involving the working set.

• Improved Line Search: It may be possible to improve the line search routine in various
ways. Our line search uses a simple backtracking line search along the projection arc, with
safeguarded cubic interpolation to generate trial values. This cubic interpolation ignores
that the function is not smooth at locations where variables become exactly zero. Although
a step size of 1 is typically accepted and the backtracking is typically not invoked (and
only very rarely does the method backtrack more than once), it might be possible to get
better performance by using a line search that takes advantage of the known locations of
the non-differentiable points along the search direction. It might also be possible to consider
non-smooth generalizations of the strong Wolfe conditions [Nocedal and Wright, 1999, §3.1]
as a stronger measure of sufficient decrease than the Armijo condition.

• Other Regularizers and Bound Constraints: In principle, we could extend the PSS
methods to find local optima in general problems of the form

min
x
L(x) +R(x),

where L(x) is differentiable and R(x) is continuous and separable into a set of functions
that are each differentiable everywhere except at a countable number of (known) locations.
This includes `1-regularization of differentiable objective functions as a special case, but
also includes other regularizers such as the smoothly clipped absolute deviation (SCAD)
penalty [Fan and Li, 2002]. To consider this case, we would need to re-define the PO projection
operator so that it projects element-wise into the relevant interval where the function is
differentiable, and re-define the pseudo-gradient so that its negative minimizes the directional
derivative of the objective function. Further, by using ideas from the two-metric projection
algorithm it would be straightforward to modify the PSS methods to incorporate lower and/or
upper bounds on the variables.
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Chapter 3

Optimization with Group
`1-Regularization

In this chapter, we consider large-scale methods for solving optimization problems of the form

min
x
f(x) , L(x) +

∑
A

λA||xA||2. (3.1)

where L(x) is assumed to be convex and differentiable with respect to x, and we may have a
separate regularization parameter λA ≥ 0 for each group A. In this chapter we assume that the
groups A are disjoint. The algorithms we describe in this chapter are applicable to any optimization
problem of this form, but our focus is on the case where L(x) is the negative log-likelihood in a
(possibly conditional) undirected graphical model. In this case, the optimization parameters x are
the concatenation of the weights w and biases b (as well as feature weights v in the conditional
case we discuss in Section 5.7), and each disjoint subset A contains all parameters associated with
an individual edge in the model (though our discussion applies to other group structures, such as
the blockwise-sparse models we discuss in Section 5.6). While this chapter focuses on the case of
disjoint groups and penalizing the `2 norm of the groups, in Chapter 5 we extend the methods
considered here for penalizing other norms of the groups while in Chapter 6 we extend the methods
considered here to the case of overlapping groups.

Problem (3.1) is a generalization of the problem addressed in Chapter 2, in that we now penalize
groups of variables instead of individual elements (we obtain problem (2.1) in the special case that
each group A contains only one element). As before, this optimization is complicated by the non-
differentiability of the regularizer term. In particular, the function is non-differentiable if an entire
group of variables is exactly zero.

Since (conditional) undirected graphical models generalize logistic regression while group `1-
regularization generalizes the previously examined `1-regularization, we might naturally consider
extending the very efficient methods of Chapter 2 to solve this more general problem20. In Sec-
tions 3.1 we discuss applying methods based on the Barzilai-Borwein approximation to the group
case, including the SPG and BBST methods of the previous chapter. However, these methods do
not take into account that the objective function is very costly to evaluate, while the methods
from Chapter 2 based on L-BFGS that require fewer evaluations (PSS, TMP, OWL) can not be
extended in a straightforward way to the group case. Thus, in Section 3.2 we give new methods
based on L-BFGS designed to reduce the number of objective evaluations (at the expense of a
higher iteration cost).

20In the case of (unconditional) Gaussian graphical models or (unconditional) pairwise log-linear models with Ising
potentials, each edge only has one parameter and the methods we discuss in Chapter 2 can be applied directly.
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3.1 Barzilai-Borwein Methods

In this section discuss applying methods based on non-monotonic Barzilai-Borwein iterations, fo-
cusing on two variants. In the first variant, we formulate (3.1) as a differentiable optimization over
a convex set and apply non-monotonic Barzilai-Borwein steps within a projected gradient iteration.
This is referred to as a spectral projected gradient (SPG) algorithm. In the second variant, we
apply non-monotonic Barzilai-Borwein steps within a soft-thresholding iteration that directly seeks
to optimize (3.1). Due to the similarity to iterative soft-thresholding methods, we refer to this as
a Barzilai-Borwein soft-threshold (BBST) algorithm.

3.1.1 Spectral Projected Gradient

In Chapter 2, we considered formulating the non-differentiable `1-regularized optimization problem
as a smooth optimization problem with bound constraints. Then, we considered solving the bound
constrained problem with the two-metric projection (TMP), optimal projected gradient (OPG), or
SPG algorithm. Unfortunately, this problem transformation is no longer possible in the group case.
However, it is still possible to transform (3.1) into a smooth optimization problem over a convex
set. To do this, we introduce an additional variable gA for each group A. We then replace each
norm ||xA||2 with the variable gA, and optimize subject to the constraint that gA ≥ ||xA||2. That
is, we solve problem

min
x,g

L(x) +
∑
A

λA gA, subject to gA ≥ ||xA||2,∀A. (3.2)

This formulation replaces the non-linear, non-differentiable regularizer with a simple linear func-
tion. We note that these constraints are a special case of second-order cone constraints [Boyd and
Vandenberghe, 2004, §4.4.2], and that each constraint defines a convex set called an `2 norm cone.
For any feasible pair {x,g}, the objective function in (3.2) gives an upper bound on the objec-
tive (3.1), while at a minimizer it must be the case that gA = ||wA||2 for all groups (otherwise, we
could decrease the objective by decreasing gA to ||wA||2). It follows that because the range of L(x)
is unchanged a minimizer of (3.1) must correspond to a minimizer of (3.2). Although we can not
apply the TMP algorithm for bound-constrained optimization to problem (3.2) because it is not a
bound-constrained problem, we can still apply the SPG and OPG algorithms.

The projected-gradient method [Goldstein, 1964, Levitin and Poliak, 1966] is a constrained
optimization algorithm for solving

min
x∈C

f(x),

where f(x) is a differentiable function and C is a closed convex set. We consider a variant of the
method that uses iterations of the form

xk+1 ← PC(xk − α∇f(xk)).

Here, α is selected to satisfy the Armijo condition by a backtracking line search and PC is defined
by

PC(x) , arg min
y∈C
||x− y||2, (3.3)

the Euclidean projection onto C. This simple general-purpose method has two drawbacks: (i) in
general solving (3.3) may itself be a computationally challenging problem, and (ii) the use of the
steepest descent step results in slow convergence.
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The SPG method [Birgin et al., 2000] uses two simple modifications of the projected gradient
method to enhance its convergence rate. First, it initializes the line search with the step size

αbb =
yTk sk

yTk yk
,

proposed by [Barzilai and Borwein, 1988]. Second, it uses a non-monotonic version of the Armijo
condition [Grippo et al., 1986]:

f(xk+1) ≤ max
i=k−m:k

f(xi) + ν∇f(xk)
T (xk+1 − xk), with ν ∈ (0, 1). (3.4)

This non-monotonic Armijo condition typically accepts αbb (even if it increases the objective func-
tion), but still ensures global convergence of the method. A typical value for the number m of
previous function values to consider is 10. These two simple modifications have been shown to
experimentally lead to a very large improvement in the convergence rate of the method, and due to
its strong empirical performance SPG has recently been explored in several applications [Dai and
Fletcher, 2005, Figueiredo et al., 2007, van den Berg and Friedlander, 2008].

Although the SPG strategy reduces the number of iterations of the method that we must per-
form, for the method to be efficient we must still be able to efficiently compute the projection onto
the constraint set. Fortunately, in problem (3.2) each constraint only affects variables associated
with the corresponding group. Thus, we can compute the projection across the groups by indepen-
dently solving the projection problem for each group. For each group, the corresponding problem
takes the form

PC2(xA, gA) = arg min
y,z

∣∣∣∣∣∣∣∣[ xA
gA

]
−
[

y
z

] ∣∣∣∣∣∣∣∣
2

, subject to z ≥ ||y||2.

The solution to this problem is [Boyd and Vandenberghe, 2004, Exercise 8.3(c)]

PC2(x, g) =


(x, g), if ||x||2 ≤ g,
( x
||x||2

||x||2+g
2 , ||x||2+g2 ), if ||x||2 > g, ||x||2 + g > 0,

(0, 0), if ||x||2 > g, ||x||2 + g ≤ 0.

We give an explicit derivation of this result in Appendix B. Thus, we can solve this sub-projection
in O(|A|) and we can solve the full projection in O(p) for a problem with p variables21. We close
this section by noting that we could alternatively use this constrained formulation and the above
projection operator within an OPG method [Nesterov, 2004, §2.2.4].

3.1.2 Barzilai-Borwein Soft Threshold

A wide variety of authors have recently considered using a class of algorithms known as itera-
tive soft-thresholding (or forward-backward splitting) for optimization with sparse regularizers,
including [Daubechies et al., 2004, Combettes and Wajs, 2005, Elad et al., 2006, Hale et al., 2007,
Nesterov, 2007, Duchi and Singer, 2009] These methods addresses problems of the form

min
x
f(x) , L(x) +R(x). (3.5)

21We show how to solve the related problem of projecting onto the norm ball defined by the `1 of `2 norms
in [van den Berg et al., 2008].
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Here, R(x) is convex and possibly non-differentiable, while L(x) is assumed to be differentiable and
convex with a Lipschitz-continuous gradient. Rather than converting this problem to a constrained
optimization problem, these algorithms solve the non-smooth optimization problem directly with
a projection-like operator. In particular, these method take steps of the form

xk+1 ← SR(xk − α∇L(xk), α). (3.6)

Here, we have used SR(x, α) to denote the solution of a ‘soft-threshold’ problem at x with step
size α and regularizer R(x). Specifically, the soft-threshold operator is given by the solution to the
soft-threshold problem

SR(x, α) , arg min
y

1

2
||y − x||22 + αR(y). (3.7)

In our case, R(x) ,
∑

A λA||xA||2 so the soft-threshold step for problem (3.1) would be

arg min
y

1

2
||y − (xk − α∇L(xk))||22 + α

∑
A

λA||yA||2.

Thus, we first take a step along the negative gradient of the loss function, and then compute
this projection-like soft-threshold operator to take into account the effect of the regularizer. The
latter step effectively sparsifies the result of the (generally dense) gradient step. As discussed
by [Combettes and Wajs, 2005], the soft-threshold operator is a generalization of the projection op-
erator, and we recognize the iterative soft-thresholding algorithm as the classic gradient-projection
algorithm but with projection replaced by soft-thresholding. Similar to the classic gradient pro-
jection algorithm, this algorithm may converge very slowly. However, analogous to the SPG algo-
rithm, Wright et al. [2009] propose to use Barzilai-Borwein steps and a non-monotonic line search
to speed the convergence of the method. We refer to this method as the Barzilai-Borwein soft-
threshold (BBST) method22.

Wright et al. [2009] discuss computing the soft-thresholding operator in the case of group `1-
regularization. As before, the operator separates into solving a simple problem for each group. The
solution for an individual group is

SR2(xA, α) = sgn(xA) max{0, ||xA||2 − αλA},

where we use sgn(y) to denote a set-valued function that returns y/||y||2 if y 6= 0, and returns all
values such that ||y||2 ≤ 1 if y = 0.

In the next section we give an L-BFGS extension of the BBST algorithm, but first we establish
some useful properties of the method (that will also apply in the new method). First, we note that
computing xk+1 in (3.6) is equivalent to solving the optimization problem

arg min
y

L(xk) + (y − xk)
T∇L(xk) +

1

2α
||y − xk||22 +R(y). (3.8)

Thus, we can view the soft-threshold step as the solution of a first-order approximation of L(x)
at xk, that is regularized by R(x) as well as the distance to xk. Nesterov [2007] refers to (3.8) as the
composite gradient mapping, while Wright et al. [2009] refers to it as a separable approximation.
Using this equivalent formulation, we can establish that an iterate xk is an optimal solution to the

22Soft-threshold variants of the OPG method are discussed in [Nesterov, 2007].
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original problem if and only if xk solves (3.8). To see this, first note that the sub-differential of our
original optimization problem (3.5) is

∂f(x) = ∇L(x) + ∂R(x).

A vector x∗ is a minimizer of a convex function if and only if 0 ∈ ∂f(x∗) [Bertsekas, 1999, §B.5].
The sub-differential of the objective function in (3.8) (that we denote by qk(y)) is

∂qk(y) = ∇L(xk) +
1

α
(y − xk) + ∂R(y).

Thus, if y = xk then the optimality conditions for (3.8) reduce to 0 ∈ ∇L(xk) +∂R(xk) and this is
equivalent to xk being an optimal solution [see also Combettes and Wajs, 2005, Proposition 3.1].

By re-writing the soft-threshold operator in the form (3.8), we can use an argument similar
to [Bertsekas, 1999, Exercise 6.3.11] to establish the useful property that if the solution x∗k to (3.8)
is not a minimizer of f(x), then f(x∗k) < f(xk) for sufficiently small α. To do this, first note that
xk achieves an objective value of L(xk) +R(xk) in (3.8), thus if xk is not a minimizer of f(x) then
x∗k achieves a lower objective value in (3.8) and we have

L(xk) +R(xk) > L(xk) + (x∗k − xk)
T∇L(xk) +

1

2α
||x∗k − xk||22 +R(x∗k)

≥ L(x∗k) +R(x∗k) (for 0 < α ≤ 1/L). (3.9)

The last line follows from [Bertsekas, 1999, Proposition A.24], where L is the Lipschitz constant of
the gradient of L(x). This result is also given by [Nesterov, 2007, Theorem 1 and Remark 1], and
a related result that backtracking along α satisfies a modified Armijo condition is given by [Wright
et al., 2009, Lemma 3]. We note that the gradient of the negative log-likelihood in an undirected
model is Lipschitz continuous because the gradient is continuously differentiable and the spectral
norm of the Hessian is bounded. We also note that the descent property still holds if L(x) is only
locally Lipschitz continuous. Finally, an important property that is relevant to the next section is
that (3.9) holds not only for the result of the soft-threshold operator, but for any x∗k that achieves
a lower objective value than xk in (3.8).

3.2 Quasi-Newton Methods

The Barzilai-Borwein methods discussed in the previous section represent some of the most efficient
methods currently available for solving problem (3.1). However, compared to simple objectives like
logistic regression a complicating factor in optimizing the parameters of undirected graphical mod-
els is that it is very expensive to evaluate the objective function. Further, in our experiments in
Chapter 2 we saw that the SPG, OPG, and BBST methods typically require many more function
evaluations than methods that are based on an L-BFGS Hessian approximation (such as the PSS,
TMP, and OWL methods). Unfortunately, the methods based on L-BFGS updates from Chapter 2
do not admit a straightforward extension to the group case. This is because we do not have an
operator that is analogous to the PO orthant-projection from Chapter 2 (that sparsifies the solution
and truncates the line search to a region where the Taylor expansion is valid). However, in the
previous section we showed that we can convert problem (3.1) to a differentiable constrained opti-
mization where it is straightforward to compute the projection onto the feasible set. Motivated by
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problems with this structure, in [Schmidt et al., 2009b] we gave a limited-memory projected quasi-
Newton (PQN) algorithm that uses an L-BFGS Hessian approximation to solve high-dimensional
constrained optimization problems where it is substantially more expensive to evaluate the objec-
tive function than it is to project onto the feasible set. We review this method next. Subsequently,
we consider a variant of this method that incorporates an L-BFGS Hessian approximation into a
soft-thresholding algorithm.

3.2.1 Projected Quasi-Newton

As with the gradient-projection method, projected Newton methods address the problem of mini-
mizing a function f(x) over a convex set C. Similar to unconstrained Newton-like methods, at each
iteration projected Newton methods consider a quadratic approximation of the objective function
around the current iterate xk:

qk(x) , f(xk) + (x− xk)
T∇f(xk) +

1

2
(x− xk)

TBk(x− xk). (3.10)

Here, Bk is a positive-definite approximation to the Hessian. In order to generate a direction of
search that is both a descent direction and feasible, projected Newton methods find the minimizer
x∗k of this quadratic approximation over the set C. That is, they solve

x∗k , arg min
x∈C

qk(x). (3.11)

This generates a descent direction d , x∗k−xk, where xk +αdk is feasible for α ∈ [0, 1]. As before,
we can use this direction as part of a backtracking line search until we have a new iterate satisfying
the Armijo condition. If Bk is the exact Hessian and we always test α = 1 first, this method has a
quadratic rate of convergence in the neighborhood of a minimizer satisfying second-order sufficiency
conditions [Bertsekas, 1999, Proposition 2.3.5]. The drawbacks of this method in its unmodified
form are that: (i) it requires computing/storing a dense p by p Hessian approximation, and (ii)
finding the constrained minimizer of the quadratic model may be very expensive.

We use the L-BFGS Hessian approximation to address the first issue. As mentioned in Chap-
ter 2, there is an efficient recursive formula that pre-multiplies a vector by the inverse of a matrix
B0 = σkI updated m times with the BFGS formula. However, in order to evaluate the objective
function in (3.11) we need to be able to multiply by Bk, not B−1k . This can be done using the
compact representation of Byrd et al. [1994], that represents the updates Bk as a low rank matrix

Bk = σkI −NM−1NT , (3.12)

where N is p-by-2m, and M is 2m-by-2m. With this representation, we can compute qk(x) and
∇qk(x) in O(mp) (both values can be obtained with one multiplication by Bk).

Given the L-BFGS representation of Bk, we minimize (3.11) by using the SPG algorithm dis-
cussed in the previous section. In addition to evaluating qk(x) (and its gradient), the cost of
running SPG is dominated by computing the projection PC . However, note that we do not need
to evaluate the objective function in the SPG sub-routine. Hence, the proposed method is most
effective on problems where computing the projection is much less expensive than evaluating the
objective function23. In the case of group `1-regularized undirected graphical models, we can com-
pute the projection in linear time while evaluating the objective function is #P-hard in general

23This is different than many classical optimization problems like quadratic programming, where evaluating the
objective function is relatively inexpensive and computing the projection may be as difficult as solving the original
problem.
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(even evaluating the approximate objective functions from Section 1.4 will typically be much more
costly than computing the projection). Thus, the conditions needed for the PQN method to be
efficient are clearly satisfied.

In general, running the SPG sub-routine to obtain a high-accuracy solution may be compu-
tationally expensive. However, we must be careful about terminating the SPG sub-routine early
because an approximate solution to (3.11) will not in general be a descent direction. Fortunately,
we can guarantee that the SPG sub-routine yields a descent direction even under early termination
if we initialize it with xk and we run the method for at least one iteration (so that we obtain a vec-
tor y satisfying the Armijo condition on the quadratic approximation). To see this, first note that
positive-definiteness of Bk implies that a sufficient condition for y − xk to be a descent direction
for some vector y is that qk(y) < f(xk) (since this implies that (y − xk)

T∇f(xk) < 0). Subse-
quently, using qk(xk) = f(xk) we have that qk(y) < f(xk) where y is the first point satisfying the
Armijo condition on qk(x) if we initialize SPG with xk. Thus, if we initialize the SPG sub-routine
with xk then after the first iteration (and every subsequent iteration) the SPG solution gives a de-
scent direction and it can safely be terminated early. Further, provided that the eigenvalues of the
Hessian approximation Bk are bounded, the search directions generated by the SPG sub-routine
are gradient related [see Bertsekas, 1999, §1.2] after the first iteration. Convergence of the PQN
method thus follows from [Bertsekas, 1999, Proposition 2.2.1]. In our implementation we include
an explicit maximum c on the number of iterations to run the SPG sub-routine for24. For problems
where computing the projection onto the constraint set can be done in O(p), the iteration cost of
the PQN method is therefore O(pmc).

3.2.2 Quasi-Newton Soft Threshold

The PQN method is a general technique for constrained optimization, and we can apply it in the
special case of group `1-regularization problems after a suitable problem transformation. However,
we saw in the last section that the soft-threshold operator provides a direct way to apply Barzilai-
Borwein steps to solve group `1-regularization problems (in that we don’t have to introduce auxiliary
variables). In this section, we consider a method that is analogous to the PQN algorithm, but that
is suitable for optimizing the sum of a costly objective function L(x) (with Lipschitz-continuous
gradient) and a convex regularizerR(x) where we can efficiently compute the soft-threshold operator
for the regularizer. We call this the quasi-Newton soft-threshold (QNST) algorithm.

At each iteration of the QNST algorithm, we form a regularized quadratic approximation to
the function

qαk (x) , L(xk) + (x− xk)
T∇L(xk) +

1

2α
(x− xk)

TBk(x− xk) +R(x), (3.13)

where Bk is an L-BFGS approximation of ∇2L(xk). That is, we use a quadratic approximation
to the smooth function L(x) but include the regularizer explicitly in the sub-problem. To find an
(approximate) minimizer xk+1 of this sub-problem, we use c iterations of the BBST method. To
set the step size length α, we use a backtracking line search.

Besides the use of a soft-thresholding method to solve (3.13), there is a close connection between
the QNST method and soft-thresholding algorithms. We can see this by re-writing the optimization

24An alternative strategy would be to run the method until the sub-problem is solved up to a certain optimality
tolerance. This tolerance could then be set using a forcing sequence [Nocedal and Wright, 1999, §6.1]
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over (3.13) as follows:

arg min
y

L(xk) + (y − xk)
T∇L(xk) +

1

2α
(y − xk)

TBk(y − xk) +R(y)

= arg min
y

(y − xk)
T∇L(xk) +

1

2α
(y − xk)

TBk(y − xk) +R(y)

= arg min
y

α(y − xk)
T∇L(xk) +

1

2
(y − xk)

TBk(y − xk) + αR(y)

= arg min
y

1

2
α2∇L(xk)

TB−1k ∇L(xk) + α(y − xk)
T∇L(xk) +

1

2
(y − xk)

TBk(y − xk) + αR(y)

= arg min
y

1

2
((y − xk) + αB−1k ∇L(xk))

TBk((y − xk) + αB−1k ∇L(xk)) + αR(y)

= arg min
y

1

2
||(y − xk) + αB−1k ∇L(xk))||2Bk + αR(y)

= arg min
y

1

2
||y − (xk − αB−1k ∇L(xk))||2Bk + αR(y).

Here, we use || · ||H to denote the quadratic norm ||x||H = (xTHx)−1/2. In the last line, we see
that the solution x∗k of (3.13) is the result of a generalized soft-thresholding step

x∗k ← SR(xk − αB−1k ∇L(xk), α,Bk),

where we define the generalized soft-threshold operator SR(x, α,H) as

SR(x, α,H) , arg min
y

1

2
||y − x||2H + αR(x).

Thus, we see that the QNST method can be viewed as taking a standard unconstrained L-BFGS step
on L(x), followed by applying a soft-threshold operation with regularizer R(x) where we measure
distance based on the quasi-Newton approximation25. We obtain the standard soft-thresholding
algorithm if we fix Bk to I. We note that this is analogous to the relationship between projected gra-
dient and projected (quasi-)Newton methods [Bertsekas, 1999, §2.3]. Indeed, we obtain a standard
unconstrained quasi-Newton method for differentiable optimization (as we describe in Section 2.1)
if R(x) is a constant function and we solve the sub-problem exactly. Further, the QNST method
can be viewed as a generalization of the PQN method, since we obtain a version of the PQN method
if R(x) is an extended real-valued function that returns 0 if x ∈ C and returns ∞ otherwise. This
suggests that we could also use the QNST method to minimize differentiable function with simple
non-differentiable regularizers over simple convex sets (provided that the soft-threshold operation
can still be computed efficiently).

The steps of the QNST algorithm can be viewed as steps of a standard soft-threshold algorithm

for minimizing L(B
−1/2
k x̃)+R(B

−1/2
k x̃) in terms of x̃, which is equivalent to (3.5) with the transfor-

mation x̃ = B
1/2
k x. It follows from our argument of the previous section that the QNST algorithm

has the descent property that if xk is not an optimal solution, then f(xk+1) < f(xk) for sufficiently
small α. Finally, it follows from a similar argument to the one made in the PQN section, combined
with (3.9), that we can terminate the BBST sub-rouinte early provided that we initialize it with
xk and find a solution with a lower objective value in the regularized quadratic approximation.

25Convergence rates under different choices of norm for soft-thresholding algorithms are discussed in [Chen and
Rockafellar, 1997].
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3.3 Implementation

In Algorithm 6 we give pseudo-code for the SPG method.

Input: Objective function f(x), projection function PC(x), initial parameter vector x0,
optimality tolerance ε, number of previous function value to store m, sufficient
decrease parameter η, line search safeguard parameters ξ1 and ξ2, step length upper
and lower limits αmax and αmin.

k ← 0;
x0 ← PC(x0) ; // project initial parameter vector

fk ← f(x0) ; // evaluate objective function

gk ← ∇f(x0) ; // compute gradient

while ||xk − PC(xk − gk)||∞ > ε do
if k = 0 then

α← −min(1, 1/||gk||1) ; // initial step size

else
α← yTk sk/y

T
k yk; // Barzilai-Borwein step size

α← max(αmin,min(αmax, α)) ; // Safeguarded BB step

xk+1 ← PC(xk − αgk); // initial trial value

fk+1 ← f(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ; // compute new gradient

while fk+1 > maxi=k−m:k fi + ηgTk (xk+1 − xk) do
Select α ∈ (ξ1α, ξ2α) ; // safeguarded cubic interpolation

xk+1 ← PC(xk − αgk); // new trial value

fk+1 ← f(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ; // compute new gradient

sk ← xk+1 − xk ; // compute quasi-Newton differences

yk ← gk+1 − gk;
k ← k + 1;

Algorithm 6: Spectral projected gradient algorithm for minimizing a function f(x) over a
convex set C.

Note that the above algorithm uses one of the two step sizes proposed by Barzilai and Borwein
[1988], we can use the alternate step size by simply replacing the appropriate line in the code above.
Also, in the above code we are backtracking along the projection arc [see Bertsekas, 1999, §2.3].
Birgin et al. [2000] also considered a variant where we backtrack along a feasible direction. The
latter strategy is more appealing in cases where the projection is expensive to compute.
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The BBST algorithm is identical to SPG, with the following modifications: (i) we do not project
the initial vector, (ii) we define fk as L(xk) + R(xk) but gk as ∇L(xk), (iii) in the optimality
condition we replace PC(xk−gk) with SR(xk−gk, 1), (iv) in the iterate update we replace PC(xk−
αgk) with SR(xk−αgk, α), and (v) in the non-monotonic Armijo condition we replace gTk (xk+1−xk)
with α multiplied by the directional derivative of the objective at xk in the direction (xk+1 − xk).
We give pseudo-code for the BBST method below, where we use R′(x; y) to denote the directional
derivative of R(x) evaluated at x in the direction of y26.

Input: Differentiable convex function f(x), regularization function R(x), soft-threshold
function SR(x), initial parameter vector x0, optimality tolerance ε, number of
previous function value to store m, sufficient decrease parameter η, line search
safeguard parameters ξ1 and ξ2, step length upper and lower limits αmax and αmin.

k ← 0;
fk ← f(x0) +R(x0) ; // evaluate objective function

gk ← ∇f(x0) ; // compute gradient

while ||xk − SR(xk − gk, 1)||∞ > ε do
if k = 0 then

α← −min(1, 1/||gk||1) ; // initial step size

else
α← yTk sk/y

T
k yk; // Barzilai-Borwein step size

α← max(αmin,min(αmax, α)) ; // Safeguarded BB step

xk+1 ← SR(xk − αgk, α); // initial trial value

fk+1 ← f(xk+1) +R(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ; // compute new gradient

while fk+1 > maxi=k−m:k fi + ηα(gk +R′(xk; xk+1 − xk))
T (xk+1 − xk) do

Select α ∈ (ξ1α, ξ2α) ; // safeguarded cubic interpolation

xk+1 ← SR(xk − αgk, α); // new trial value

fk+1 ← f(xk+1) +R(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ; // compute new gradient

sk ← xk+1 − xk ; // compute quasi-Newton differences

yk ← gk+1 − gk;
k ← k + 1;

Algorithm 7: Barizilai-Borwein soft-threshold algorithm for minimizing the sum of a differ-
entiable convex function f(x) and a convex regularizer R(x).

26If this directional derivative is difficult to compute, we could alternately use α||xk+1−xk||22 in the Armijo condition
as in [Wright et al., 2009].
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In Algorithm 8 we give pseudo-code for the PQN method. In this pseudo-code, we find it con-
venient to use SPG(xk, c,gk, σ, S, Y ) to denote applying c iterations of SPG starting from xk to
approximately solve problem (3.11) with the gradient set to gk and with the L-BFGS approxima-
tion (3.12) constructed using σ, S, and Y .

Input: Objective function f , projection function PC , inital parameter vector x0, optimality
tolerance ε, number of corrections m, sufficient decrease parameter η, line search
safeguard parameters ξ1 and ξ2, maximum number of SPG iterations c.

k ← 0;
x0 ← PC(x0) ; // project initial parameter vector

fk ← f(x0) ; // evaluate objective function

gk ← ∇f(x0) ; // compute gradient

while ||xk − PC(xk − gk)||∞ > ε do
α = 1 ;
if k = 0 then

dk = −gk min(1, 1/||gk||1) ; // use steepest descent

else
x∗k ← SPG(xk, c,gk, σ, S, Y ) ; // approximately minimize quadratic

approximation

dk ← x∗k − xk ; // feasible descent direction

xk+1 ← xk + αdk; // initial trial value

fk+1 ← f(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ;
while fk+1 > fk + ηgTk (xk+1 − xk) do

Select α ∈ (ξ1α, ξ2α) ; // safeguarded cubic interpolation

xk+1 ← xk + αdk; // new trial value

fk+1 ← f(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ;

sk ← xk+1 − xk ; // compute quasi-Newton differences

yk ← gk+1 − gk;
if k > m then

Remove oldest vector from S and Y ;

S ← [S sk] ; // update quasi-Newton difference matrices

Y ← [Y yk];
σ ← (yTk sk)/(y

T
k yk); // update diagonal Hessian scaling

k ← k + 1;

Algorithm 8: Limited-memory projected quasi-Newton algorithm for minimizing a function
f(x) over a convex set C.

In this code, we have used backtracking along the feasible direction, but we could also consider
a variant of the method where we backtrack along the projection arc [see Bertsekas, 1999, §2.3].
Here, during the iterations of the line search we would incorporate the step size α into the quadratic
approximation (3.11) (similar to the QNST method discussed next), and use SPG to directly solve
for xk+1 (increasing the cost of backtracking, but possibly generating better trial values).
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We obtain the QNST algorithm by using the same replacements we used to obtain the BBST
algorithm from the SPG algorithm, in addition to: (i) replacing SPG by BBST, (ii) replacing (3.11)
by (3.13), and (iii) directly solving for xk+1 for the trial value of α instead of computing dk and
then setting xk+1 to xk+αdk (both before and during the line search). We give pseudo-code for the
QNST method below, where BBST(xk, c,gk, σ, S, Y, α) is defined analogously to the SPG function
in the PQN pseudo-code (but augmented to include the step size α).

Input: Differentiable convex function f(x), regularization function R(x), soft-threshold
function SR(x), initial parameter vector x0, optimality tolerance ε, number of
corrections m, sufficient decrease parameter η, line search safeguard parameters ξ1
and ξ2, maximum number of BBST iterations c.

k ← 0;
fk ← f(x0) +R(x0) ; // evaluate objective function

gk ← ∇f(x0) ; // compute gradient

while ||xk − SR(xk − gk, 1)||∞ > ε do
if k = 0 then

α← min(1, 1/||gk||1) ; // initial step size

xk+1 = SR(xk − αgk, α) ; // use basic soft-threshold step

else
α← 1 ;
xk+1 ← BBST(xk, c,gk, σ, S, Y, α) ; // approximately minimize approximation

fk+1 ← f(xk+1) +R(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ;
while fk+1 > fk + ηα(gk +R′(xk; xk+1 − xk))

T (xk+1 − xk) do
Select α ∈ (ξ1α, ξ2α) ; // safeguarded cubic interpolation

xk+1 ← BBST(xk, c,gk, σ, S, Y, α) ; // new trial value

fk+1 ← f(xk+1) +R(xk+1) ; // evaluate new parameter vector

gk+1 ← ∇f(xk+1) ;

sk ← xk+1 − xk ; // compute quasi-Newton differences

yk ← gk+1 − gk;
if k > m then

Remove oldest vector from S and Y ;

S ← [S sk] ; // update quasi-Newton difference matrices

Y ← [Y yk];
σ ← (yTk sk)/(y

T
k yk); // update diagonal Hessian scaling

k ← k + 1;

Algorithm 9: Limited-memory quasi-Newton soft-threshold algorithm for minimizing the
sum of a differentiable convex function f(x) and a convex regularizer R(x).

61



3.4 Regularization Path and Active-Set Optimization

As with the methods from Chapter 2, the methods we discuss in this chapter can make use of
good starting parameter values when we want to solve for multiple values of λ. In this section, we
consider a method for solving for a sequence of values of λ that is analogous to the one we discuss
in Section 2.5.

Consider the following set of necessary and sufficient conditions for a vector x to be a minimizer
of f(x) for given values of λA:{

∇AL(x) + λA sgn(xA) = 0, xA 6= 0,
||∇AL(x)||2 ≤ λA, xA = 0.

These conditions are equivalent to the necessary and sufficient optimality condition that the zero-
vector is an element of the sub-differential of (3.1). Similar to (2.5), these conditions allow us to
determine the value of λmax that sets all (regularized) groups to zero (after we have optimized with
respect to the unregularized variables). In particular, if we denote the unregularized variables by
b and the regularized variables by w, then we have

λmax , max
A
||∇wAL(0, b̃)||2,

where b̃ optimizes L(w,b) with respect to b (with w fixed at 0).
Analogous to the method in Section 2.5, we could consider the following active-set method:

• Find groups A such that xA 6= 0, or xA = 0 and ||∇AL(x)||2 > λA.

• Solve the problem with respect to these groups.

We can again consider applying this procedure for a decreasing sequence of values of the regular-
ization parameter. The only difference between this procedure and the procedure of Section 2.5
is that the selection of variables to include in the optimization is done at the group level rather
than the individual variable level. However, the computational gains achieved by applying this
strategy to undirected graphical models can be much more dramatic than the gains achieved for
logistic regression. In particular, for large values of λ the graph defined on the subset of groups
that we optimize over will have low treewidth and thus we can evaluate the objective function
efficiently. Thus, for sufficiently large values of λ we can evaluate the objective function exactly in
polynomial time, while the objective function associated with the corresponding `2-regularization
problem (where the graph is dense) will require exponential time even for large values of λ.

3.5 Experiments

We compared the performance of several large-scale optimization methods for group `1-regularized
(unconditional) log-linear models. In particular, we compared the following methods:

• SPG: The spectral projected gradient method we discuss in Section 3.1.1.

• OPG: The optimal projected gradient using the line search suggested in [Liu et al., 2009],
applied to the constrained formulation we discuss in Section 3.1.1.

• BBST: The Barzilai-Borwein soft-threshold method we discuss in Section 3.1.2.

62



• PQN10: The projected quasi-Newton method we discuss in Section 3.2.1, where we run the
SPG sub-routine for 10 iterations.

• PQN100: The projected quasi-Newton method we discuss in Section 3.2.1, where we run
the SPG sub-routine for 100 iterations.

• QNST10: The quasi-Newton soft-threshold method we discuss in Section 3.2.2, where we
run the BBST sub-routine for 10 iterations.

• QNST100: The quasi-Newton soft-threshold method we discuss in Section 3.2.2, where we
run the BBST sub-routine for 100 iterations.

Although other methods exist, our experiments in [van den Berg et al., 2008] indicated that the SPG
algorithm outperformed several competing methods for estimating conditional log-linear models,
while in [Schmidt et al., 2009a] our experiments indicated that both SPG and PQN outperformed
competing methods for estimating log-linear models and (blockwise-sparse) Gaussian graphical
models. We tested the methods on the two data sets from Section 1.7 where we can evaluate the
objective function exactly, namely the cyto and awma data sets. We used the same experimental
setup and optimization parameters as in Chapter 2. We set the optimality tolerance for the SPG
and BBST sub-routines to be 10−6, and the tolerance for lack of progress in these sub-routines at
10−10. We set the value of λ to 50, yielding a sufficiently difficult problem that differences between
the methods become apparent (for larger values of λ, the methods perform similarly).

3.5.1 Pairwise Log-Linear Models

In our first experiment we used full potentials and we initialized the methods with all elements of b
and w set to zero. Figure 3.1 plots the logarithm of objective function value minus f∗ and number of
non-zero edges against the number of function evaluations (in this case, the extreme cost of function
evaluations makes this a very good surrogate for the runtimes of the various methods). As in the
case of `1-regularized logistic regression, in this experiment the methods based on L-BFGS (PQN
and QNST) outperformed the other methods (SPG, OPG, and BBST). This was true even for the
PQN10 and QNST10 methods, that only make limited use of the second-order approximation. We
also see that the PQN100 and QNST100 methods that solve the direction finding sub-problem more
accurately tend to give better performance than the PQN10 and QNST10 methods. In Figure 3.2,
we repeat the experiment but initialize the methods with the solution for λ = 100. We see that the
methods have better performance with this initialization, but we see the same trends across the
methods.

3.5.2 Ising Graphical Models

Our second experiment sought to test whether the PQN and QNST are competitive with the most
effective method from Chapter 2 (the PSSas method), in the special case of IGMs where each group
has only one variable and the methods from either this chapter or Chapter 2 can be applied. We
thus applied the group `1-regularization methods in the experimental set-up from Section 2.6.2.
We compare the group `1-regularization methods to the PSSas method in Figure 3.3. Here, we see
that the QNST10, PQN100, and QNST100 methods have similar performance to the PSSas method
even though they use an approximate solution of the sub-problem (though the lower iteration cost
makes the PSSas method more appealing for regular `1-regularization problems), while the PQN10
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Figure 3.1: Function evaluations and number of edges against objective value and number of non-
zero coefficients for training a log-linear model with full potentials and group `1-regularization for
different optimization strategies initialized with the zero vector (λ = 50). The top row is for the
cyto data and the bottom row is for the awma data. This figure is best viewed in color.

method performed similarly to the PSSas method on the cyto data but slightly worse on the awma
data.

3.6 Extensions

The PQN and QNST represent general optimization strategies for optimizing high-dimensional
costly objective functions subject to simple constraints or regularizers, respectively. Hence, they
may also be useful other optimization problems. We encounter several examples in Chapters 5
and 6. Below, we give several examples:

• Blockwise-sparse graphical models: In [Schmidt et al., 2009b] we use PQN to solve the
Lagrangian dual of the blockwise-sparse GGM model examined in Duchi et al. [2008a], and
that we discuss further in Chapter 5. We could alternately consider applying PQN with the
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Figure 3.2: The same experiment as Figure 3.1, but using the optimal solution for λ = 100 as the
starting vector.

constrained formulation to solve the primal problem, or applying QNST directly to the primal
problem (the advantage of solving in the primal is that the primal variables are sparse).

• Feature selection in conditional random fields: In many applications of conditional
random fields we have either non-binary discrete target variables, or categorical features that
are represented as a set of binary indicator variables. In both cases, there is more than
one variable associated with each feature and we must consider group `1-regularization to
encourage sparsity in terms of the features. Since the objective function in these scenarios
is costly to evaluate, the PQN and QNST methods are well-suited to solving the resulting
optimization problems. Further, in Chapter 5 we discuss performing structure learning in
conditional random fields with group `1-regularization. In this scenario the objective function
is even more costly to evaluate than in log-linear models, so the advantages of the PQN and
QNST methods are more pronounced.
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Figure 3.3: Function evaluations against objective value for training IGMs (λ = 50) with `1-
regularization for different optimization strategies. Top row: cyto data. Bottom row: awma data.
Left column: zero vector used for initialization. Right column: solution with λ = 100 used for
initialization. This figure is best viewed in color.

• Different choices of group norm: In Chapter 5, we discuss computing the projection and
soft-threshold operations for different choices of the group norm. This allows us to apply the
methods in this chapter to different choices of the group norm. This includes the `∞ norm of
the groups, and the nuclear norm of the groups in cases where the groups form matrices.

• Overlapping groups: In Chapter 6 we discuss computing the projection and soft-threshold
operations when the groups overlap. That is, cases where each variable belongs in multiple
groups. This allows us to apply the methods in this chapter to the case of general groups.
Further, Jacob et al. [2009] describe an alternative generalization to the case of overlapping
groups, and the methods in this chapter can be directly applied in this formulation.
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Chapter 4

Directed Graphical Model Structure
Learning

As we discuss in Chapter 1, the prior work on structure learning in probabilistic graphical models
with `1-regularization largely focuses on pairwise undirected models. However, given the esti-
mated model performing standard operations (ie. computing the probability of a vector, computing
marginals, generating unbiased samples) with undirected models is computationally intractable in
general. In contrast, as we discuss in Section 1.3 it is possible to perform many operations exactly
or approximately in DAG models in polynomial time. In scenarios where the estimated model will
ultimately be used to perform these types of operations, DAG models are an appealing alternative
to undirected models. Further, parameter estimation in DAG models is separable in the CPDs and
there is no need to compute an intractable normalizing constant. Since parameter estimation is
separable, this allows us to independently tune an individual regularization parameter for each CPD
(unlike undirected models where the same regularization parameter is typically used for all edges),
to mix different types of data (ie. we can have both Gaussian and binary variables in the same data
set), and allows us to more efficiently search the space of graphs since single edge modifications
only change the parameters of a subset of the CPDs.

Given n realizations of p-vectors xi, the goal of structure learning in DAG models is to find
a graph structure G (and corresponding parameters {wj , bj} for each node j) that optimize some
criteria measuring the quality of the DAG model. In the special case where we are given a topological
ordering of the nodes, this problem reduces to performing variable selection (among variables earlier
in the ordering) independently for each of the CPDs [Buntine, 1991, Cooper and Herskovits, 1992]27.
For sigmoid belief networks, this corresponds to performing variable selection in a set of independent
logistic regression models. Thus, we can learn DAG models with a known topological ordering using
a straightforward extension of the methods we discuss in Chapter 1; we perform structure learning
by using `1-regularization to solve each of these variable selection tasks. Other works using `1-
regularization for structure learning in DAG models have focused on this relatively simple case [Li
and Yang, 2005, Huang et al., 2006, Levina et al., 2008].

Even if we are not given a topological ordering, if we enforce that each node can have at most
one parent then finding the optimal graph can be formulated and solved as a minimum spanning
tree problem [Chow and Liu, 1968]28. If we are not given a topological ordering and allow each
node to have more than one parent, then finding the optimal DAG is NP-hard in most reasonable
scenarios [Chickering, 1995, Dasgupta, 1999, Chickering et al., 2004]. Indeed, even if the graph
structure is restricted to be a tree but each node is allowed to have at most k ≥ 2 parents (also
known as a poly-tree), it is NP-hard to even approximate the best graph structure to within a

27Assuming that the parameters of each CPD are independent.
28This relies on the scoring criteria satisfying the property of pairwise score equivalence, namely that the score of

having xi as the only parent of xj is the same as the reverse. If the scoring criteria does not have this property, the
optimal tree can be found in polynomial time by solving an optimal branching problem [Heckerman et al., 1995]
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constant factor [Dasgupta, 1999]. Nevertheless, we can typically obtain a better model by not
assuming a fixed ordering, and this general case is the focus of this chapter. The main challenge
arising in the general case is the acyclicity constraint. Because the graph must be acyclic, we
can not simply regress each node on all other nodes. Subsequently, we need to consider searching
through the space of topological orderings, or directly searching through the space of directed
acyclic graphs.

4.1 Search and Score Methods

Traditionally, there have been two different approaches to structure learning in general DAG models.
In search and score methods, we use some criterion to assess the quality of a particular structure
(such as the BIC or validation set likelihood), and we optimize this criterion by using a local search
method to search through the space of DAGs [see Lam and Bacchus, 1993, Heckerman et al., 1995].
The BIC is widely used for evaluating the quality of a candidate structure. Early work that used the
BIC includes [Lam and Bacchus, 1993, Bouckaert, 1993, Suzuki, 1999]. Under certain assumptions,
the BIC gives the same score to Markov equivalent graphs [Bouckaert, 1993]29. In [Friedman and
Yakhini, 1996], asymptotic properties of the BIC for evaluating DAG structures are examined.
They derive an asymptotic bound on the sample complexity of structure learning by optimizing
the BIC score (in terms of Kullback-Leibler divergence), and show that in addition to asymptotic
consistency that the BIC score also leads to asymptotic minimality (that is, it will choose the most
sparse structure that describes the distribution). The most widely used alternative to the BIC
for measuring structural quality are methods that compute the marginal likelihood of the CPDs
(i.e. the likelihood after integrating over all possible parameters) given the graph structure under a
suitable prior [Cooper and Herskovits, 1992, Heckerman et al., 1995]. This work will focus on the
BIC, since except in special cases (such as Gaussian or tabular CPDs with conjugate priors), it is
not possible to compute the marginal likelihood in closed form.

The prototypical search and score procedure is a greedy local search through the space of DAGs
where at each iteration we perform the edge addition/deletion/reversal that improves the score by
the largest amount, subject to satisfying the acyclicity constraint [Heckerman et al., 1995]. If no
legal addition/deletion/reversal improves the score, the method can be reset to a different randomly
generated DAG. We call this procedure DAG-search. The efficiency of this procedure is substantially
improved if we (as in almost all related work on this subject) make the assumption of parameter
modularity [Heckerman et al., 1995], meaning that if the same CPD appears in two graph structures,
then the parameters of the CPD are the same in both structures (this assumptions follows as a
consequence of assuming that the parameters of different CPDs are independent). Parameter
modularity allows us to efficiently evaluate the effect of single edge additions/deletions/reversals.
Further, we can use a hash data structure to prevent re-evaluating the same CPDs, while we note
that the scores for most of the candidate additions/deletions/reversals will not change after a single
addition/deletion/reversal.

There have been a variety of approaches proposed to enhance the basic DAG-search, and we
briefly review a variety of these modifications here. Some authors have considered using different
local search procedures, such as genetic algorithms [Larrafiag et al., 1996], ant colony optimiza-
tion [de Campos et al., 2002a], and the greedy randomized adaptive search procedure [de Cam-

29These assumptions are not satisfied for sigmoid belief networks where nodes have more than one parent, since
using sigmoid CPDs imposes additional structure on the model in these scenarios.
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pos et al., 2002b]. Instead of searching through the space of DAGs, some authors have proposed
searching through the space of topological orderings [Larrafiag et al., 1996, de Campos et al., 2002a,
Teyssier and Koller, 2005] or Markov equivalent graphs [Spirtes and Meek, 1995, Madigan et al.,
1996, Munteanu and Bendou, 2001, Chickering, 2003, Nielsen et al., 2003]. Steck [2000] proposes
a local search move where all directions are removed and then re-oriented. Elidan et al. [2002]
considers data re-weighting schemes that may allow DAG-search to escape local minima. Hulten
and Domingos [2002] use Hoeffding’s inequality for structure learning with tabular CPDs when the
number of training examples is enormous. Moore and Wong [2003] propose a local search move
where all edges connected to a node are severed, and the node is then optimally reinserted into the
graph. Nachman et al. [2004] proposes a method for efficiently finding the best node to add for
each variable with regression-based CPDs. Some authors have also considered exact methods that
find the highest scoring structure, but that may require an exponential amount of time [Suzuki,
1999, Koivisto and Sood, 2004].

Despite the large number of more complicated methods that have been proposed in the lit-
erature, it has proven surprisingly difficult to devise a method that consistently outperforms an
efficient DAG-search implementation, an issue discussed in [Teyssier and Koller, 2005]. Although
search and score methods are often surprisingly effective, the main drawback of the search and score
methodology is simply that the search space is very large; the space of DAGs is super-exponential
in the number of nodes [Robinson, 1976].

4.2 Constraint-Based Methods

In contrast to search and score methods that try to directly optimize a criteria measuring the
quality of the model, constraint-based methods seek to prune the set of possible edges. The original
methods of this type are described in [Verma and Pearl, 1990, Spirtes and Glymour, 1991]. For
each pair of variables, these methods search for a conditioning set that makes the pair satisfy
a conditional independence hypothesis test (or makes their conditional dependence fall below a
threshold [Cheng et al., 2002]). If we assume that the data is generated according to a DAG model
and if a conditioning set is found that makes the pair of variables independent, then there can
not exist an edge between the pair and the edge can be removed from consideration. After this
edge pruning phase, further constraints may be used to determine the directionality of a subset of
the remaining edges. Of particular interest to the present work is the observation of Verma and
Pearl [1990] that the search space can be reduced to the Markov blanket of each node; the set of
nodes that are conditionally dependent on the node given all other nodes, consisting graphically
of the node’s parents, children, and co-parents (other nodes that are parents of one of the node’s
children).

Unfortunately, the constraint-based approaches have several disadvantages. First, there are an
exponential number of possible conditioning sets. Although implementations of constraint-based
methods typically use heuristics that only consider a limited number of conditioning sets [Spirtes
and Glymour, 1991], these methods must still perform a very large number of hypothesis tests. If
corrections for multiple tests were incorporated into these methods, their statistical power would
be very low. Indeed, it is not clear how to set the threshold value(s) in these tests such that
the correct structure is identified asymptotically, as briefly discussed in [Heckerman et al., 1999].
Further, with finite data it is possible that an error in an independence test early in the procedure
may lead to a propagation of errors. While constraint-based approaches typically output a valid
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equivalence class, it is possible that they will output a cyclic graph, as illustrated in the pin-wheel
example of [Dash and Druzdzel, 1999]. Some constraint-based methods have sought to address
some of the common criticisms of constraint-based methods [Margaritis and Thrun, 1999], but a
final noteworthy criticism is that it isn’t clear how the results of these hypothesis tests relate to
the quality of the model.

4.3 Hybrid Methods

The disadvantages of the constraint-based methods and the search and score methods have led
to the development of hybrid methods. In hybrid methods, constraint-based reasoning is used to
prune the set of edges to consider within a search and score method. This can lead to an enormous
reduction in the number of possible graphs to search over. Much of the early work on methods
of this type focused on forming constraints by eliciting domain knowledge from human experts.
One example we have already seen is the case where the expert is asked to provide a topological
ordering [Cooper and Herskovits, 1992]. Other examples include methods that attempt to construct
an ordering given statements of domain knowledge [Srinivas et al., 1990], and methods that use
partial orderings or require that some known edges are included in the model [Lam and Bacchus,
1993]. Unfortunately, these strategies crucially rely on the existence of a domain expert to provide
the constraints.

One of the most popular methods to incorporate automatic pruning is the sparse candidate
(SC) algorithm [Friedman et al., 1999]. In the SC algorithm, we compute a measure of dependence
between each pair of variables (such as mutual information), and for a fixed k we only consider
those k variables with the highest dependence as potential parents. Although this approach makes
it feasible to learn DAG models with thousands of variables, this approach is somewhat problematic
for the following reason: we can construct DAG distributions where no value of k less than (p− 1)
will include all true parents among the k most dependent variables. For example, consider a chain-
structured graph where x1 is a parent of x2, x2 is a parent of x3, x3 is a parent of x4, and so on up to
xn. If this structure is a parameterized so that the variables have a very high mutual information,
and we add an extra node xn+1 that is a parent of xn but with a low mutual information, then
it might be the case that x1 through xn−2 all have a higher mutual information with xn than its
true parent xn+1. To address this problem, after using a search and score method in the reduced
space, [Friedman et al., 1999] suggest re-computing the set of candidate parents (this time using a
conditional measure of dependence) when a local minimum is reached.

We might hope to avoid the unsound pruning caused by the sparse candidate algorithm by
accepting all parents whose pairwise mutual information is above a threshold. Unfortunately, this
is not a particularly effective pruning strategy, since even if the underlying graph is sparse the
variables may not be marginally independent. As an example, consider a simple chain-structured
model with Gaussian CPDs. The precision matrix in this model is tri-diagonal, corresponding to
a very sparse graph. However, the inverse of a tri-diagonal matrix will (in general) be completely
dense; all variables are marginally dependent so no interactions are pruned.

Because tests of marginal (in)dependence are not particularly effective at pruning the set of
possible edges, more recent hybrid approaches have considered directly applying constraint-based
structure learning methods to prune the set of edges [Dash and Druzdzel, 1999, Li and Yang, 2004,
Tsamardinos et al., 2006]; these algorithms rely on conditional independence tests rather than
marginal independence tests. These methods typically lead to a substantial reduction in the search
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space, and one of the empirically most effective current methods for learning DAG structures, the
max-min hill-climbing (MMHC) algorithm, is of this type [Tsamardinos et al., 2006]. Further,
if we assume that a perfect conditional independence oracle is available, and that all conditional
independencies in the distribution follow from the graph structure, then reducing the search space
by pruning edges between conditionally independent nodes is a sound pruning strategy (it will
never remove a true dependency from the model).

An alternative strategy to pruning the space of DAGs is to use conditional independence tests to
obtain a variable ordering, and then apply a variable selection method assuming that the ordering
represents a topological ordering [Singh and Valtorta, 1993, Acid et al., 2001, Dobra et al., 2004].
The disadvantage of this type of approach is simply that it may be very difficult to find a correct
topological ordering. Of particular note is the method of [Dobra et al., 2004], where the authors
initially learn a dependency network on the variables (to approximate each node’s Markov blanket),
and use this to construct an ordering.

4.4 A Hybrid Method with `1-regularization

The recent hybrid methods are appealing compared to strict constraint-based methods, because the
second phase (search and score) of the methods attempts to optimize a score measuring the quality
of the structure. Further, they can be advantageous over strict score-based methods, due to the
much smaller search space. However, the hypothesis tests (or pairwise dependency measures) used
by existing hybrid methods ignore the score during the first phase (edge pruning). As an example
where this might be problematic, consider the case where two variables are weakly dependent and
we want to find a structure optimizing the BIC score. Here, the edge may pass the independence
test and not be pruned during the first phase, even though including this edge is unlikely to improve
the BIC score. Similarly, an independence test might prune an edge between variables that appear
to be almost independent (recall that these hypothesis tests are not corrected for multiple testing),
even though including the edge would later lead to an improved validation score.

Towards developing a hybrid method that takes into account our scoring criteria during both
phases, we propose the following two-phase hybrid method for a given scoring criteria:

1. Edge pruning: We use `1-regularization to learn a dependency network with logistic re-
gression conditionals, that optimizes the proposed scoring criteria. We refer to this as the
`1-Markov blanket (L1MB) algorithm, and we note that this problem can be solved even with
a very large number of nodes using the methods of Chapter 2.

2. Search: We run a DAG-search algorithm to search through the space of possible DAG
structures, restricted to the edges found by the L1MB algorithm.

Below we give pseudo-code for the L1MB algorithm. In our implementation, for a network with
p nodes we compute the `1-regularized solution (and corresponding score) for (p−1) equally spaced
values along the regularization path between λ set to zero and λmax, where λmax is the value where
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all (non-bias) variables become zero (see Section 2.5).

Input: Data xij for i = 1, . . . , n and j = 1, . . . , p.
Output: Markov blanket MBj for each node j.
for j = 1 to p do

MBj ← ∅ ; // initially try using empty Markov blanket

s← score(xj ,x∅) ; // compute score with empty Markov blanket

b← minb
∑n

i=1 log(1 + exp(xijb)) ; // optimize for bias variable

g←
∑n

i=1 x
i
jx
i
−j/(1 + exp(xijb)) ; // gradient of regression weights at zero

λmax ← maxi{gi} ; // maximum value of regularization parameter

for λ = ((p− 1)/p)λmax down to 0 in increments of λmax/p do
{w, b} ← arg minw,b

∑n
i=1 log(1 + exp(−xij(wTxi−j + b))) + λ||w||1 ; // Chapter 2

nz = {v|wv 6= 0}; // find non-zero variables

ssub = score(xj ,xnz) ; // compute score with selected Markov blanket

if ssub > s then
s← ssub ; // new maximum value found

MBj ← nz ; // record higher-scoring Markov blanket

Algorithm 10: L1MB Algorithm.

If we assume that the true structure is a DAG and that `1-regularization is able to perfectly
select the relevant variables, then the L1MB algorithm will identify each variable’s Markov blanket.
For the second phase, we use an implementation of the DAG-search method, where at each iteration
we choose the variable addition/deletion/reversal (among edges found by the L1MB algorithm) that
improves the score by the largest amount. To address the criticism that DAG-search requires costly
acyclicity checks [Teyssier and Koller, 2005], we used the ancestor matrix data structure described
in [Giudici and Castelo, 2003] for improving the speed of Markov chain Monte Carlo methods that
explore the space of DAGs. With this data structure, it is possible to check whether an addition
will cause a cycle in O(1), while testing whether a reversal of an existing edge leads to a cycle can
be done in O(p). In Appendix A, we review this data structure and present several enhancements
to it, including a reversal witness matrix data structure that allows us to test whether reversing
an edge will cause a cycle in O(1). In [Schmidt et al., 2007b], we also examined a variant of the
method where we used the known-ordering `1-regularization method to find the optimal structure
given an ordering, and we used the local swap moves described in [Teyssier and Koller, 2005] for
searching the space of orderings. Although this gives a somewhat more elegant procedure, we found
that this was not as effective as searching through the space of DAGs when the ancestor matrix
data structure is used for testing acyclicity30.

The hybrid `1-regularization method we discuss here is closely related to the work described
in [Li and Yang, 2004]31. Li and Yang [2004] also first learn a dependency network using `1-
regularization. This is followed by running a constraint-based method to further prune the edges
and fix the directionality of some edges, and the final step runs a DAG-search to optimize a scoring
criteria. Besides removing the (potentially error-prone) second phase (and the focus on sigmoid

30Note that we are using sigmoid CPDs with no bound on the in-degree of nodes in the graph, while Teyssier and
Koller [2005] used tabular CPDs with a bounded in-degree. This allowed them to pre-compute all possible scores,
while in our work computing all possible scores is intractable so we compute the scores as needed. This requires
solving a logistic regression problem to test any changed edges.

31At the time that [Schmidt et al., 2007b] was published, we were not aware of this work (nor were our reviewers)
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CPDs instead of Gaussian CPDs), the crucial difference between our method and this previous
work is that we use the scoring criteria when constructing the dependency network, while [Li and
Yang, 2004] use hypothesis testing. As we discuss above, it is not necessarily clear how the results
of the hypothesis tests relate to the score that is optimized in the final stage.

4.5 Causal DAGs

Unfortunately, without being given a topological ordering it will only be possible to identify the
optimal DAG structure up to Markov equivalence. That is, it may not be possible to identify the
directionality of some of the edges. This may not be a bad thing if our goal is to build a density
model, since it might imply that multiple DAGs will achieve the globally optimal score (and we
only need to find one of them). However, this property is less appealing from the perspective of
structural discovery, since if we believe our data is generated from a DAG model, it means that
we may not be able to distinguish the ‘true’ structure from other candidates. A notable special
case where we can hope to identify the true structure without a topological ordering is the case of
causal DAGs, where the data includes interventions.

A causal DAG model [Pearl, 2000] is a DAG model where we assume that the directions of
the edges represent causal influences (the causal Markov assumption). Under this assumption, we
distinguish between conditioning by observation and conditioning by intervention. When condi-
tioning on a variable by observation, we use the standard rules of conditional probability to answer
conditional queries. When conditioning on a variable by intervention, we create a modified DAG
model, and then use the standard rules of conditional probability to answer conditional queries us-
ing the modified model. Specifically, when variable j is set by intervention (denoted do(j)), we use
a modified DAG where the CPD for variable j has been removed. In other words, the interventional
distribution uses

p(x1, . . . , xp|do(j)) =
∏
i 6=j

p(xi|xπ(i)).

Graphically, the effect of removing this CPD is to remove all incoming edges into j, while pre-
serving outgoing edges. Thus setting j by intervention makes it independent of its causes, but
preserves the dependency on its effects. Because of this asymmetry between cause and effect, it is
possible to distinguish between Markov equivalent graphs in causal DAGs, given data that includes
interventions.

Utilizing interventional data within structure learning was first explored in [Cooper and Yoo,
1999], and extending the hybrid method based on `1-regularization above to model interventional
data with causal DAGs is straightforward. When estimating the conditional of node j during
parameter estimation (during either the L1MB or DAG-search phase), we use the modified distri-
bution in cases where j was set by intervention. Similarly, we remove the CPD for node j when
evaluating the BIC or validation likelihood. All other aspects of the method remain the same.

4.6 Experiments

We now experimentally examine the performance of various methods for learning sparse DAG
models. We first did a series of experiments on synthetic data where the structure was known,
detailed in the next section. After these experiments, we apply the methods to learn sparse DAG
models of real data in §4.6.2
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4.6.1 Synthetic Data

We first considered a set of synthetic data sets, where we generated samples from a known structure
and then tried to recover the structure from the samples. In particular, we obtained seven graph
structures from the Bayesian Network Repository,
http://compbio.cs.huji.ac.il/Repository/.

In the table below, we give the names, number of nodes, number of edges, and maximum number
of parents for each of the seven networks we considered.

Name Nodes Edges Max Parents

insurance 27 52 3
water 32 66 5
mildew 32 46 3
alarm 37 46 3
barley 48 84 4
hailfinder 56 66 4
carpo 61 74 5

To parameterize the networks as a sigmoid belief network with strong edge weights, we set the
bias for each node to zero and each edge weight was set according to the formula

wij ← sign(N (0, 1)) +N (0, 1)/4,

where N (0, 1) is a sample from a standard normal distribution. In our experiments, we used the
BIC as the scoring criterion.

In our first experiment, we compared the performance of several different possible strategies for
pruning the set of edges:

• SC: The set of parents selected on the first iteration of the sparse candidate method [Friedman
et al., 1999], where we used pairwise mutual information to rank the candidates. We tested
the method with two parameters, the true maximum in-degree across the networks (5) and
double this amount (10).

• MMPC: The set of parents remaining after the max-min parents and children pruning pro-
cedure [Tsamardinos et al., 2006], where conditional hypothesis tests are used to prune the set
of parents. The experiments in Tsamardinos et al. [2006] indicate that this constraint-based
procedure leads to state-of-the-art results against a wide variety of alternative methods. We
used the implementation in the author’s Causal Explorer software [Aliferis et al., 2003]. We
tested the method with two values of the hypothesis test threshold, the software default of
0.05 and a more conservative value of 0.10.

• L1MB: The proposed procedure for finding the Markov blanket of each node using `1-
regularization, where the hyper-parameter is selected to optimize the scoring criterion. Other
than the selection of points to evaluate along the regularization path, this algorithm has no
parameters.

An ideal pruning procedure would remove as many edges as possible, while minimizing the
number of true edges that are removed. In Figure 4.1, we plot the the percent of edges remaining
(top) and the number of true edges removed (bottom) for all of the methods on the seven data sets
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Figure 4.1: The percent of edges remaining (top) and number of true edes removed (bottom) for
different edge pruning strategies for seven structures from the Bayesian network repository. From
left to right, the plots show the results with samples sizes of 1000, 5000, and 20000. We see that
the L1MB pruning method leads to a reasonable amount of pruning while tending not to remove
true edges.

for three different sample sizes (1000, 5000, and 20000). In this figure, we see that the SC method
has a fairly sharp trade-off between the two objectives: SC(5) removes a large number of edges
but removes many true edges, while SC(10) removes fewer true edges but does not prune much of
the search space. The MMPC method is more effective, it reduces the search space substantially
and does not remove many true edges, decreasing the number of true edges that are removed as
the sample size increases. The L1MB method has similar behaviour; L1MB does not prune quite
as much as the MMPC method but removes fewer true edges. Indeed, the L1MB method removed
no true edges in any data set for any of the experiments with 5000 or 20000 samples (and it never
removed more than one true edge), while the other methods removed multiple true edges in almost
every case.

In our next experiment, we sought to assess the effectiveness of a DAG-search routine under these
different pruning strategies. We compared the five methods examined in the previous experiment, as
well applying the DAG-search with no pruning. To test the different pruning strategies, we started
the DAG-search from the empty graph and ran it until it had made 10000 score evaluations. If a
local minimum was found before this limit, the methods were restarted to a randomly generated
DAG (we generated the DAGs by generating a random topological ordering, and adding each edge
consistent with the pruning and the ordering with probability 0.5). The same random DAGs were
used across the methods. We restarted the hash of score values after each local minimum was found,
but better performance would be achieved by keeping the same hash table between runs. We plot
the BIC after 10000 evaluations against the data sets for the different methods in Figure 4.2. Since
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Figure 4.2: The relative BIC after 10000 score evaluations in a DAG-search for different pruning
strategies on the seven synthetic data sets from the Bayesian Network Structure Learning Reposi-
tory. We the BIC relative to the empty graph (top) and relative to the highest score for each data
set (bottom). From left to right, the plots show the results with samples sizes of 1000, 5000, and
20000. We see that the L1MB pruning consistently achieves among the lowest scores.

0 500 1000 1500 2000 2500 3000 3500 4000

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2
x 10

4

Score Evaluation

B
IC

 

 
SC(5)

SC(10)

L1MB

None

0 500 1000 1500 2000 2500 3000 3500 4000

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6
x 10

5

Score Evaluation

B
IC

 

 
SC(5)

SC(10)

L1MB

None

0 500 1000 1500 2000 2500 3000 3500 4000

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4
x 10

5

Score Evaluation

B
IC

 

 
SC(5)

SC(10)

L1MB

None

Figure 4.3: The BIC against the number of score evaluations in a DAG-search for different pruning
strategies with 1000 (left), 5000 (middle), and 20000 (right) samples from the alarm data set. We
see that no pruning eventually leads to a good score, that the pruning strategies allow the method
to explore multiple local optima, and that the L1MB algorithm achieves both of these properties.
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Figure 4.4: Structural errors for the highest scoring structure after 10000 score evaluations in an
interventional DAG-search for different pruning strategies on the seven synthetic data sets from
the Bayesian Network Structure Learning Repository. From left to right, the plots show the results
with samples sizes of 1000, 5000, and 20000. We see that the L1MB pruning leads to the fewest
structural errors in almost every case.

the absolute BIC varies across data sets and sample sizes, these figures plot a relative BIC. In the
top of Figure 4.2, we computed the relative BIC by scaling the scores to values between the lowest
BIC found across the methods, and the BIC of the empty graph. Under this criteria, the empty
graph would have a relative BIC of 1, and the best graph found across the methods gets a value
of 0. In the bottom of Figure 4.2, we plot the score relative to the pruning strategy that had the
highest BIC over each data set. In this figure, we see that the L1MB pruning consistently lead to
low BIC across the sample sizes, while the SC methods were less effective and the MMPC methods
were in between. Interestingly, not using any pruning seemed to be more effective as the sample
size increased. This might be because the BIC favours the true model more heavily as the sample
size increases.

To gain more insight into the performance disparities between different pruning methods, in
Figure 4.3 we plot the BIC of the current structure against the score evaluation for the different
pruning methods for the three sample sizes on the alarm data set (we omit the MMPC methods
for clarity, but note that these methods resemble the SC and L1MB methods). Here, we see that
the None method takes substantially longer to reach a local minimum than the other methods, but
eventually reaches a good local minimum. In contrast, the pruning methods reach local minima
very quickly, and this allows them to explore multiple modes. However, because the SC and MMPC
methods tend to remove true edges from the model, the minima they found tend to be poorer than
those found by the None and L1MB method.

In general, without a topological ordering we can only expect to recover the true structure up
to its Markov equivalence class. This is the reason we used the BIC as a measure of performance
in the previous experiment. In our final experiment on synthetic data, we generated interventional
data to test the ability of the different pruning strategies to recover the true structure. To generate
interventional data, for each sample we generated a random integer between 0 and p, and intervened
on the corresponding node by setting it to 1 with probability 0.5 (when 0 was drawn, we did not
intervene on any nodes and generated a purely observational sample). We plot the number of
structural errors in the structure with the lowest BIC after 10000 evaluations for the different
pruning strategies on the different data sets and sample sizes in Figure 4.4. We did not run the
MMPC method on this data set, since that software does not support interventions. In this figure,
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Figure 4.5: The structural errors against the number of score evaluations in an interventional DAG-
search for different pruning strategies with 1000 (left), 5000 (middle), and 20000 (right) samples
from the alarm data set.

we see that the L1MB method consistently achieves among the lowest structural errors, making
fewer errors as the sample size increases.

In Figure 4.5, we plot the number of structural errors achieved by the current structure against
the number of score evaluations on the alarm data set for the different sample sizes. An interesting
aspect of these plots is that for small sample sizes the number of structural errors does not decrease
monotonically with the BIC. As a consequence, we see that with 5000 samples that the None method
finds the true structure, but it does not choose this structure since it finds a different structure with
a lower score. With 5000 samples the L1MB method also finds the true structure (three times)
during its search. The L1MB method also finds nine local optima with a single structural error.
That is, these methods are one edge away from the true structure, but the modification can not be
made without violating acyclicity. With 20000 samples both the None and L1MB pruning methods
find the true structure, but the L1MB method finds it seven times before the None method finds
it.

4.6.2 Real Data

Because the true structure is generally unknown in real data, it is generally not possible to evaluate
a structure learning method in terms of structural errors. However, we might still be interested in
testing whether a method recovers a plausible structure. Thus, we first sought to test the method
on a real data set where we had a reasonable guess of both a topological ordering of the variables
and the structure of the model. Towards this end, we focused on the rain data we describe in
Section 1.7. For this data, we assumed that using the days of the month in order would represent
a reasonable topological ordering. Further, we might expect to learn a structure that connects
adjacent days, under the intuition that if it rains on one day it is likely to also rain the next day.
This would lead to a 28-node Markov chain structure. We might also expect to see connections
between non-adjacent but close days, although connections between distant days seem less likely.

In Figure 4.6, we plot the structure given by four different structure learning methods: (i) finding
the optimal tree structure subject to the topological ordering, (ii) exhaustive enumeration to find the
structure with highest BIC that is consistent with the ordering and the SC(5) pruning, (iii) greedily
selecting parents starting from the empty graph (this is similar to the K2 algorithm [Cooper and
Herskovits, 1992]), and (iv) using the L1MB method constrained to be consistent with the ordering
(in this case no search is necessary). In this plot we see that the optimal tree for this data set is a
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Figure 4.6: Structures estimated on the rain data set under a topological ordering. From left to
right: optimal tree-structure consistent with ordering, optimal parents consistent with the ordering
and SC(5) pruning, greedy parent selection given the ordering, and the L1MB algorithm constrained
to be consistent with the ordering.
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Figure 4.7: The regression weights for the rain data set using the L1MB algorithm for a topological
ordering. We see that weights between adjacent days (first diagonal above the main diagonal) are
much larger than the other weights.

28-node Markov chain, as expected. In contrast, the structures learned by the other methods are
much less interpretable, including not only edges between adjacent days but also edges between
more distant days. The structures learned by exhaustive enumeration after using using the other
pruning strategies from Figure 4.1 (namely, the SC(10), MMPC(0.05), and MMPC(0.1) methods)
were qualitatively similar to these latter structures, in that they included all edges between adjacent
days but also included edges between temporally close nodes as well as nodes that are not temporally
close. This would seem to indicate that these methods are not ideal for structural discovery (or that
the BIC is not appropriate for judging the quality of the structure). However, we gain additional
insight if we look at the regression weights.

In Figure 4.7 we plot as a matrix the absolute value of the (non-bias) regression weights of
the L1MB method. In this plot, we see that the first diagonal above the main diagonal contains
substantially larger weights than the rest of the matrix. The elements on this diagonal represent
the effect of the previous day on each day. We also see some much weaker weights on the next
two upper diagonals and spread out throughout the rest of the upper triangle of the matrix (the
main diagonal is zero since it does not correspond to a parameter, while the lower triangle part
of the matrix is zero because we assumed that the order represents a topological ordering). With
logistic regression CPDs over binary parents encoded as {−1, 1} binary variables, we can interpret
the regression weights in terms of the odds of the child taking the same value as its parent. For
example, a regression weight of 0.5 means that the logarithm of the odds of a child taking the same
value as its parent is increased by 0.5 (over its bias value). By looking at the regression weights, we
see that the 28-node Markov chain has the strongest influence on the model and that it is recovered
if we only concentrate on the largest regression weights (this isn’t unique to the L1MB method,
the same is true of the other pruning methods, too). Thus, the unexpected extra edges present
in the L1MB graph structure represent weaker statistical dependencies. These might be spurious
correlations detected by the method that happen to improve the BIC, or they might reflect that
the data is not perfectly modeled by a sigmoid belief network.

In general, we may not have a topological ordering, so our next experiment compared the
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Figure 4.8: The relative BIC compared to the empty graph (left) and method with highest BIC
(right) after 50000 score evaluations in a DAG-search for different pruning strategies on the real
data sets. The data are ordered by node size: (1) rain (28 nodes), (2) msweb (57 nodes), (3) news
(100 nodes), and (4) usps (256 nodes). Note that the None method has a relative BIC of 0 on the
usps data set in the left figure.

various DAG-search pruning strategies on the four larger binary data sets we discuss in Section 1.7.
For most of these larger data sets the MMPC pruning did not finish after a week of computation,
so we decreased the maximum cardinality of the conditioning sets to 5 for the MMPC pruning
methods. We plot the relative BIC for the different data sets after 50000 score evaluations in
Figure 4.8. In these plots, we see that the basic DAG-search (None) is effective on the two smaller
data sets but its performance decreases substantially on the two data sets with the larger number
of nodes (on the usps data set, the evaluation limit is exceeded before all neighboring graphs can
be considered). In contrast, the L1MB method was more effective than the other methods on the
two higher-dimensional data sets.

We now look at one of the learned structures in more detail, focusing on the news data. The
100 words measured in this data set are

aids, baseball, bible, bmw, cancer, car, card, case, children, christian, computer, course,
data, dealer, disease, disk, display, doctor, dos, drive, driver, earth, email, engine,
evidence, fact, fans, files, food, format, ftp, games, god, government, graphics, gun,
health, help, hit, hockey, honda, human, image, insurance, israel, jesus, jews, launch,
law, league, lunar, mac, mars, medicine, memory, mission, moon, msg, nasa, nhl, num-
ber, oil, orbit, patients, pc, phone, players, power, president, problem, program, puck,
question, religion, research, rights, satellite, science, scsi, season, server, shuttle, soft-
ware, solar, space, state, studies, system, team, technology, university, version, video,
vitamin, war, water, win, windows, won, and world.

The Markov blankets estimated by L1MB for the first ten words are

• aids: children, disease, evidence, fact, food, health, president, program, research

• baseball: case, christian, computer, drive, email, fact, fans, games, god, government, help,
hit, league, memory, nhl, players, power, puck, question, season, software, state, system,
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team, win, windows

• bible: car, card, christian, course, earth, fact, god, jesus, orbit, program, question, religion,
version, windows, world

• bmw: car, christian, engine, god, government, help, university, windows

• cancer: disease, health, medicine, patients, research, studies

Many of the words present in these estimated Markov blankets represent fairly natural associations
(aids:disease, baseball:fans, bible:god, bmw:car, cancer:patients, etc.). However, some of the es-
timated statistical dependencies seem less intuitive, such as baseball:windows and bmw:christian.
As before, we gain more insight if we look at not only the sparsity pattern but also the regression
weights. Below we repeat the list along with the values of the corresponding regression weights:

• aids: children (0.53), disease (0.84), fact (0.47), health (0.77), president (0.50), research
(0.53)

• baseball: christian (-0.98), drive (-0.49), games (0.81), god (-0.46), government (-0.69), hit
(0.62), memory (-1.29), players (1.16), season (0.31), software (-0.68), windows (-1.45)

• bible: car (-0.72), card (-0.88), christian (0.49), fact (0.21), god (1.01), jesus (0.68), orbit
(0.83), program (-0.56), religion (0.24), version (0.49)

• bmw: car (0.60), christian (-11.54), engine (0.69), god (-0.74), government (-1.01), help (-
0.50), windows (-1.43)

• cancer: disease (0.62), medicine (0.58), patients (0.90), research (0.49), studies (0.70)

Here, we see that some of the less intuitive statistical dependencies have negative regression weights
(italicized), indicating that they represent a dissociative relationship (i.e. the model reflects that
baseball:windows is an unlikely combination). Closer investigation reveals that these dissociative
relationships heavily influence the model. For example, if we examine all the regression weights, the
strongest dissociative relationship is government:nhl (with a weight of −13.31), while the strongest
associative relationship is food:msg (with a weight of 2.52). Further, there are 1173 negative
regression weights, and only 286 positive regression weights (while 8541 are zero).
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Figure 4.9: All edges with regression weight above 0.5 in the Markov blankets estimated by L1MB on the news data. Undirected
edges represent cases where the directed edge was found in both directions.83
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Given this large number of non-zero weights, it is difficult to appropriately visualize the many
relationships present in the model. Visualization is further complicated by the number of weak
relationships (that might represent false positives). Thus, to visualize the strongest associative
effects in the estimated Markov blankets, we plot in Figure 4.9 all edges where the regression weight
is above 0.5. In this figure, undirected edges represent edges where the edge was selected in both
directions, while directed edges represent edges that were selected asymmetrically. In Figure 4.10,
we plot the first local minimum found by the DAG-search with L1MB pruning (again restricted to
edges where the weight is above 0.5). In both of these graphs, we can clearly see trends in different
regions of the graph, including areas of words related to sports, cars, politics, religion, computers,
and outer space. Unlike the dependency network estimated by L1MB, the DAG structure is a
consistently parameterized density model. Thus, we can use it to measure likelihoods (this could
be used to test whether a newsgroup post is spam, for example) or to generate independent samples
from the distribution.

In Figure 4.11 we plot the tree structure that optimizes the BIC, calculated using the gen-
eralization of the Chow-Liu algorithm discussed in [Heckerman et al., 1995, §7.1] (note that the
edge directions in this plot are meaningless as long as the they do not create a v-structure, hence
there is no special significance to e-mail being the root of the graph). The tree structure is much
less dense (containing only 99 edges) and hence much more interpretable than the L1MB or DAG
structures. Further, we see a similar grouping of topics. However, because each node can have at
most one parents, this model does not place direct edges between several highly related concepts.
For example, the tree model assumes that the words ‘hockey’ and ‘puck’ are independent given the
value of the ‘team’ variable. As a more extreme example, we must traverse six nodes to reach the
word ‘mac’ from ‘pc’ (both the hockey:puck and mac:pc interactions are direct edges in the L1MB
and DAG structures).

A further potential advantage of using general DAG models instead of restricting to trees is
the ability of DAG models to ‘explain away’ different competing hypotheses. For example, in the
DAG structure the word ‘program’ has both ‘space’ and ‘disk’ as parents. This reflects that we
are more likely to see the word ‘program’ if we see the word ‘space’ or if we see the word ‘disk’.
Further, this also means that if we see the words ‘program’ and ‘disk’ then we are less likely to see
the word ‘space’ (observing ‘disk’ explains why ‘program’ was observed, making it less likely that
the word ‘space’ is present). This explaining away between parent variables does not happen in
trees, since each edge can have at most one parent. The phenomenon of explaining away also does
not happen in pairwise undirected graphical models, although it is possible that explaninig away
can be modeled in undirected graphical models with higher-order potentials.
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Figure 4.12: All edges with regression weight above 1 in the Markov blankets estimated by L1MB on the usps data. Undirected
edges represent cases where the directed edge was found in both directions.
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Figure 4.13: All edges with regression weight above 1.5 in the model found by DAG-search with L1MB pruning on the usps data.
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Figure 4.14: The optimal tree structure on the usps data.
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We also examined the graph structures learned for the usps data. Since the 256 variables in
this data set are the intensity values at individual pixels in a 16 by 16 image, we might expect
the method to learn a structure resembling a two-dimensional grid structure where each node is
connected to its horizontal and vertical neighbors. As in the news data set, the graphs learned
on the usps data are relatively dense. For example, the dependency network estimated by the
L1MB algorithm contained 4678 edges. Though this is small subset of the 65280 possible edges, it
makes visualization of the graph difficult. To visualize the strongest interactions in the model, in
Figure 4.12 we show all edges with a regression weight above 1 in the Markov blankets estimated
by the L1MB method. Here, we see a structure roughly resembling what we might expect. Some
nodes in the graph, such as (12, 5), are connected to their horizontal and vertical neighbors in the
image. There are also a large number of nodes that are connected to not only their horizontal
and vertical neighbors, but also their diagonal neighbors. Some areas of the graph bear less of a
resemblance to a grid model, including some areas that are more dense and some areas that are
more sparse. In Figure 4.13, we plot the edges with strongest regression weights found by the
DAG-search procedure with L1MB pruning (the full structure has 1813 edges). In this figure, we
see that most of the strongest edges represent interactions between pixels that are adjacent in the
image. However, there are a large number of nodes in this graph that are not connected to all of
their horizontal and vertical neighbors. The likely cause for the model not including these obvious
interactions is the acyclicity constraint, and the difficulty of searching through the space of graphs
without violating this constraint. In Figure 4.14, we plot the tree structure that optimizes the
BIC. In this structure we see that all edges are between adjacent pixels. However, we also see that
(because the structure is constrained to be a tree) the structure is missing most of the dependencies
between adjacent pixels, and the tree reveals very little about the true nature of the data.

In Chapter 5, we see that using `1-regularization for structure learning in undirected graphical
models (that do not have an acyclicity constraint) can yield a much more intuitive structure on the
usps data set. However, we note that while this undirected structure is more intuitive, we must
make approximations when using the structure since it is computationally intractable to perform
many operations with the structure. In contrast, the advantage of the DAG model in Figure 4.13
is that we can perform many operations with the model (such as computing probabilities of fully
observed vectors and generating unbiased samples) in polynomial-time.

4.7 Similar Methods

In this chapter, we discuss a method that uses `1-regularization for structure learning in DAG
models. Using `1-regularization in DAG models was also explored in [Li and Yang, 2004, 2005,
Huang et al., 2006, Levina et al., 2008]. In this setion, we highlight the differences between the
method outlined in this chapter and this prior work32.

The first notable distinction between the present work and this prior work is that we focus on
binary data, while these prior works all focused on Gaussian data. This may seem like a small
difference, but the computational difference between using the analogous undirected model can
be substantial. For example, in the worst case computing the probability of a continuous vector
in GGMs costs O(p3), while in Gaussian DAGs it costs O(p2). In contrast, in the worst case
computing the probability of a binary vector in IGMs is #P -hard, while in sigmoid DAGs it only

32There has also been subsequent work done after the publication of [Schmidt et al., 2007b] that extends our work,
we discuss this in the next section.
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costs O(p2). Thus, the computational savings achieved by considering DAGs in the binary case are
much more substantial than in the Gaussian case. Further, the work we describe in this chapter
can also be applied to the Gaussian case by simply using Gaussian CPDs (we give further details
in [Schmidt et al., 2007b]). The method we discuss in this chapter also extends easily to other
data types, including general discrete data or continuous data modeled using a robust distribution
like student’s t-distribution (we give details in the next section). Further, we can combine these
different data types to model vectors with mixed types.

Another notable difference with the methods of [Li and Yang, 2005, Huang et al., 2006, Levina
et al., 2008] is that we do not assume a known ordering of the variables. These prior works can
be interpreted as a variant on the graphical LASSO where we parameterize the precision matrix in
terms of an LDLT factorization (where D is diagonal with positive entries and L is lower triangular
with unit diagonal). Li and Yang [2005] seek to optimize L and D under a prior similar to the
graphical LASSO, Huang et al. [2006] use direct `1-regularization of the coefficients in L, while
Levina et al. [2008] use a variant of `1-regularization on the elements of L that encourages L to
have low-bandwidth. If we consider the Gaussian case, the method we discuss in this chapter is
most closely related to [Huang et al., 2006], since there is a direct correspondence between sparsity
in linearly-parameterized Gaussian CPDs and sparsity in the Cholesky factor L. However, since
we do not assume a fixed ordering, in the Gaussian case our method can be interpreted as using
a PLDLTP T factorization of the precision matrix instead of an LDLT factorization, where P is a
permutation matrix. That is, we additionally consider searching for the best permutation of the
variables (since some permutations will yield higher degrees of sparsity than others).

Besides the extension beyond the Gaussian case, the distinction between this work and [Li and
Yang, 2004] is more subtle. This method can also interpreted as being parameterized in terms of
a PLDLTP T factorization of the precision matrix. However, the optimization objective function
is not clear in the three stage procedure of [Li and Yang, 2004]. The first stage of this procedure
computes an `1-regularized Gaussian dependency network, where hypothesis testing is used to find
the value of λ. The second phase uses the sparsity pattern obtained by the first phase, along with
a series of independence tests, to increase the sparsity of the model and direct some of the edges.
Finally, the third phase uses a search algorithm that explicitly optimizes a scoring function to
determine the directionality of the remaining edges. It is only in this third phase that the method
seeks to find a high scoring structure, and it is not clear how the first two phases relate to the score
of the structure. In contrast, our method only has two phases; in the first phase we estimate a
dependency network using `1-regularization, and in the second phase we search for a high scoring
network restricted to the edges present in the dependency network. However, unlike this previous
work we use the same score in both phases. This leads to a simpler and more elegant framework, and
avoids the need to rely on the indirect performance measures provided by the results of hypothesis
tests.

4.8 Extensions

This chapter has considered using `1-regularization for learning sparse DAG models of binary data
with logistic regression CPDs. However, the method we discuss in this chapter can be extended in
a straightforward way to a variety of other scenarios. This section gives an overview of several of
these extensions.
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4.8.1 Other CPDs

Instead of using logistic regression to represent CPDs over binary data, we could consider a wide
variety of alternatives. In the following list, we discuss several examples:

• Generalized linear models of binary data: Logistic regression is a particular instance
of a generalized linear model for binary classification. We can apply the ideas present in this
chapter to other models in this family. For example, one of the simplest modifications we
could consider is to use probit regression instead of logistic regression. In probit regression,
we model the conditional probability of a child given a linear function of its parents using the
cumulative distribution function of the standard normal,

p(xi|xπ(i),wi, bi) = Φ(xi(w
T
i xπ(i) + bi)).

The hybrid `1-regularization method can be easily modified to use probit regression for one
or more of the node’s CPDs, while the methods of Chapter 2 can also be applied to optimize
the probit regression negative log-likelihood with `1-regularization. As another example of a
generalized linear model of binary data, we could use complementary log-log regression,

p(xi = 1|xπ(i),wi, bi) = 1− exp(− exp(wT
i xπ(i) + bi).

As opposed to the logistic and probit regression models that are derived from cumulative
distribution functions that are symmetric around zero, the complementary log-log regression
is derived from the cumulative distribution function of the extreme-value distribution, and
is asymmetric around zero. This property may be useful in cases where one of the binary
states is much more likely than the other, such as in the news data where most words appear
infrequently. For additional details about the probit, logistic, and complementary log-log
models, see [Johnson and Albert, 1999, §3.1].

• Gaussian models of real-valued data: We could consider modeling real-valued data using
Gaussian CPDs,

p(xi|xπ(i),wi, bi, σ) =
1

σ
√

2π
exp

(
−

(xi −wT
i xπ(i) − bi)2

2σ2

)
.

In this case, optimizing the CPDs in terms of {wi, bi} involves solving an `1-regularized least-
squares problem (for a fixed set of regression weights we can solve for σ analytically). The
algorithms of Chapter 2 can also be applied to this case, although there exist many other
solvers for this particular problem. If all CPDs are Gaussian then the joint distribution is
also Gaussian. This makes it a possible alternative to the graphical LASSO as an efficient
representation for multivariate Gaussian distributions. Indeed, while the graphical LASSO
estimates a multivariate Gaussian with zeros in the precision matrix, a sparse Gaussian DAG
will have zeros in the corresponding Cholesky factor L of a PLDLTP T factorization of the
precision matrix (the topological ordering determines the permutation matrix P ). We discuss
the case of Gaussian CPDs further in [Schmidt et al., 2007b], and in the appendix of that
paper we give an extension of the LARS algorithm that allows efficient calculation of the BIC
of all subsets of variables along the regularization path.
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• Robust distributions of real-valued data: The Gaussian distribution has very thin tails,
making it sensitive to outliers. A more robust alternative for real-valued data is to use a
linearly parameterized Laplace distribution,

p(xi|xπ(i),wi, bi, σ) =
1

2σ
exp

(
−
|xi −wT

i xπ(i) − bi|
σ

)
.

Here, computing the optimal `1-regularized {wi, bi} can be formulated as a linear program
while the optimal σ for fixed regression weights can be computed analytically. An alterna-
tive to a linearly-parameterized Laplace distribution is a linearly-parameterized version of
Student’s t-distribution,

p(xi|xπ(i),wi, bi, σ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)
√
σπν

[
1 +

(xi −wT
i xπ(i) − bi)2

σν

]−ν/2−1/2
.

In this case, one way to optimize the parameters {w, σ, ν} is to alternate between the three
types of parameters, optimizing each in turn. There is no simple correspondence between the
parameters of a multivariate Laplace (or t) distribution and conditional independencies in the
model, so fitting a DAG with Laplace (or t) distributions for CPDs might be a reasonable
alternative for obtaining a robust multivariate distribution with conditional independence
properties. More details about the univariate and multivariate Laplace and t distribution (as
well as other multivariate distributions) can be found in [Lindsey and Lindsey, 2006].

• Generalized linear models for discrete data: Rather than being binary, it might be the
case that a variable comes from a discrete set {1, 2, . . . , k}. In this case, it is possible to use
multinomial logistic regression for the CPDs [see Bishop, 2006, §4.3.4],

p(xi = c|xπ(i),wi·,bi) =
exp(wic)

Txπ(i)∑k
c′=1 exp(wic′)Txπ(i)

.

In this case, we have a vector wic associated with each state c for each variable i (typically,
the vector for one of the states c is set to the zero vector if we are doing maximum likelihood
estimation). In this case, we might also want to consider a different representation of the
parent variables xπ(i). For example, we might encode a parent as a set of binary indicator
variables (one for each state of the parent). Because of this, there is no longer a one-to-one
correspondence between parameters of the model and edges of the graph. For cases like this,
it might be more appropriate to use the group `1-regularization methods that are the focus
of subsequent chapters.

The multinomial logistic regression model assumes that the set of states {1, 2, . . . , k} is un-
ordered. However, in many cases there may be a natural ordering among the states (i.e. 2 is
closer to 3 than 4). In this case, ordinal logistic regression CPDs might be more appropri-
ate [see Johnson and Albert, 1999, §4.1],

p(xi = c|xπ(i),wi, bi, γi,·) =
1

1 + exp(γi,c −wT
i xπ(i) + bi)

− 1

1 + exp(γi,c−1 −wT
i xπ(i) + bi)

.

Included in this model is a set of adaptive thresholds {γi,0, γi,1, . . . , γi,k} on the cumulative
distribution function, where γi,j ≤ γi,j+1. Here, γi,0 is taken to be −∞, while γi,k is taken to be
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∞, and one of the remaining values γi,c is typically fixed at zero for identifiability. Optimizing
the parameters of an ordinal regression CPD with `1-regularization can be formulated as a
problem with bound constraints. This type of problem can be handled with a straightforward
extension of the algorithms we describe in Chapter 2.

Beyond the above extensions to different types of data, one of the main advantages of DAG models
is that they allow us to specify a multivariate distribution over vectors that contain multiple types of
data. However, in these cases it is important to consider the representation of the parent variables
xπ(i), and it will often be the case that the group `1-regularization methods of subsequent chapters
are needed.

4.8.2 Other Extensions

We conclude this chapter by noting several other possible extensions:

• Conditional DAGs: In some cases, we may not want to model the distribution of some
variables in the model. That is, we might want to model the conditional distribution of
some subset of variables given another subset. We can learn a conditional DAG model using
the techniques we describe in this chapter, by simply adding the constraint that nodes that
are being conditioned on can have no parents (these constraints are simply added to the set
of excluded edges generated by the L1MB algorithm). With these additional constraints,
learning a sparse conditional DAG model proceeds as in the unconditional case we describe
in this chapter.

• Dynamic Bayesian Networks: Dynamic Bayesian networks are a type of structured DAG
model that generalizes hidden Markov models and Kalman filters for modeling multivariate
time series data [see Murphy, 2002]. If we are given p-vectors at consecutive time points, we
can consider trying to learn the structure of a dynamic Bayesian network that describes the
dependency between time points. In these models, we learn an initial graph of the variables,
as well as an inter-slice graph that models the variables conditioned on the variables at the
previous time point. As discussed in [Friedman et al., 1998], we can extend structure learning
methods for DAGs to the case of dynamic Bayesian networks. In particular, we can apply the
methods present in this section to learn the structure of the initial graph, while learning the
structure of the transition graph takes the form of learning a conditional DAG model (where
we condition on the previous time point and tie the transition CPDs across time)33.

• Linear Non-Gaussian data: Under some choices of the CPDs it is possible to distinguish
between Markov-equivalent DAGs from observational data alone. In [Shimizu et al., 2005],
the authors consider the case of a DAG model where each child is a linear function of its
parents, with additive but non-Gaussian noise. They show that the optimal DAG can be
recovered by post-processing the results of running an independent component analysis of
the data (zeros in the independent components correspond to missing edges in the DAG).
However, the independent component analysis does not yield entries that are exactly zero,
and hence the method uses a set hypothesis tests to determine whether an effect is significant

33 [Gustafsson et al., 2003] consider using `1-regularization to estimate the inter-slice graph under the constraint
that parents must come from the previous time point. This constraint substantially simplifies structure learning since
it excludes the possibility of creating cycles.
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or not. If we used a differentiable measure of independence, we could apply `1-regularization
to the factor loading matrix using the methods of Chapter 2 to learn a set of independent
components with elements that are exactly zero.

• More general models of intervention: In our discussion of interventional data, we consid-
ered the case of perfect interventions. That is, we assumed that the effect of an intervention
is to perfectly control the value of a single variable. However, in general we might want to
consider more general interventions that affect multiple variables, or cases where we do not
know the effect of the intervention. Eaton and Murphy [2007] consider the more general case
of uncertain interventions. Here, the DAG model is augmented with a binary node for each
intervention. By convention these intervention (or action) nodes are not allowed to have any
parents in the DAG model, and the effect of an intervention is simply to set the value of the
corresponding intervention node. This model is a special case of a conditional DAG model,
so the methods we discuss in this section can be applied.

• Removing false positives from L1MB: In our experiments the L1MB algorithm typically
did not exclude true edges, but included many false positive edges. Three potential sources of
these false positives are (i) errors associated with estimating the Markov blanket, (ii) errors
associated with using `1-regularization for variable selection, and (iii) errors associated with
using the BIC.

Estimating the edge set based on estimating the Markov blanket leads to false positives be-
cause the Markov blanket includes co-parents. We could consider several heuristics to try
and remove these co-parents, such as testing whether variables in the Markov blanket are
marginally independent (this is a straightforward calculation under the BIC or validation
score). Such a procedure could remove false positives associated with co-parents that do not
share common ancestor. Alternately, we could consider more elaborate schemes where we
condition on different subsets of the variables in order to remove co-parents from considera-
tion. We discuss a related approach in the appendix of [Schmidt et al., 2007b], in the context
of applying the L1MB algorithm to graphs with a very large number of nodes.

Using `1-regularization for variable selection is another potential source of false positives. As
discussed in [Bach, 2008a], `1-regularization chooses all relevant variables with a probability
tending to one exponentially fast (as the number of samples increases), but also chooses
irrelevant variables with non-zero probability. This leads to false positives. To alleviate this
problem, Bach [2008a] suggests applying `1-regularization to a set of bootstrap samples of
the data set, and taking the intersection of the variables selected in the samples. We could
consider applying this strategy in order to reduce the number of false positives.

Alternately, we could consider several alternatives to `1-regularization. For example, the ada-
pative LASSO [Zou, 2006] and SCAD penalties [Fan and Li, 2002] are two regularizers that
have been proposed to give better properties than `1-regularization. The adaptive LASSO
has been used for learning the structure in Gaussian dependency networks [Shimamura et al.,
2007], while both the adaptive LASSO and SCAD penalties were examined for learning Gaus-
sian graphical models in [Fan et al., 2009]. The methods of Chapter 2 can be used directly for
regularization with the adaptive LASSO (it simply consists of a suitable setting of the indi-
vidual regularization weights λi). Recent approaches for the (non-convex) SCAD regularizer
use weighted `1-regularization as a sub-routine within a bound optimization scheme [Zou and
Li, 2008], so the methods of Chapter 2 could also be used for this regularizer. Alternately,
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as we discuss in the extensions section of Chapter 2, it is possible to extend the methods of
Chapter 2 to be used directly for optimization with SCAD regularization.

Another approach that might remove false positives (from both phases) is to define a suitable
prior and compute a Bayesian score [Cooper and Herskovits, 1992, Heckerman et al., 1995],
instead of the simple BIC approximation. In general the Bayesian score can not be computed
in closed form, so approximations to these integrals would be needed. Moghaddam et al.
[2009] show that even simple approximations can lead to performance improvements over
using the BIC. Further, as long as the score is separable across nodes, it is trivial to replace
the BIC in our method with another score assessing the quality of graph structures.

Closely related to the Bayesian score is the sparse Bayesian learning regularizer discussed
in [Wipf and Nagarajan, 2009], a generalization of automatic relevance determination meth-
ods. This prior is motivated by the form of the marginal likelihood in the Gaussian case,
and the authors of this work show that this non-separable, non-convex regularizer has several
appealing advantages over `1-regularization. As with the SCAD regularizer, current methods
for using this regularizer use a bound optimization strategy where weighted `1-regularization
is used as a sub-routine, so the methods of Chapter 2 could be used to solve this sub-routine.

• Other structure search methods: We have considered a simple DAG-search method
to perform the search over possible DAG structures. However, we could augment/replace
this search procedure with any of the methods we discuss in Section 4.1. Indeed, [Vidaurre
et al., 2010] have applied our hybrid `1-regularization method (with Gaussian CPDs) where
the DAG-search has been replaced with a search through the space of Markov-equivalent
structures. Another possible search strategy is the constrained optimal search of [Perrier
et al., 2008]. Given a structure constraining the set of possible edges, Perrier et al. [2008]
describe a method for finding the optimal DAG that is exponential in the degree of this
structure. Hence, if the L1MB algorithm returns a structure with a sufficiently low degree,
it is possible to find the optimal DAG structure even if the number of nodes in the original
graph is very large.

• Regularization of the CPD parameters: The experiments in this chapter have used
maximum likelihood estimates of the parameters. In many cases, we are able to obtain a
better model in terms of validation score by using a regularized estimate, such as an `2-
regularized or `1-regularized estimate. As long as the regularizer does not violate parameter
independence or parameter modularity, searching for an optimal regularizer within each CPD
only adds a small computational overhead to the L1MB and DAG-search procedure. There
has also been work on estimating the number of degrees of freedom of `1-regularized estimates.
For example, [Zou et al., 2007] shows that the number of non-zero coefficients is an unbiased
estimate of the number of degrees of freedom when using `1-regularized parameter estimates
within the BIC.

• Non-linear CPDs: We have concentrated on CPDs that are linear in the values of the
parent variables. This is similar to the pairwise assumption in undirected graphical models,
and it similarly may be restrictive in some scenarios. We can relax this assumption if we
consider using non-linear transformations of the parent variables. For example, to gain the
representational power of tabular CPDs we could use CPDs that are linear in the set of
indicator functions over possible parent configurations. Alternately, we could add products
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of the parent variables (or other such transformations) as additional terms in the CPDs.
Under many choices of non-linear CPDs, it will typically be more appropriate to use (disjoint
or overlapping) group `1-regularization of the CPD parameters, similar to the methods we
discuss in the next two Chapters.

• Convex approaches to DAG learning: In this chapter, we resorted to a search-based
method because of the acyclity constraint on the graph structure. However, there has been
a limited amount of work on convex formulations of DAG learning. Guo and Schuurmans
[2006] consider a convex relaxation involving semi-definite programming to approximate a
node ordering, while Jaakkola et al. [2010] formulate DAG learning as a binary linear program
with linear constraints that enforce acyclitiy. It may be possible to apply `1-regularization
with one of these characterizations of the acyclicity constraint.
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Chapter 5

Undirected Graphical Model
Structure Learning

We now turn to task of the structure learning in pairwise undirected graphical models. In some
sense, structure learning is easier in the undirected case because we do not have a global acyclicity
constraint; given some candidate undirected structure, we still obtain a legal undirected structure
after any edge addition. However, in another sense structure learning in undirected models is much
harder because of the global normalization. Unlike in the DAG case where we used separability of
the log-likelihood to efficiently evaluate single-edge modifications, the lack of separability of the log-
likelihood in the undirected case means that we must re-fit all parameters after any edge addition
or deletion (while even evaluating the score given a fixed graph structure can be computationally
expensive or intractable). This makes methods based on local search extremely expensive. In the
next two sections, we briefly review several of the search-based and constraint-based strategies that
have been proposed for structure learning in undirected graphical models. After this, the remainder
of the section focuses on the (potentially much faster) methods based on `1-regularization.

5.1 Search-based and Constraint-based Methods

Whittaker [1990, §8.2] contains a list of references from the statistics literature from the 1970s and
1980s on structure learning in (Gaussian and log-linear) undirected graphical models. Typically,
these methods start with the empty structure, and search for the best possible edge addition. A
deviance score (based on a maximum likelihood estimate) is used in measuring the quality of a
structure, and a hypothesis test is used to determine whether each new edge improves the score
by a sufficient margin. The algorithm terminates once one of these hypothesis tests fails. Because
a likelihood-based criteria is used, this termination criteria is used to avoid adding all possible
edges. Alternative methods also exist that start with the dense model and successively remove
edges. Classic examples of these types of methods include [Dempster, 1972] for the Gaussian case,
and [Goodman, 1971] for the log-linear case. In general, this procedure is extremely expensive
if the number of variables is non-trivial; these procedures must fit O(p2) undirected models at
each of the O(p2) steps. These types of greedy methods seem to have fallen out of favor with the
introduction of methods that use a score that encourages sparsity (such as the BIC or marginal
likelihood criteria), and methods that directly seek to optimize these types of scores. These and
other classical methods, as well as methods based on the BIC, are discussed further in Edwards
[2000, §6].

In order to avoid the expensive computations associated with general undirected graphical
models, many authors have considered restricting the search to the set of decomposable graphical
models. A subset of the extensive work on this topic includes [Wermuth, 1976, Malvestuto, 1991,
Dawid and Lauritzen, 1993, Madigan and Raftery, 1994, Xiang et al., 1997, Giudici and Green,
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1999, Deshpande et al., 2001]. Decomposable models correspond to the subset of undirected graph-
ical models where the graph structure is chordal [Whittaker, 1990, §12]. The set of conditional
independencies in decomposable models can be represented as both an undirected and a directed
acyclic graphical model (in particular, a chordal undirected graph encodes the same set of condi-
tional independences as a DAG with no v-structures). Subsequently, in chordal undirected models
it is possible to take advantage of many of the convenient properties of directed models. Partic-
ularly relevant for structure learning is that the likelihood can be evaluated efficiently, and that
parameter estimation can be done locally. Another noteworthy property of decomposable models is
that the marginal likelihood given a fixed graph structure can be evaluated in closed form (with a
suitably chosen conjugate prior). This is in contrast to general undirected graphical models, where
even evaluating the BIC may be intractable since it requires computing the rank of an exponential-
sized matrix [Koller and Friedman, 2009, §20.7.3]. However, like acyclicity, the constraint that a
graph must be chordal is a global (non-convex) constraint. This negates the (potential) advan-
tage of structure learning in undirected models, since we would have local optima (that are not
global optima) even if we use `1-regularization of the parameters for structure learning. Thus, we
would need to consider techniques similar to those used in Chapter 4 (i.e. greedy search) to learn
chordal graphs. Further, if we did this we would still be restricted to a strict subset of the set of
distributions whose independence properties can be represented by DAGs.

An alternative to using chordal graphs is to place an explicit restriction on the treewidth of
the graph. By placing a restriction on the treewidth we guarantee that inference in the model
can be performed in polynomial time. Indeed, bounded treewidth networks allow polynomial-time
computation of quantities that are difficult to compute even in directed and chordal models (such
as computing conditional probabilities). If the treewidth is restricted to be 1 (corresponding to
tree-structured graphs) the optimal maximum likelihood structure can be found in polynomial
time [Chow and Liu, 1968]. Heckerman et al. [1995] discuss extending this methodology to other
scores. For any bound greater than 1, finding the optimal bounded treewidth structure (under
various scoring criteria) is NP-hard [Srebro, 2003] (even determining the treewidth of a graph
is NP-hard in general). Nevertheless, several recent works have examined this case. For exam-
ple, [Karger and Srebro, 2001] give a polynomial-time approximation scheme for this problem,
while Bach and Jordan [2001] consider searching in the space of graphs with bounded treewidth.
Evaluating the score achieved by edge modifications is still relatively expensive in these graphs,
since low treewidth graphs will not in general be chordal. Thus, Bach and Jordan [2001] consider
heuristics for evaluating the scores of neighboring graphs. Narasimhan and Bilmes [2004] have
considered constraint-based polynomial-time strategies for learning bounded tree-width networks
in the probably approximately correct (PAC) learning framework for the consistent case (when
the data is generated according to an undirected graphical model), by solving a series of sub-
modular optimization problems to discover conditional independencies. Chechetka and Guestrin
[2007] give a related constraint-based method that is polynomial-time for a more general class of
data-generating distributions (though the algorithm remains exponential in the bound on the tree-
width). Shahaf et al. [2009] consider a graph cut procedure for recursively partitioning the nodes
to learn bounded-treewidth networks, that has certain theoretical guarantees and has shown good
empirical performance. The disadvantage of considering only networks with bounded treewidth is
simply that many distributions can not be represented as a network with bounded treewidth, so a
non-trivial treewidth might be necessary to build a good model of a particular data set.

There has also been work on constraint-based methods for learning the structure with a con-
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straint on the number of neighbors. For example, Koller and Friedman [2009, §20.7.1] give a
polynomial-time constraint-based method for learning bounded-degree networks (in the consistent
case). Such constraint-based methods are appealing because they do not require parameter estima-
tion. However, we note that these methods must rely on the same assumptions and be subject to the
same criticisms as the constraint-based methods for learning DAGs we discuss in Section 4.2. Fur-
ther, as discussed in [Koller and Friedman, 2009, §20], constraint-based methods do not distinguish
between Markov-equivalent graph structures that use different factorizations (this is applicable
when we remove the pairwise assumption). Recently, Abbeel et al. [2006] give an exponential-time
algorithm for learning bounded-degree networks in the PAC learning framework (for the consistent
case) that also learns the factorization.

5.2 `1-Regularization

Let us temporarily assume that each edge has only a single parameter associated with it. Then, as
we discuss in Chapter 1, we can formulate the problem of learning a sparse pairwise structure with
`1-regularization as

min
w,b
−

n∑
m=1

[

p∑
i=1

[log φi(x
m
i ,bi) +

p∑
j=i+1

log φij(x
k
i , x

k
j ,wij)]] + n logZ(w,b) + λ||w||1. (5.1)

During the past five years, there has been intense interest from various communities in using this
formulation for structure learning in undirected graphical models. The reasons for this are simple.
First, it is an appealing notion to formulate the problem of fitting a sparse regularized model to
data with unknown structure as a convex optimization problem. Second, this formulation does not
impose any constraints (such as decomposability, bounded treewidth, or bounded degree) on the
structures that can be learned. Third, we might hope to inherit the appealing properties of `1-
regularization that are known for regression and classification that we discuss in Chapter 1. Finally,
unlike search-based methods where we must solve a non-separable convex optimization problem for
every possible edge addition/deletion that we consider, when we use `1-regularization we only need
to solve one convex optimization problem that (arguably) has a comparable difficulty level. This
means that using `1-regularization is much faster than using a search-based method.

5.3 Approximate Objectives

As we discuss in Section 1.4, most of the work that examines `1-regularization for structure learning
in undirected graphical models focuses on GGMs and IGMs. In the case of GGMs, the normalizing
constant can be computed in polynomial time and hence the problem can tractably be solved even
with a non-trivial number of nodes (for example, using the methods of Chapter 2). For IGMs and
the more general pairwise log-linear models we describe in Section 1.5, it may be intractable to
evaluate the objective function in (5.1) since the graph structure resulting from the sparsity pattern
may not have a low treewidth. Thus, for discrete data we must consider approximate objective
functions.

A classic technique for addressing the intractability of evaluating the likelihood in undirected
models is to replace the likelihood with the product of univariate conditionals. This is known as a
pseudo-likelihood [Besag, 1975]. This approximation is consistent, in the sense that if the data is
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generated from an undirected graphical model then as the number of training examples grows the
maximum pseudo-likelihood estimate converges to the maximum likelihood estimate [see Koller and
Friedman, 2009, Theorem 20.3]. In [Schmidt et al., 2008], we considered using a pseudo-likelihood
in (5.1), giving the problem

min
w,b
−

m∑
k=1

[

p∑
i=1

log p(xmi |xm−i,w,b)] + λ||w||1, (5.2)

We note that the conditional probability of a node given all other nodes takes the form

p(xi|x−i,w,b) =
1

Zi
φi(xi,bi)

∏
{j|j 6=i}

φij(xij ,wij),

where the local normalizing constant Zi only sums over possible assignments to xi (and thus can
be tractably evaluated). As we discuss in 1.4, in the IGM case these conditionals take the form of
logistic regression likelihoods. In the general pairwise discrete case, these conditionals take the form
of a multiclass logistic regression likelihood [Bishop, 2006, §4.3.4], where the features are defined
in terms of the values assigned to neighboring nodes. Thus, the `1-regularized pseudo-likelihood
takes the form of a set of dependent (multiclass) logistic regression problems, where the dependency
arises because each set of edge parameters wij is present in the conditional p(xi|x−i) and p(xj |x−j).
However, the joint optimization of these dependent (multiclass) logistic regression problems is easily
handled by the methods of Chapter 2.

As we discuss in Section 1.2, an alternative pseudo-likelihood approximation is to learn a de-
pendency network. This is identical to (5.2), but where we make a separate copy of each edge
parameter set wij for each conditional. Although this problem can be solved slightly more effi-
ciently, we must heuristically construct each edge parameter out of its two copies. Hofling and
Tibshirani [2009] compared the symmetric pseudo-likelihood (5.2) to two ways of obtaining a single
estimate out of this asymmetric dependency network pseudo-likelihood. They found that while all
three estimates were good approximations, that the symmetric approximation had an advantage
over the two asymmetric versions.

An alternative to using a pseudo-likelihood approximation of the likelihood is to use a vari-
ational approximation of the logarithm of the normalizing constant (known as the log-partition
function) [see Wainwright and Jordan, 2008]. In general, such approximations are not consistent.
However, theoretical arguments by Wainwright [2006] suggest that it can be beneficial to use such
an approximation in certain scenarios, if the same approximation will subsequently be adopted
when using the model. Lee et al. [2006b] considered the Bethe free energy approximation to the
log-partition function, implemented using the loopy belief-propagation message-passing algorithm.
This approximation is appealing because it is exact for tree-structured graphs. Thus, as we move
along the regularization path this approximation is exact until the graph has loops (in contrast,
pseudo-likelihood approximations are only exact if we have no edges). However, for graphs with
loops the Bethe approximation will not generally be convex, nor does it give an upper bound on
the log-partition function. Further, the use of loopy belief propagation might lead to discontinuities
in the objective function because of non-convergence of the algorithm or because it converges to
different local optima.

As an alternative to the (non-convex) Bethe approximation, in this work we also consider us-
ing the (non-convex) mean-field variational approximation (with a fully factorized approximating
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distribution), and consider using a “convexified” (tree-reweighted) Bethe approximation [see Wain-
wright and Jordan, 2008, §5 and §7]. The latter approximation uses a convex combination of
tree-structured approximations to give a convex upper bound on the log-partition function, but
uses a clever re-parameterization that allows the number of trees to potentially be very large with-
out an increase in computation. In particular, the method uses a minor variant on the loopy
belief-propagation message-passing algorithm that utilizes a set of edge appearance probabilities
(the mean field approximation is also computed by a message-passing algorithm). For each edge,
the edge appearance probability is the (weighted) distribution of times the edge appears in one of
the tree-structured approximations. We obtain the regular Bethe approximation if these are all set
to 1, but this leads to non-convexity as it is not a valid distribution over tree-structured graphs
(unless the graph is actually a tree). In our experiments, we considered using all possible spanning
trees of the dense graph (with equal weight) in the approximation. The probability of an edge
appearing in a random spanning tree of a fully connected graph on p nodes is 2/p for p ≥ 2 (each
spanning tree consists of (p− 1) edges selected in an exchangeable way from the p(p− 1)/2 edges).
Note that we use these edge appearance probabilities even if some of the edges have all parameters
set to zero.

5.4 Group `1-Regularization

In the case of IGMs, sparsity in the parameters directly corresponds to sparsity in the graph
structure. However, this is no longer the case if we consider more general potentials like the
gIsing or full edge potentials from Section 1.5 where each edge has multiple parameters. In these
models we must set all parameters associated with an edge to zero in order to remove the edge
from the model, and thus `1-regularization does not directly encourage graphical sparsity. Indeed,
`1-regularization completely ignores that graphical sparsity might lead to a more parsimonious
graph structure or greater computational savings than sparsity of individual edge weights. In order
to encourage sparsity in terms of edges instead of individual edge parameters, we can use group
`1-regularization.

Utilizing group `1-regularization to encourage sparsity in terms of groups of variables was pro-
posed by Bakin [1999] in the context of regression. In this work Bakin considered penalizing the
`1 norm of the `2 norms of the groups in order to encourage sparsity at the group level. For our
problem, we have one group for each edge and the group contains all parameters associated with the
corresponding edge. Thus, we can write the problem of estimating a sparse regularized structure
with group `1-regularization as

min
w,b
−

n∑
m=1

[

p∑
i=1

[log φi(x
m
i ,bi) +

p∑
j=i+1

log φij(x
m
i , x

m
j ,wij)]] + n logZ(w,b) + λ

p∑
i=1

p∑
j=i+1

||wij ||p,

(5.3)
for some norm || · ||p (using an approximate objective gives an analogous formulation). While Bakin
[1999] considered penalizing the `2-norms of the groups (corresponding to `1-regularization of the
lengths of the vectors wij), other authors have subsequently considered using other norms that
also achieve group sparsity34. For example, Turlach et al. [2005] use the `∞ norm of the groups
in the context of multiple linear regressions, corresponding to `1-regularization of the maximum

34We obtain `1-regularization as in (5.1) if each group contains only a single variable (under any choice of norm),
or if we use the `1-norm of the individual groups.
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absolute values within the groups (but not penalizing elements of the groups that do not achieve
the maximum value). We considered using (5.3) with the `∞ norm of the groups in [Schmidt et al.,
2008].

Since the `2 norm places no bias on the direction, in some sense it is the only norm that does
not encourage additional structure in the edge potentials. This is as opposed to the degenerate case
of using the `1 norm that prefers sparsity within the groups, and it also differs from the `∞ norm
that encourages elements within the same group to have exactly the same magnitude. However,
this latter property produces some interesting biases when using the `∞ norm. For example, with
the gIsing potentials it encourages all edge weights (associated with the same edge) to have the
same magnitude. If these weights also have the same sign, it encourages the gIsing weights to take
the exact same value and to subsequently become Ising potentials. With full potentials, using the
`∞ norm also encourages patterns of tied weights within the potentials, but places no restriction
on what elements of the individual edge potential matrices are tied. Thus, it might lead to some
edges using Ising potentials, some edges using gIsing potentials, some edges taking other patterns,
and some edges having no pattern (in general there will be no pattern when the `2 norms of the
groups is used).

While previous work on group `1-regularzation has only considered the `2 or `∞ norms of the
groups, these are not the only possible choices of the group norm. For the case of full potentials, in
this work we also consider using the nuclear norm of the edge weight matrix. This can be viewed as
an extension of the nuclear norm regularizer described in [Fazel et al., 2001] to the case of groups.
The nuclear norm penalizes the sum of the singular values of the matrix, and using it within a
group `1-regularization framework encourages not only group sparsity35 but encourages the edge
weight matrices to be low rank. The advantage of this is that, for k > 2, this may lead to a more
parsimonious representation of the full edge weight matrix. For models with many states this might
lead to a substantial reduction in the number of parameters (and degrees of freedom) in the final
model, and because of this it represents an alternative to the weight-tieing used in the Ising or
gIsing potentials.

In cases where groups have a single element, the methods of Chapter 2 can be used to solve
the optimization problem, while the methods of Chapter 3 can be used to solve the general case
when we use the `2 norms of the groups. In the next section, we discuss simple extensions to the
methods of Chapter of 3 that allow us to handle the `∞ and nuclear norms of the groups.

5.5 Optimization with General Group Norms

In this section we consider the generalization of (3.1) where we penalize some norm || · ||p of the
groups:

min
x
f(x) , L(x) +

∑
A

λA||xA||p. (5.4)

Note that in this expression, we do not necessarily have to use the same norm for each group. By the
positive homogeneity property of norms, for any choice of norm this function is non-differentiable
if an entire group of variables is exactly zero. Depending on the particular norm, there may be
other non-differentiabilities. For example, with the `∞ norm the objective is also non-differentiable
whenever more than one variable in a group achieves the largest magnitude within the group.

35All elements of the matrix are necessarily zero if all singular values are zero.
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To apply the SPG or PQN method to solve (5.4), we must convert it into a differentiable
optimization problem over a convex set. As before, we do this by introducing an additional variable
gA for each group A and optimize subject to the constraint that gA ≥ ||xA||p:

min
x,g

L(x) +
∑
A

λA gA, subject to gA ≥ ||xA||p, ∀A. (5.5)

By convexity of norms, the constraints in this problem define a convex set for any choice of norm.
In an addendum to [Schmidt et al., 2008], we show how to compute the projection for this

problem when we penalized the `∞ norm of the groups36. The cost of solving the sub-problem
in this case is O(|A| log |A|), since in the worst case we may need to sort the elements of xA. In
the degenerate case where we use the `1 norm of the groups, this problem can be solved in O(|A|)
(expected time) using a simple extension of the randomized algorithm outlined in [Duchi et al.,
2008b]). Although penalizing the `1 norm of the groups is not interesting on its own since this choice
of group norm reduces to regular `1-regularization, we can use this as a sub-routine for computing
the projection when we penalize the nuclear norm of the groups. In particular, similar to [Cai
et al., 2010], the projection for an individual group can be computed in O(|A|3/2) by computing
the singular value decomposition of the group [Golub and Van Loan, 1996, §2], applying the `1
norm method to the singular values, then reforming the matrix with the modified singular values
to form the projected matrix. We give more details regarding these projections in Appendix B, but
for now we simply note that for all the norms we consider it is possible to compute the projection
efficiently for reasonably-sized groups.

Wright et al. [2009] discuss computing the soft-threshold operator for different choices of the
norm in group `1-regularization. In the case of the `∞ norm, the solution for an individual group
is given by an explicit element-wise threshold operator

SR(xA, α)i = sgn(xi) min{|xi|, θA},

where the threshold θA used by the group is given by the maximum over i of the absolute difference
between xA and the result of projecting xA onto the `1-ball of radius αλA [Duchi and Singer, 2009].
Duchi et al. [2008b] give a randomized algorithm with an expected O(|A|) runtime for computing
this projection. In the case of the nuclear norm, the soft-threshold is given by applying the soft-
threshold rule σi ← max{0, σi − αλA} to the singular values σi of the matrix groups [Cai et al.,
2010].

We can also generalize the active-set method from Section 3.4 to the case of an arbitrary group
norm ||·||p. To test whether groups with all elements zero can locally improve the objective function
by moving them away from zero, we need to characterize the sub-differential of the regularizer
in (5.4). To do this, we use a non-standard (but equivalent) definition of the sub-differential of a
convex function R(x) [Combettes and Wajs, 2005, §2.1]:

∂R(x) , {g|R(x) +R∗(x) = xTg},

where R∗(x) is the convex conjugate of R(x) [see Boyd and Vandenberghe, 2004, §3.3]. If R(x) is
a norm, R(x) , || · ||p, the convex conjugate is given by a (∞, 0) indicator function on the dual

36Quattoni et al. [2009] show how to solve the related problem of projecting onto the norm ball defined by the `1
of `∞ norms.

104



norm unit ball [Boyd and Vandenberghe, 2004, Exercise 3.26]

R∗(x) ,

{
0 if ||x||q ≤ 1,

∞ otherwise.

Here, we use || · ||q to denote the dual norm of || · ||p [Boyd and Vandenberghe, 2004, §A.1.6]. It
follows that the sub-differential of the regularizer for a group with xA = 0 is all vectors with dual
norm less than or equal to λA. Thus the optimality condition that 0 ∈ ∂f(x) in (5.4) for a group
with xA = 0 is

||∇AL(x)||q ≤ λA.

Using this, an active-set method generalizing the one in Section 3.4 to the case of an arbitrary
group norm || · ||p is

• Find groups A such that xA 6= 0, or xA = 0 and ||∇AL(x)||q > λA.

• Solve the problem with respect to these groups.

The dual norms for all norms considered in this work are given in [Boyd and Vandenberghe, 2004,
§A.1.6]. The `2 norm is its own dual, giving the algorithm of Section 3.4. The dual norm of the `1
norm is the `∞ norm, giving the algorithm of Section 2.5. Since the dual norm of the `∞ norm is
the `1 norm, if we penalize the `∞ norm of the groups we add a group if the absolute value of the
gradient of any element of the group is above λA. Finally, the dual of the nuclear norm is the `2
operator norm, so we add matrix groups if the largest singular value of the matrix containing the
values of the gradient elements exceeds λA. To end this section we note that when we repeated the
experiments of Chapter 3 with other choices of the group norm, the relative performance of the
different optimization methods was very similar.

5.6 Blockwise Sparsity

Duchi et al. [2008a] consider an alternate use of group `1-regularization within the context of GGMs.
Their model assigns each node in the graph a type. They consequently use `1-regularization of the
edges between variables of the same type, but group `1-regularization of the set of edges between
different types. That is, they encourage sparsity in terms of the blocks of the precision matrix that
represent interactions between variables of different types. We refer to this as blockwise-sparsity,
since it encourages sparsity in terms of pre-defined blocks of the precision matrix. Duchi et al.
[2008a] penalize the `∞ norm of the blocks, and give a projected gradient method for solving a
Lagrangian dual problem in the case of GGMs. In [Schmidt et al., 2009a], we showed that the
PQN method of Chapter 3 outperforms this projected gradient method at solving the Lagrangian
dual, and we considered using the PQN method to solve the Lagrangian dual that arises when we
penalize the `2 norm of the groups.

The methods in Chapter 3 can also be used to encourage blockwise-sparsity in IGM models,
for the `2 or `∞ norm of the blocks. Further, we can also use them to encourage blockwise-sparsity
in general pairwise log-linear models. In this case, we simply define each group to be all edge
parameters associated with all edges in the block.
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5.7 Conditional Random Fields

Thus far, we have considered building a probabilistic model of all variables present in a data set.
However, in many cases we might be interested in predicting the values of some variables (the
targets) given the others (the features). This is similar to the regression and classification tasks
we discuss in (1.1), but here we consider the generalization where we have more than one target
variable. Further, the target variables may be dependent, even after after conditioning on the
features. Analogous to the regression case, we use x to denote the features and we use y to denote
the target variables. One way to address this problem is to model p(y,x) with an undirected model,
and then use the conditional distribution p(ym|xm) to answer conditional queries about instance
m. However, in cases where the features are very complicated, it may be very difficult to build a
good model of p(y,x).

For this multiple-target scenario, Lafferty et al. [2001] introduced conditional random fields
(CRFs). In CRFs, we fit an undirected graphical model by optimizing the conditional likelihood
p(ym|xm) over all m training examples (this is typically referred to as a discriminative model).
In the case of log-linear models, this is a natural generalization of logistic regression to the multi-
target scenario (while for GGMs it is a natural generalization of least-squares). The advantage
of optimizing the conditional likelihood instead of the likelihood is that we treat the variables x
as fixed, instead of addressing the potentially difficult task of building a model of them. Liang
and Jordan [2008] show that, if the model is misspecified (as is typically the case when dealing
with real data), that optimizing p(y|x) is asymptotically more efficient both in terms of parameter
estimation and generalization error than optimizing p(y,x).

In this work, we consider CRFs with a log-linear parameterization. For example, for a three-
state node i we use node potentials of the form

log φi(·,xmi ,bi,vi) =

 bi,1 + vTi1x
m
i

bi,2 + vTi2x
m
i

bi,3 + vTi3x
m
i

 ,
where each node has its own set of bias parameters bi, its own set of (vector-valued) feature weights
vi, and its own set of features xmi for instance m (some of these features may be shared between
nodes). Typically, we fix the value of bi,j to zero for one of the states j, and we may also fix the
vector vi,j to the zero vector for one of the states. For full edge potentials on the edge between two
three-state nodes i and j, we use

log φij(·, ·,xmij ,wij ,vij) =

 wij11 + vTij11x
m
ij wij12 + vTij12x

m
ij wij13 + vTij13x

m
ij

wij21 + vTij21x
m
ij wij22 + vTij22x

m
ij wij23 + vTij23x

m
ij

wij31 + vTij31x
m
ij wij32 + vTij32x

m
ij wij33 + vTij33x

m
ij

 ,
where we note that each edge has its own set of weights wij , its own set of (vector-valued) feature
weights vij , and its own set of edge features xmij for instance m. We can fix the values of some of
these weights to zero if we want a restricted class of potentials like the Ising or gIsing potentials.
However, note that even in the Ising case, each edge will have multiple parameters. We can write
the negative log-likelihood function with these potentials as

−
n∑

m=1

[

p∑
i=1

[log φi(y
m
i ,x

m
i ,bi,vi) +

p∑
j=i+1

log φij(y
m
i , y

m
j ,x

m
ij ,wij ,vij)] + logZ(w,b,v,xm)],
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where we have used v to refer to all node and edge feature weights. As in the unconditional case,
this function is jointly convex in all of its parameters. However, since the normalizing constant for
each training example is a function of xm, we now have a normalizing constant for each training
instance m. This makes parameter estimation in the conditional case much more expensive.

While there has been some work towards discriminative structure learning in the context of
Bayesian network classifiers [see Schmidt et al., 2008, Table 1], all previous work on CRFs has
assumed that the graphical structure is known. Further, the high cost of evaluating the likelihood
even for a fixed structure makes search-based methods unappealing. Thus, to apply a CRF model
to a data set with unknown structure, in [Schmidt et al., 2008] we considered using group `1-
regularization. More precisely, we used `2-regularization of the node feature weights and group
`1-regularization of all edge weights corresponding to the same edge to learn a sparse regularized
CRF by solving

min
w,b,v

−
n∑

m=1

p(ym|xm,b,w,v) + λ1

p∑
i=1

||vi||22 + λ2

p∑
i=1

p∑
j=i+1

||[wij vij ]
T ||p, (5.6)

Note that solving this problem is not the same as the computationally more efficient approach of
first learning the structure of y as an unconditional log-linear model, and subsequently using this
as the structure of the CRF. Our experiments indicate that this latter strategy under-performs
using (5.6) to simultaneously and conditionally learn both structure and parameters.

5.7.1 Associative Conditional Random Fields

In all models up to this point we have considered sparsity as a rough approximation of the treewidth
of the graph. This is because adding an edge will never decrease the treewidth of a graph, so models
with fewer edges may have lower treewidths and thus allow efficient calculations with the model.
In many applications of CRFs, the calculation that we are often most interested in is finding the
conditional optimal decoding. That is, given the covariates x we would like to find the assignment
of labels y∗ with highest probability under the model:

y∗ = arg max
y

p(y|x). (5.7)

Although this problem is NP-hard in general, for the special of case of binary variables with sub-
modular edge potentials it is possible to solve this problem in polynomial time [Kolmogorov and
Zabih, 2002]. The sub-modularity condition is equivalent to the requirement that, for each edge,
the log-potentials for assignments where the two variables take the same state are greater than the
log-potentials for assignments where the variables have different states:

log φij(1, 1) + log φij(2, 2) ≥ log φij(1, 2) + log φij(2, 1), ∀ij . (5.8)

We call a CRF satisfying this condition an associative CRF, analogous to the associative max-
margin Markov networks examined in [Taskar et al., 2004]. Note that satisfying this condition allows
us to perform optimal decoding in polynomial time as a minimum graph-cut problem, independent
of the treewidth of the graph. Thus, enforcing that (5.8) is true for all edges and all possible
values of the features x ensures that we can efficiently solve (5.7). In [Cobzas and Schmidt, 2009]
we consider two simple conditions that are sufficient to ensure that the estimated parameters in a
binary CRF with Ising edge potentials (and a fixed structure) satisfy (5.8). First, we require that all
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features x are non-negative. Second, during parameter estimation we constrain all edge parameters
to also be non-negative. These conditions ensure that log φij(1, 1) ≥ 0 and log φij(2, 2) ≥ 0, while
since we use Ising edge potentials we have that log φij(1, 2) = 0 and log φij(2, 1) = 0. Adding these
constraints yields a bound-constrained optimization problem that was solved with the two-metric
projection algorithm discussed in Section 2.2.3.

We can use `1-regularization to extend this prior work to learn the graph structure while still
constraining the model to be associative. If we use `1-regularization of the edge weights, then the
problem reduces to optimizing a differentiable function with `1-regularization over the non-negative
orthant. As discussed in 2.1.2, applying `1-regularization with an orthant constraint can be written
as a bound-constrained smooth optimization problem. Thus, we can estimate the parameters of
an associative CRF with `1-regularization using the two-metric projection algorithm discussed in
Section 2.2.3. If we use group `1-regularization of the edge parameters to encourage a sparse graph
structure, then computing the projection (or soft-threshold) subject to non-negativity constraints
is straightforward; we set to zero all negative elements before computing the projection (or soft-
threshold) for the remaining elements [van den Berg, 2010]. This allows us to apply the methods
of Chapter 3 to solve the bound-constrained problem.

5.8 Experiments

We first examined two small real data sets where we could compare the effects of different regu-
larization and edge potential types with the exact objective (§5.8.1), and then with approximate
objectives (§5.8.2). We then compared the methods on some larger data sets using the pseudo-
likelihood approximation (§5.8.3). We then looked at blockwise sparse models of a real data set
(§5.8.4), and finally compared different ways to train CRF models on synthetic and real data
(§5.8.5).

5.8.1 Edge Potentials and Regularization Types

We fist sought to assess the effects on prediction performance of different choices of regularization
and edge potential type. To do this we used the two small data (cyto and awma) from Section 1.7,
where the number of nodes (and states) is sufficiently small that we can evaluate the objective
function exactly even with a densely connected graph (thus removing the use of an approximate
objective function as a potential confounding factor). On these data sets, we tested the three edge
potentials from Section 1.5:

• Ising: Here we have one parameter on each edge, giving the potential of the two nodes taking
the same state. In the binary case this yields the IGM model of Section 1.4.

• gIsing: Here we have k parameters on each edge, giving the potential of the two nodes taking
the same state for each state.

• full: Here we have a matrix of k2 parameters on each edge, giving the potential for all k2

combinations of the states.

We compared the following regularization strategies:

• Tree: We compute the maximum likelihood tree structure, then fit its parameters using `2-
regularization.
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• L2: We fit the fully connected structure with `2-regularization. This does not yield a sparse
structure, but may still perform well at prediction.

• L1: We fit the fully connected structure with `1-regularization. This encourages sparsity in
the edge parameters but does not directly encourage graphical sparsity.

• L12: We fit the fully connected structure with group `1-regularization of the `2 norms of the
edge parameters. This encourages graphical sparsity.

• L1∞: We fit the fully connected structure with group `1-regularization of the `∞ norms of
the edge parameters. This encourages graphical sparsity and also encourages elements of the
same edge potential to have the same magnitude.

• L1σ: We fit the fully connected structure with group `1-regularization of the nuclear norms
of the edge parameters. This encourages graphical sparsity and also encourages the edge
potential matrices to have low rank.

In our experiments, we trained on one third of the data, evaluated the likelihood of a separate third
of the data to estimate λ, and used the final third of the data to evaluate the model with the selected
value of λ. We repeated this set-up with 10 different partitions of the data to estimate the variability
of the results. We note that the particular split of the data into training/validation/testing is a
confounding factor that affects of the performances of the method. Thus, in addition to computing
the test set negative log-likelihood of the methods on each trial, we also computed a relative test
set negative log-likelihood where we scaled the values to lie in the range [0, 1] for each split (the
best method on each data split is assigned a value of 0, and the worst method is assigned a value
of 1). This latter score removes the particular data split as a potential confounding factor, giving
a measure of relative performance across the different splits. For each model we tested λ = 2r,
where r was decreased from 10 down to −7 in increments of 0.25 (and we used warm-starting to
solve these related optimization problems in order from the largest to the smallest value of λ). For
these experiments, we added a weak `2-regularizer (with λ = 10−4) to all models. This only has
a small effect on the estimated parameters, but makes the objective strictly convex and removes
the possibility that an observed difference between methods is due to the particular global optima
found by the methods.

In Figure 5.1 we the compare the various methods on the cyto data in terms of the absolute score
(left), and we compare the most effective methods in terms of relative score (right)37. Several trends
are obvious. First, the Ising potentials do substantially worse than the gIsing and full potentials.
With Ising potentials even the L2 and L1 methods that consider all possible edges do substantially
worse than using the simple tree model with the slightly more general gIsing potentials. The
full potentials also do better than the gIsing potentials for a given regularization type, but the
difference in this case is not as dramatic. Another trend we see is that the regularization methods
dominate the tree method, for a given edge potential type. However, we see no differences between
different regularization types (for a given edge potential type) in terms of the absolute score. In
terms of the relative score, we see that the sparse regularization methods tended to outperform
using `2-regularization, but the different sparse regularization methods had similar performance.

37Not all regularization types are included for all edge types in this plot. This is because the group `1-regularization
methods are equivalent to `1-regularization for Ising potentials, while group `1-regularization with the nuclear norm
is equivalent to `1-regularization for gIsing potentials
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Figure 5.1: Test set negative log-likelihood (left) and relative negative log-likelihood (right) on the
cyto data using different regularization and edge potential types.
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Figure 5.2: Test set negative log-likelihood (left) and relative negative log-likelihood (right) on the
awma data using different regularization and edge potential types.

In Figure 5.2 we compare the various methods on the awma data in terms of the absolute score
(left), and we compare the non-tree methods in terms of relative score (right). On this data set, we
again see that dense regularization methods dominate the tree methods. However, on this binary
data set we see that the choice of edge potentials makes no difference. This makes sense because
using multi-parameter edge potentials does not increase the expressive power of the model for binary
data. Further, we see no difference in absolute score between the various regularization methods,
though we again see that the different sparse regularization methods tended to outperform using
`2-regularization in terms of the relative score.

5.8.2 Approximate Objectives

We next sought to compare the performance of different approximations to the objective function
on these two small data sets. We compared the following objective functions from Section 5.3:
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Figure 5.3: Test set negative log-likelihood on the cyto (left) and awma (right) data sets using
different approximate objective functions.

• exact : The exact (convex) objective.

• pseudo: The (convex) pseudo-likelihood approximation.

• mean: The (non-convex) mean-field variational approximation.

• Bethe: The (non-convex) Bethe variational approximation.

• c-Bethe: The convexified Bethe variational approximation.

Our experimental set-up was identical to the previous sub-section, except that we trained the
different regularization methods under these different approximations. Note that we still compute
the exact validation and test score.

In Figure 5.3 we plot the performance of the different regularization methods under different
approximate objective functions (using full potentials). In this plot, we see that the objective func-
tion that leads to the best performance is (unsurprisingly) the exact objective function. Among the
approximate objectives, the pseudo-likelihood approximation proved to give results that are much
closer to the exact objective function than the variational approximations. Indeed, it was surprising
that in almost every case the variational approximations proved to give worse parameters than the
optimal tree (the only exception to this was using group `1-regularization with the `∞ norm of the
groups under the Bethe approximation). In this Figure, we also see that the performance of the
three convex objective functions changed little across the regularization types, but that the two
non-convex approximations were more erratic. It is somewhat surprising that the performance of
the Bethe approximation changes substantially under different choices of the regularization norm,
but that the performance for a given norm was consistent across trials (this is especially surprising
on the binary awma data set). In contrast to the Bethe approximation, for most choices of regu-
larization the mean field method was erratic, except when using `2-regularization, and when using
`1-regularization in the cyto data (where it had consistent but poor performance).
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Figure 5.4: Test set negative log-pseudo-likelihood (left) and relative negative log-pseudo-likelihood
(right) on the awma5 data using different regularization and edge potential types.

5.8.3 Larger Real Data

We next sought to compare the different regularization strategies and edge potential types on larger
data sets (where evaluating the exact objective function is intractable in general). Specifically, we
considered the four larger (non-binary) discrete data sets from Section 1.7. On these data sets we
concentrated on the pseudo-likelihood objective function for training and testing, but otherwise we
used the same experimental set-up.

In Figure 5.4 we plot the absolute and relative results of different regularization strategies and
edge potential types on the awma5 data set. Unlike the binary version of the data set, for the full five
state version of the data set we see differences between the different regularization and edge potential
types. In particular, we see that all models achieve the best performance with full potentials, while
all models achieve the worst performance with Ising potentials. Further, we see that for a given
edge potential type that the sparse regularization methods outperform `2-regularization (for gIsing
and full potentials), while for a fixed edge potential type `2-regularization outperforms the tree
model. In this experiment, we see significant differences in the relative scores between the different
sparse regularization methods when using full potentials. In particular, group `1-regularization
with the `2 norm achieved the best value across all training set splits, following by the other group
`1-regularization strategies, and regular `1-regularization gave the worst performance among the
sparse regularizers.

We plot the results on the four-state traffic and temperature data sets in Figure 5.5. Similar to
the three-state cyto and five-state awma5 data sets, we again observe that utilizing more expressive
potentials leads to better performance. Further, similar to the awma5 data set, using group `1-
regularization with the `2 norm (and full potentials) achieved the best performance across all 10
trials for both of these data sets.

Finally, we plot the results on the four-state usps4 and eight-state usps8 data sets in Figure 5.6.
On these data sets, the best performance across all trials was achieved by group `1-regularization
with the nuclear norm. Further, on the usps8 data set we even see a significant advantage in
the absolute score over all other methods when using group `1-regularization with the nuclear
norm. This makes intuitive sense, since we would expect the edge weight matrices resulting from
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Figure 5.5: Test set negative log-pseudo-likelihood (left) and relative negative log-pseudo-likelihood
(right) on the traffic (top) and temperature (bottom) data using different regularization and edge
potential types.

the discretized states to be highly structured and well-approximated by a low rank matrix. In
contrast, group `1-regularization with the `2 norm outperforms all methods except the nuclear
norm method on the usps4 data, but does worse than using regular `1-regularization on the usps8
data. We believe this is because no structure is assumed by using `2-regularization of the edge
weight matrices, making it more difficult to estimate the 64 parameters associated with each edge.
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Figure 5.6: Test set negative log-pseudo-likelihood (left) and relative negative log-pseudo-likelihood
(right) on the usps4 (top) and usps8 (bottom) data using different regularization and edge potential
types.

114



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

15

17

18

19

20

21

22

23

24

28

25

26

27

1

2

3

4

5

7

8

10

26

17

25

22

6

19

21

11

12

23

9

13

27

14

16

28

18

20

24

15

Figure 5.7: Structures estimated on the rain data set with group `1-regularization for different
regularization parameter values. From left to right, λ = 256, 128, 64 (for λ = 512 the graph is
disconnected).
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Figure 5.8: Structure estimated on the news data set with group `1-regularization (λ = 512, isolated nodes are not plotted).116
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Figure 5.9: Structure estimated on the news data set with group `1-regularization (λ = 256, isolated nodes are not plotted).
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Figure 5.10: Structure estimated on the usps data set with group `1-regularization (λ = 4096).
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Figure 5.11: Structure estimated on the usps data set with group `1-regularization (λ = 2048).
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Figure 5.12: Structure estimated on the usps data set with group `1-regularization (λ = 1024).
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We finally sought to assess whether the group `1-regularization method learns a reasonable
graph structure. We fit a group `1-regularized undirected graphical model (with full potentials, the
`2 group norm, and the pseudo-likelihood approximation) on the full rain, news, and usps data sets
examined in the previous chapter. We tested integer powers of 2 for the regularization parameter,
and examined the largest such values that produced non-empty graphs.

In Figure 5.7, we plot the structure estimated on the rain data with λ = 256, 128, and 64. With
λ = 256 the model estimates a 28-node Markov chain, which (as discussed in the previous chapter)
is a reasonable structure for this data set and is the optimal tree structure. As λ is decreased more
edges are added, between temporally close nodes for λ = 128 and between more distant nodes for
λ = 64. With λ = 512, the graph is disconnected.

In Figures 5.8 and 5.9, we plot the structure estimated on the news data set with λ set to 512
and 256, respectively. The graph with λ = 512 is very interpretable and intuitive, even though
it is not a tree structure. The graph with λ = 256 is more dense and less interpretable, but the
edges still tend to represent intuitive associations. With λ = 128, the graph was very dense and
not particularly interpretable, while with λ = 1024 the graph only contained four edges: bible:god,
christian:god, dos:windows, and god:jesus.

The most common application of pairwise undirected models (ignoring time-series data where
there is no distinction in the graphical properties of directed and undirected models) is image
processing, where a two-dimensional grid graph structure is typically assumed. Thus, for the usps
data set we might expect the method to estimate a two-dimensional grid graph structure, where
each node/pixel is connected to its four horizontal and vertical neighbors. We plot the structure
estimated with λ = 4096, 2048, and 1024 for the usps data in Figures 5.10-5.12. Here, we see that
(for large values of λ) the model learns structures that are close to two-dimensional grid models.
Indeed, these structure are much closer to a grid structure than the three graph structures we
examined for the usps data set in Chapter 4 (Figures 4.12-4.14). However, there are still some
discrepancies between the structures in Figures 5.10-5.12 and a two-dimensional grid structure.
The first discrepancy is that extra edges are present near the boundaries (and two of the corners
in particular), with the number of extra edges increasing as λ decreases. This might be because
the fewer neighboring pixels present at the boundaries means that it is important to not only look
at neighboring pixel’s values. The second discrepancy is that while in some parts of the image the
graph forms a perfect grid structure where each pixel is connected to its four horizontal and vertical
neighbors (around (7,9), for example), throughout most of the image the model also connects each
pixel to its diagonal neighbors (i.e. the median number of neighbors for each node is 6). These extra
edges are intuitive, since diagonal neighbors may contain additional information that is not present
in the horizontal and vertical neighbors. With lower values of λ, edges between more distant nodes
are added and the graphs become less interpretable.

5.8.4 Blockwise Sparsity

In [Schmidt et al., 2009b], we sought to test the performance of fitting blockwise-sparse GGMs to
the genes data. In this experiment we sought to reproduce Figure 4 of [Duchi et al., 2008a], and
to test the effect of using the `2 norm of the blocks instead of the `∞ norm used in this previous
work. We first followed the same experimental set-up as [Duchi et al., 2008a], and performed
50 random train/test splits. In Figure 5.13 we give our version of Figure 4 from [Duchi et al.,
2008a], augmented with the blockwise sparse model that penalizes the `2 norm of the blocks. This
figure suggests that using the `2 norm of the blocks gives a further improvement over the existing
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the genes data using different regularization methods.
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blockwise sparse model.
To assess the usefulness of the various models for prediction, we divided the data into equal-

sized training/validation/testing sets, and measured the test set absolute and relative negative
log-likelihoods. The level of Tikhonov regularization discussed in [Duchi et al., 2008a] was selected
using the validation set likelihood on each training split. We plot the distribution of these values over
50 trials in Figure 5.14. Here we see that there is no difference in the performance of the methods
in absolute score, but that (though very noisy due to the small number of training examples) the
blockwise-sparse model that penalizes the `2 norms of the blocks may have an advantage over the
other methods.

5.8.5 Conditional Random Fields

In [Schmidt et al., 2008], we experimentally compared an extensive variety of approaches to learning
CRF models. Below we divide up these approaches into several groups:

• Fixed Structure: We learn the parameters of a CRF with a fixed structure. We consid-
ered an Empty structure (corresponding to an independent logistic regression model for each
target), a Chain structure (the structure most commonly used in CRFs), a Full structure
(assuming all edges are present), and the True structure. For the synthetic experiments, the
True structure was set to the actual generating structure, while for the real data we used a
structure constructed from expert knowledge.

• Generative Acyclic: We first learn the graph structure based on the labels alone, and then
learn the parameters of a CRF with this fixed structure. We considered the generative models
from [Qazi et al., 2007], namely finding the maximum likelihood Tree and using DAG-Search.

• Generative `1: Here we use (group) `1-regularization to learn a fixed structure based on the
labels alone, and then learn the parameters of a CRF with this fixed structure. We considered
using `1-regularization and group `1-regularization with the `2 and `∞ norms.

• Discriminative `1: Here we used simultaneous conditional estimation of the structure and
parameters using (group) `1-regularization, where again we considered `1-regularization and
group `1-regularization with the `2 and `∞ norms.

To compare methods and test the effects of both discriminative structure learning and approx-
imate inference for training, we created a synthetic dataset from a small (10-node) binary CRF.
We used 10 local features for each node (sampled from a standard Normal) plus a bias term. We
chose the graph structure by including each possible edge with probability 0.5. Similarly, we sam-
pled random node weights vi ∼ N (0,

√
2), and edge weights wij ∼ U(−b, b), where b ∼ N (0,

√
2)

for each edge (the results were similar under different sampling schemes). We drew 500 training
samples and 1000 test samples from the exact distribution p(y|x).

In all models, we impose an `2 penalty on the node weights, and we also impose an `2 penalty on
the edge weights for all models that do not use `1 regularization of the edge weights. For each of the
models compared, the scale of these two regularization parameters is selected by cross-validation on
the training set. In our experiments, we explored 10 different permutations of training and testing
instances in order to quantify variation in the performance of the methods. For testing the quality
of the models, we computed the classification error associated with the exact conditionals p(yi|x).
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Figure 5.15: Interquartile range of relative test-set classification accuracy for different methods of
training CRFs on synthetic data using the exact objective (top-left), pseudo-likelihood approxima-
tion (top-right), Bethe approximation (bottom-left), and selected methods under different approx-
imations (bottom-right). Note that the empty graph, corresponding to logistic regression, always
had a relative accuracy of zero.
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Figure 5.16: Interquartile range of relative test-set classification accuracy for different methods of
training CRFs on the coronary heart disease data at the segment level (left) and heart level (right).
Note that the discriminative structure learning method with group `1-regularization with the `∞
norm always has a relative accuracy of one on the heart-level classification task (rightmost column).

We compared learning with the exact objective, the (conditional) pseudo-likelihood objective, and
the Bethe variational approximation.

In Figures 5.15, we show the relative classification accuracy of different methods on the test
set for different objective functions (the best possible score is 1, and the worst is 0). Although not
necessary for the synthetic data, we use this measure since the real data examined next is relatively
small with a class imbalance, and even though the ranking of the methods is consistent across
trials, the particular data split on a given trial represents a confounding factor that obscures the
relative performance of the methods. We summarize this distribution in terms of its interquartile
range (a measure of the width of the central 50% interval of the distribution); this is a more robust
summary than the standard mean and standard deviation.

The results show several broad trends: (a) pseudo-likelihood and the Bethe approximation are
almost as good as the exact likelihood (and the Bethe approximation is slightly better than pseudo-
likelihood), (b) discriminatively learned structures outperform generatively learned structures, (c)
any kind of structure is better than no structure at all, (d) in the generative case, group `1-
regularization (under both norms) and regular `1-regularization are very similar (consistent with
our earlier experiments in binary data), and (e) both group `1-regularization methods outperform
`1-regularization in the discriminative case. Results on other synthetic data sets yield qualitatively
similar conclusions, with two exceptions: (i) as we decrease the number of features the performance
of group `1-regularization becomes more similar to regular `1-regularization, and (ii) on some data
sets the Bethe approximation produced results that were much worse than the pseudo-likelihood
approximation.

We next examined the awma-c classification problem. In this data set, we have 19 local image
features for each node calculated from the tracked contours of the ventricle. Among these fea-
tures we include local ejection fraction ratio, radial displacement, circumferential strain, velocity,
thickness, thickening, timing, eigenmotion, curvature, and bending energy. We also have 15 global
image features (that are ths same across nodes). For the node features we used the concatenation
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of the 15 global features and the 19 local features for the node. For the edge features we used the
15 global features and the 38 features consisting of the concatenation of the local features for each
node. We used 2/3 of the data for training and selecting the two regularization parameters, and
1/3 of the data for testing (across 10 different splits). We generated the True structure by adding
edges between all nodes sharing a face in the heart diagram, constructed by expert cardiologists,
from Qazi et al. [2007]. We trained various models using pseudo-likelihood and tested them using
exact inference38.

In Figure 5.16, we show the relative classification accuracy on the test set at the segment level
and the heart level (the heart level decision is made by cardiologists by testing whether two or
more segments are abnormal). We see that the discriminative model with group `1-regularization
with the `∞ norms of the groups performs among the best at the segment level (achieving a median
absolute classification accuracy of 0.92), and is typically the best method at the important heart-
level prediction task (achieving a median absolute accuracy of 0.86 and the lowest error rate at this
task in 9 out of the 10 trials). These encouraging results can also help less-experienced cardiologists
improve their diagnostic accuracy; the agreement between less-experienced cardiologists and experts
is often below 50% [Schmidt et al., 2008].

5.9 Similar Methods

In this chapter, we discuss using group `1-regularization for structure learning in pairwise undirected
graphical models of discrete data that do not make the Ising assumption. However, it should be
noted that similar extensions have been proposed prior and concurrently with this work. In this
section, we highlight the differences between the prior (and concurrent) work and the work outlined
in this chapter.

Models that do not make the Ising assumption were also explored in [Lee et al., 2006b, Dahinden
et al., 2007]. In [Lee et al., 2006b], they use the non-convex Bethe approximation, and their
experiments indicate that the method reaches different local optima with different optimization
strategies. Further, they ignore that each edge can have multiple parameters and simply use the
standard `1-regularization. However, they note that this does not directly encourage graphical
sparsity and that graphical sparsity could be achieved with group `1-regularization. However, they
do not provide a method to solve the resulting problem. In contrast, [Dahinden et al., 2007] ignore
the computational infeasibility of evaluating the likelihood function but use group `1-regularization
to directly encourage graphical sparsity. However, they use an optimization algorithm that may
require many evaluations of the (generally intractable) likelihood, and do not present results on
data with more than 5 variables. In both cases, they only consider using the `2 norm of the groups.

Our work is distinct from this prior work in several ways. First, we consider the convex pseudo-
likelihood and convexified Bethe approximations to the likelihood. Using convex approximations
means that the estimated parameters are not sensitive to initialization of the optimization proce-
dure, or to the particular optimization strategy used. Second, we consider choices of the group
norm other than the `2 norm. This includes the proposed group extension of the nuclear norm,
which is novel (as far as we are aware). Our experiments indicate that in some cases other choices
of the group norm give better results than the `2 norm. Third, we give a method for adding covari-
ates to the model to yield the more powerful CRF models, while this is the first work to consider

38We also tested using the Bethe approximation for this task, but learning with this approximation typically lead
to parameters where the message-passing algorithm would not converge and lead to poor results.
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structure learning in CRFs. Finally, in Chapter 3 we outline a new optimization algorithm that
is especially suited to solving the resulting convex optimization problems, taking into account the
very large number of optimization variables, the high cost of evaluating the objective function, and
the relatively simple form of the regularizer.

Using group `1-regularization to learn blockwise-sparse models was originally proposed in [Duchi
et al., 2008a], where they use group `1-regularization in GGMs with the `∞ norm for blockwise-
sparsity. The work presented here considers other choices of group norms, as well as blockwise-
sparse discrete models. Further, the optimization algorithms outlined in Chapter 3 are also well-
suited to solving this type of optimization problem, although the improvement in the group-sparse
GGM case is not as dramatic as in the group-sparse discrete case.

5.10 Extensions

To conclude this chapter, below we list some extensions of the work presented here:

• Composite likelihoods: The maximum pseudo-likelihood approximation is asymptotically
less efficient than the maximum likelihood estimator [Besag, 1977, Liang and Jordan, 2008]. A
generalization of pseudo-likelihood approximations is the class of composite likelihoods [Lind-
say, 1988], where we can consider using the conditional (or marginal) distributions of groups
of variables rather than individiual variables. We would likely obtain better results by using
a more powerful composite likelihood. For example, we could consider using a composite
likelihood where we optimize the conditionals of all pairs of variables. This would only lead
to a constant increase in computational complexity but might result in a much better ap-
proximation.

• Other variational inference methods: In this work we have considered some of the most
common methods for variational inference, but it is straightforward to use other variational
inference methods. For example, Banerjee et al. [2008] use `1-regularization to learn the
structure of an (unconditional) undirected graphical model with binary states and Ising po-
tentials that uses a log-determinant approximation. Subsequently, [Kolar and Xing, 2008]
proposed a cutting plane strategy that iteratively refines this approximation. We might also
consider using convergent message-passing algorithms to improve the stability of the opti-
mization [Kolmogorov, 2006], or trying to optimize the edge appearance probabilities in the
covexified Bethe free energy [Wainwright et al., 2002]. An extensive survey of variational
inference methods is [Wainwright and Jordan, 2008].

• Other group structures: The optimization methods we discuss in Chapter 3 make no
assumptions about the group structure except that the groups are disjoint (we consider re-
moving this assumption in Chapter 6), so it is possible to use them for a wide variety of
group structures. Besides the cases we discuss here where we use groups to encourage graph-
ical or blockwise sparsity, another interesting possible grouping of the variables occurs for
CRFs where the features are binary {0, 1} variables. Instead of assigning all edge weights
associated with a single edge to the same group, we could consider using groups that only
contain the edge weights associated with a single feature for a single edge. In the case of
bias variable edge groups, these would correspond to unconditional interactions (interactions
between the target variables that exist regardless of the features). In contrast, the {0, 1}
feature-edge groups would correspond to context-specific dependencies. That is, these would
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indicate dependencies that only exist between the target variables when the corresponding
feature value is set to 1.

• Learning the variable types in blockwise-sparse models: Instead of assuming that the
variable types are given, in [Marlin et al., 2009] we consider the problem of learning blockwise-
sparse models while estimating the variable types. This work also considers a variation on
the blockwise-sparse model where we use `1-regularization of the blocks but estimate the
appropriate scale of the regularization parameter for each block (leading to a form of soft
blockwise-sparsity). The models in this work rely on a variational Bayesian procedure, where
the methods of Chapters 2 and 3 are used as sub-routines in the variational parameter update.

• Interventional Potentials: In Section 4.5, we discuss modeling interventions in DAG mod-
els using Pearl’s do-calculus. However, for many data sets the assumption of acycility is
often inappropriate; many models of biological networks contain feedback cycles (for exam-
ple, see Sachs et al. [2005]). In contrast, undirected graphical models allow cycles. How-
ever, under most interpretations of the data generating processes associated with undirected
graphs there is no difference between conditioning by observation and conditioning by in-
tervention [Lauritzen and Richardson, 2002]; undirected models do not distinguish between
observing a variable (‘seeing’) and setting it by intervention (‘doing’). Motivated by the prob-
lem of using cyclic models for interventional data, in [Schmidt and Murphy, 2009] we defined
the notion of an interventional potential. These are undirected potential functions that are
augmented with interventional semantics. In [Schmidt and Murphy, 2009], we consider struc-
ture learning using group `1-regularization with interventional potentials on the cyto data,
and show that this leads to a better model of this data set than causal DAGs or undirected
models that ignore the effects of interventions (as in this chapter).

• Uncertain Interventions: In [Duvenaud et al., 2010], we consider using general conditional
density estimators for making causal predictions. As in the DAG-based uncertain interven-
tion framework of Eaton and Murphy [2007], this model includes explicit binary intervention
variables in the model and considers modeling the variables conditional on these intervention
variables (alternately, we can consider feature variables that measure properties of the inter-
ventions). If we use a CRF as the conditional density estimator, then we have a CRF with
binary {0, 1} variables. In this case, we could consider using the feature-edge groups above
and learning context-specific interactions (i.e. interactions present under different interven-
tions). In the case where we use feature variables that characterize properties of different
interventions, this framework would allow the model to make predictions about previously
unseen interventions.

• Optimization-based search: In this chapter we assumed that the scale of the regulariza-
tion parameter λ is the same across the groups, but the optimization algorithms in Chapter 3
allow a separate λA for each group A. Given that the cost of evaluating a single edge ad-
dition/deletion in a search-based structure learning strategy may be similar to solving the
convex optimization problem in an `1-regularization approach to structure learning, we might
consider using a search-based method where we simply solve the convex optimization problem
for different assignments to the different λA variables. We might be able to use this to pro-
pose more global moves than single edge additions/deletions, which would not cost more to
evaluate since the non-separability the log-likelihood means that evaluating single edge addi-
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tions/deletions may be similar to the cost of evaluating completely new graphs. An approach
closely related to this was examined in [Moghaddam et al., 2009].
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Chapter 6

Hierarchical Log-Linear Model
Structure Learning

In Chapter 5, we considered using group `1-regularization for structure learning in pairwise log-
linear models. However, on many real data sets it may be important to model higher-order inter-
actions. Thus we would like to relax the pairwise assumption, but as we discuss in Section 1.6 it is
challenging to consider general log-linear models without including an explicit cardinality restriction
due to the exponential number of possible higher-order potentials.

As an alternative to using an explicit cardinality restriction, we consider fitting general log-linear
models (as we describe in Section 1.6) subject to the following constraint:

• Hierarchical Inclusion Restriction: If wA = 0 and A ⊂ B, then wB = 0.

This is the class of hierarchical log-linear models [Bishop et al., 1975, Whittaker, 1990, §7].
While a subset of the space of general log-linear models, the set of hierarchical log-linear models is
much larger than the set of pairwise models, and can include interactions of any order. Further,
group-sparsity in hierarchical models directly corresponds to conditional independence.

The hierarchical inclusion restriction imposes constraints on the possible sparsity pattern of w,
beyond that obtained using (disjoint) group `1-regularization. In the context of linear regression
and multiple kernel learning, several authors have recently shown that group `1-regularization with
overlapping groups can be used to enforce hierarchical inclusion restrictions [Zhao et al., 2009,
Bach, 2008b]. As an example, if we would like to enforce the restriction that B must be zero when
A is zero, we can do this using two groups: The first group simply includes the variables in B,
while the second group includes the variables in both A and B. Regularization using these groups
encourages A to be non-zero whenever B is non-zero, since when B is non-zero A is not penalized
for moving away from zero [see Zhao et al., 2009, Theorem 1].

As an example, consider the simple case where we have a differentiable loss function L(x) where
x has two variables x1 and x2, and we want to enforce that variable x2 is allowed to be non-zero
only when x1 is non-zero. To do this, we use the regularizer λ12||x12||2 + λ2|x2|. Now, consider a
point x̃ where where x1 is zero but x2 is non-zero. At this point the regularizer is differentiable
with respect to x1 with derivative zero, so unless it happens by chance that ∇x1L(x̃) = 0 we can
improve the objective function by moving x1 away from zero.

Generalizing this basic idea, to enforce that the solution of our regularized optimization problem
satisfies the hierarchical inclusion restriction we can solve the convex optimization problem39

min
w
−

n∑
i=1

log p(xi|w) +
∑
A⊆S

λA(
∑

{B|A⊆B}

||wB||22)1/2.

39Although we will focus on using the `2 norm of the groups in this chapter, it is possible to use analogous methods
where we penalize other norms of the groups.
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If we define the set of parameters w∗A as the concatenation of the parameters wA with all parameters
wB such that A ⊂ B, we can write this as

min
w
−

n∑
i=1

log p(xi|w) +
∑
A⊆S

λA||w∗A||2. (6.1)

This is very similar to applying group `1-regularization to learn the structure of general log-linear
models as in (1.12), except that the parameters of higher-order terms are added to the corresponding
lower-order groups. Similar to Theorem 1 of Zhao et al. [2009], we can show that under reasonable
assumptions a minimizer of (6.1) will satisfy hierarchical inclusion. We give details about this in
the next section after discussing optimality conditions for this problem.

6.1 Optimality Conditions

Using f(w) to denote the objective in (6.1), the sub-differential of f(w) is

∂f(w) = −∇
n∑
i=1

log p(xi|w) +
∑
A⊆S

λAsgn(w∗A),

where sgn(y) is defined as in Section 3.1.2 (we pad the output of this signum function with zeros
so that it has the right dimension). Recall that a vector w̃ is a minimizer of a convex function if
and only if 0 ∈ ∂f(w̃) [Bertsekas, 1999, §B.5].

We call A an active group if wB 6= 0 for some B such that A ⊆ B. If A is not an active group
and wB = 0 for some B ⊂ A, we call A an inactive group. We refer to the remaining groups as
boundary groups; a boundary group A satisfies wB 6= 0 for all B ⊂ A and wC = 0 for all A ⊆ C.
In other words, the boundary groups are the groups that can be made non-zero without violating
hierarchical inclusion.

The optimality conditions with respect to an active group A reduce to

∇wA

n∑
i=1

log p(xi|w) =
∑
B⊆A

λAwA/||w∗B||2. (6.2)

If we treat all inactive groups as fixed, the optimality conditions with respect to a boundary group
A become

||∇wA

n∑
i=1

log p(xi|w)||2 ≤ λA. (6.3)

The combination of (6.2) and (6.3) constitute necessary and sufficient conditions for a minimizer
of (6.1) under the constraint that inactive groups are fixed at zero. These also comprise necessary
(but not necessarily sufficient) conditions for global optimality of (6.1).

We can now show that under reasonable assumptions that minimizers of (6.1) satisfy hierarchical
inclusion. Assume we have a minimizer w̃ of (6.1) that does not. Then there exists some A such
that w̃A = 0 and some B such that A ⊂ B and w̃B 6= 0. This implies group A is active and must
satisfy (6.2). Using w̃A = 0, we have that ∇wA log p(x|w̃) is exactly 0, and assuming the set where
this happens has zero probability it contradicts that w̃A is a minimizer.
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Unfortunately, there are several complicating factors in solving (6.1). In particular, (i) there
remains an exponential number of groups to consider and (ii) we can no longer compute the pro-
jection (or soft-threshold) operator used by the optimization algorithms in Chapter 3. We address
the former issue first.

6.2 Regularization Path and Active-Set Optimization

We would like to avoid having to consider the exponential number of groups present in (6.1). Since
we know that the solution is a hierarchical model, we propose to use an active-set method that
incrementally adds variables to the problem until (6.2) and (6.3) are satisfied, that uses hierarchical
inclusion to exclude the possibility of adding most variables. The method alternates between two
phases:

• Find the set of active groups, and the boundary groups violating (6.3).

• Solve the problem with respect to these variables.

We repeat this until no new groups are found in the first step, and at this point we have (by
construction) found a point satisfying (6.2) and (6.3). This is analogous to the active-set methods
of Chapters 2 and 3, but note that here we only consider adding groups that satisfy hierarchical
inclusion. In this algorithm, the addition of boundary groups has an intuitive interpretation; we
only add the zero-valued group A if it satisfies hierarchical inclusion and the difference between
the model marginals and the empirical frequencies exceeds λA. Such an addition rule is very
reminiscent of the method of [Gevarter, 1987]. This method greedily adds constraints on higher-
order marginals if the observed higher-order marginals differ significantly from the model’s higher-
order marginals after fitting lower-order marginals, for the closely related problem of computing a
maximum entropy distribution subject to given marginal constraints [Cheeseman, 1983]. However,
the proposed method differs from the prior work in that the active-set method can add or remove
variables, and it makes progresses towards solving a convex optimization problem.

Consider a simple 6-node hierarchical log-linear model containing non-zero potentials on (1)(2)(3)
(4)(5)(6)(1,2)(1,3)(1,4)(4,5)(4,6)(5,6)(4,5,6). Though there are 20 possible threeway interactions in
a 6-node model, only one satisfies hierarchical inclusion, so our method would not consider the
other 19. Further, we do not need to consider any fourway, fiveway, or sixway interactions since
none of these satisfy hierarchical inclusion. In general, we might need to consider more higher-
order interactions, but we will never need to consider more than a polynomial number of groups
more than the number present in the final model. That is, hierarchical inclusion and the active-set
method can save us from looking at an exponential number of irrelevant higher-order factors.

To stop us from considering overly complicated models that do not generalize well, to set the
regularization parameter(s) we can start with the unary model and incrementally decrease the
regularization until a measure of generalization error starts to increase. This is analogous to the
regularization path methods mentioned in Chapters 2 and 3, but augmented with a termination
criteria. Before moving on to how we can solve the problem with respect to a subset of the groups, we
summarize the computational gains that can be achieved for computing the `1-regularization path
compared to the `2-regularization path for the optimization problems we discuss in Chapters 2, 3,
and 6:
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• Chapter 2: For logistic regression with `1-regularization, for large values of λ we may reduce
the cost of evaluating the objective function by a polynomial factor, and reduce the number
of variables by a polynomial factor.

• Chapter 3: For pairwise log-linear models with group `1-regularization, for large values of λ
we may reduce the cost of evaluating the objective function by an exponential factor, and
reduce the number of variables by a polynomial factor.

• Chapter 6: For hierarchical log-linear models with overlapping group `1-regularization, for
large values of λ we may reduce the cost of evaluating the objective function by an exponential
factor, and reduce the number of variables by an exponential factor.

6.3 Constrained Formulation

In step 1 of the active-set method we must solve (6.1) with respect to a subset of the groups.
This comprises a group `1-regularization problem with overlapping groups. Besides a special case
discussed in [Zhao et al., 2009] where the solution can be computed directly, previous approaches
to solving group `1-regularization problems with overlapping groups include a boosted LASSO
method [Zhao et al., 2009] and a re-formulation of the problem as a smooth objective with a
simplex constraint [Bach, 2008b]. Unfortunately, applying these methods to graphical models
would be relatively inefficient since they might require a very large number of function evaluations.

As before, we can solve the problem by writing it as an equivalent differentiable but constrained
problem. In particular, we again introduce a scalar auxiliary variable gA to bound the norm of each
group w∗A, leading to a smooth objective with second-order cone constraints:

min
w,g
− log p(x|w) +

∑
A⊆S

λAgA, (6.4)

s.t. gA ≥ ||w∗A||2, ∀A.

As we saw in the Chapter 3, the projection for each group has a simple closed-form solution. Thus,
we might consider solving this problem with the SPG or PQN method. However, because the
groups now overlap, we can no longer compute the projection onto each group independently.

6.4 Dykstra’s Algorithm

We would like to solve the problem of computing the projection onto a convex set defined by the
intersection of sets, where we can efficiently project onto each individual set. One of the earliest
results on this problem is due to von Neumann [1950, §13], who proved that the limit of cyclically
projecting a point onto two closed linear sets is the projection onto the intersection of the sets.
Bregman [1965] proposed to cyclically project onto a series of general convex sets in order to find
a point in their intersection, but this method will not generally converge to the projection. The
contribution of Dykstra [1983] was to show that by taking the current iterate and removing the
difference calculated from the previous cycle, then subsequently projecting this value, that the cyclic
projection method converges to the optimal solution for general (closed) convex sets. Deutsch and
Hundal [1994] have shown that Dykstra’s algorithm converges at a geometric rate for polyhedral
sets (the set defined with the `2 group norm is not polyhedral, but the set defined with the `∞
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group norm is polyhedral). Algorithm 11 gives pseudo-code for an implementation of Dykstra’s
algorithm (we obtain Bregman’s method if we fix Ii at 0).

Input: Point w0, convex sets C1, C2, . . . , Cq, tolerance ε
Output: PC(w0), the projection of w0 onto C ,

⋂q
i=1 Ci.

∀i, Ii ← 0;
j ← 0;
while wj is changing by more than ε do

for i = 1 to q do
wj ← PCi(wj−1 − Ii);
Ii ← wj − (wj−1 − Ii) ;
j ← j + 1;

Algorithm 11: Dykstra’s cyclic projection algorithm for finding the projection of a point
onto an intersection of convex sets.

Despite its simplicity, Dykstra’s algorithm is not widely used because of its high storage require-
ments. In its unmodified form, applying Dykstra’s algorithm to compute the projection in (6.4)
would be impractical, since for each group we would need to store a copy of the entire parameter
vector. Fortunately, in (6.4) each constraint only affects a small subset of the variables. By taking
advantage of this it is straightforward to derive a sparse variant of Dykstra’s algorithm that only
needs to store a copy of each variable for each group that it is associated with (rather than one
copy of the entire parameter vector for each group). This leads to an enormous reduction in the
memory requirements. Further, although using Dykstra’s algorithm rather than an analytic update
leads to a higher iteration cost, the cost of running the cyclic projection algorithm will typically be
much smaller than the cost of evaluating the objective function.

6.4.1 Soft-Dykstra’s Algorithm

Allowing the groups to overlap also means that the soft-threshold operator can not be applied
independently to the different groups. Given the similarity between the projection and the soft-
threshold operator, we might expect to be able to derive a variant on Dykstra’s algorithm that is
able to solve the soft-threshold problem with overlapping groups. Bauschke and Combettes [2008]
present a generalization of Dykstra’s algorithm that can be used to solve this problem, outlined in
Algorithm 12.

Input: Point w0, convex regularizers R1(w),R2(w), . . . ,Rq(w), tolerance ε, step size α
Output: SR(w0, α), the soft-threshold operator with input w0, step size α, and regularizer

R(w) ,
∑q

i=1Ri(w).
∀i, Ii ← 0;
j ← 0;
while wj is changing by more than ε do

for i = 1 to q do
wj ← SRi(wj−1 − Ii, α);
Ii ← wj − (wj−1 − Ii) ;
j ← j + 1;

Algorithm 12: Variant of Dykstra’s algorithm for computing soft-threshold operators for a
regularizer consisting of the sum of convex regularizers.
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Figure 6.1: Test set negative log-likelihood (left) and relative negative log-likelihood (right) on the
cyto data using different regularization types and potential restrictions.

The appeal of using Algorithm 12 extends beyond the fact that the soft-threshold algorithm
is a simpler, more direct, and potentially more efficient strategy than projection methods. This
is because Dykstra’s projection method typically approaches the optimal projection through a
sequence of infeasible iterates. Thus, in the projection framework we must solve it sufficiently
accurately to guarantee that we are (numerically close enough to) feasible. In contrast, since there
is no notion of feasibility (in the BBST and QNST algorithms) we might be able to terminate the
soft-threshold variant of the algorithm early.

6.5 Experiments

In this section we re-visit building generative models of the data sets examined in the last chapter,
but consider fitting models that relax the pairwise assumption. In the next section we re-visit the
two data sets where exact likelihood calculation was possible, and then we turn to several of the
larger data sets.

6.5.1 Smaller Data

We first re-visit building generative models of the cyto and awma small data sets, where we use
exact likelihood calculation and consider both the full and gIsing parameterizations. On each data
set we compared our hierarchical log-linear model with overlapping group `1-regularization (labeled
HLLM in the figures) to fitting log-linear models restricted to both pairwise and threeway potentials
with both `2-regularization and group `1-regularization with the group `2 norm. Note that unlike
the pairwise and threeway models, an `2-regularized version of the hierarchical log-linear model is
infeasible. We trained on a random half of the data set, and tested on the remaining half as the
regularization parameter λ was varied. For the pairwise and threeway models, we set λA to the
constant λ. For the hierarchical model, we set λA to λ2|A|−2, where |A| is the cardinality of A and
we placed no explicit restriction on the cardinality of A. For all the models, we did not regularize
the unary weights.
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Figure 6.2: Test set negative log-likelihood (left) and relative negative log-likelihood (right) on the
awma data using different regularization types and potential restrictions.

We plot the results obtained on the cyto data in Figure 6.1. On this data set, we see that
allowing for threeway interactions leads to better performance than using pairwise interactions
(for both types of potentials), and further that the hierarchical model that allows higher-order
interactions leads to a further improvement. The HLLM with full potentials included up to fourway
potentials, while with Ising potentials fiveway potentials were also included.

We plot the results obtained on the awma data in Figure 6.2. On this data set that the threeway
models do no better than the pairwise models, and the `2-regularized threeway model seems to do
worse than the pairwise models. In contrast, the hierarchical model seems to have an advantage
over the pairwise models. On this data set the HLLMs included fourway interactions on nine of
the ten trials when using full potentials, and additionally included fiveway potentials on two of the
ten trials when using Ising potentials.

6.5.2 Larger Data

We next tested the various methods on several larger data sets, concentrating on the case of gIsing
potentials and the pseudo-likelihood approximation. We plot the test-set pseudo-log-likelihood for
the awma5, traffic, and usps4 data sets in Figures 6.3-6.5. In these figures we see that modeling
threeway interactions gives improved results for two of these three data sets. However, the hi-
erarchical model dominated the threeway models, and did substantially better than the pairwise
models except on the awma5 data where the pairwise model with `1-regularization does similar.
On the awma5 data set the HLLM only included pairwise and threeway factors, while it included
fourway factors on the traffic data set and fiveway factors on the usps4 data set.

Although we concentrated on these relatively small data sets in our experiments, these data
sets are still larger than previous data where higher-order models have been applied. For exam-
ple, Dahinden et al. [2007] use (disjoint) group `1-regularization and only considered up to 5 binary
variables, while [Dobra and Massam, 2010] considered log linear models over 16 binary variables
and used stochastic local search to identify the structure (this search-based method requires fitting
each model during the search, which is very expensive). In contrast, the traffic data examined in
this work contains 32 four-state variables. Our method can in principle be used to learn models with
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Figure 6.3: Test set negative pseudo-log-likelihood (left) and relative negative log-likelihood (right)
on the awma5 data using different regularization types and potential restrictions.
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Figure 6.4: Test set negative pseudo-log-likelihood (left) and relative negative log-likelihood (right)
on the traffic data using different regularization types and potential restrictions.

higher-order interactions on even larger data sets, provided that the solution of the optimization
problem is sufficiently sparse.

6.5.3 Structure Estimation

We next sought to assess the performance of the HLLM for structure estimation. We created a 10-
node synthetic data set that includes all unary factors as well as the factors (2, 3)(4, 5, 6) (7, 8, 9, 10)
(a non-hierarchical model), where the model weights were generated from a N (0, 1) distribution.
In Figure 6.5.3, we plot the number of false positives of different orders present in the first model
along the regularization path that includes all three factors in the true structure against the number
of training examples (we define a false positive as a factor where none of its supersets are present
in the true model). For example, with 20000 samples the order of edge additions was (with false
positives in square brackets) (8,10)(7,9)(9,10)(7,10)(4,5)(8,9)(2,3)(4,6)(8,9,10)(7,8)(7,8,9)(7,8,10)
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Figure 6.5: Test set negative pseudo-log-likelihood (left) and relative negative log-likelihood (right)
on the usps4 data using different regularization types and potential restrictions.
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Figure 6.6: False positives of different orders against training set size for the first model along the
regularization path where the HLLM selects a superset of the true data-generating model [Schmidt
and Murphy, 2010].

(5,6)[1,8][5,9][3,8][3,7](4,5,6)[1,7](7,9,10)(7,8,9,10) (at this point it includes all three factors in the
true structure, with 5 pairwise false positives and no higher-order false positives). In the figure, we
see that the model tends to include false positives before it adds all true factors, but the number
decreases as the sample size increases. Further, there tend to be few higher-order false positives;
although it includes spurious pairwise factors even with 150000 samples, the model includes no
spurious threeway factors beyond 30000 samples, no spurious fourway factors beyond 10000 samples,
and no fiveway factors for any sample size (the plot begins at 5000).

We next examined the coronary heart disease data set analyzed in [Edwards and Havránek,
1985]. The first fifteen factors added along the HLLM-L1 regularization path on this data set are
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(B,C)(A,C)(B,E)(A,E)(C,E)(D,E)(A,D)(B,F)(E,F)[C,D][A,F](A,D,E)(D,F)[D,E,F][A,B]. We have
used square brackets to denote factors that are not recognized in the prior work, and may represent
false positives due to the use of a point estimate with this small sample size. The first seven factors
are the union of the minimally sufficient hierarchical models from the analysis by Edwards and
Havránek. These are also the factors with posterior mode greater than 0.5 for a prior strength of 2
and 3 in the hierarchical models of [Dobra and Massam, 2010], while the first eight are the factors
selected with a prior strength of 32 and 64. With a prior strength of 128 Dobra and Massam [2010]
find the ninth factor introduced by our model, as well as the factor (D,F) introduced later. The
remaining factor with this prior strength is the factor (B,C,F), that is not found until much later
in the regularization path in our model. In contrast, the first three-way factor introduced by our
model is (A,D,E). This factor is present in both of the accepted graphical models in [Edwards and
Havránek, 1985], and is the only threeway factor with a posterior greater than 0.5 (under a Laplace
approximation) in the graphical models of [Dobra and Massam, 2010] for a prior strength of 1, 2,
3, 32, and 64.

6.6 Similar Methods

In this chapter we considered using group `1-regularization for structure learning in discrete undi-
rected graphical models where the pairwise assumption is relaxed. The only prior work we are
aware of that has considered this case is [Dahinden et al., 2007]. However, in [Dahinden et al.,
2007] they use disjoint group `1-regularization and thus in general group sparsity in their model
does not correspond to conditional independence. Further, Dahinden et al. [2007] ignore the chal-
lenges associated with considering higher-order factors when the number of variables is non-trivial.
In contrast, this chapter has provided methods for addressing the problems associated with the
intractable objective function and the exponential number of higher-order terms. These consider-
ations allow the method we discuss in this chapter to be applied to much larger data sets, without
any explicit restriction on the cardinality of the model.

6.7 Extensions

Below we discuss several extensions of the work we discuss in this chapter:

• DAGs: We have considered using hierarchical inclusion in order to provide a tractable way
to relax the pairwise assumption in undirected graphical models. The use of sigmoid (or
Gaussian) CPDs in Chapter 4 is very similar to the pairwise assumption, and hierarchical
inclusion would also be useful in DAG models. For example, if we are given a variable ordering
and use Gaussian CPDs then hierarchical inclusion can be used to encourage the Cholesky
matrix to have a low-bandwidth. Alternatively, we could consider sigmoid (or Gaussian) CPDs
where we use a non-linear basis expansion of the parent variables. Hierarchical inclusion could
then be used to tractably search through the exponential space of possible terms to include,
as in [Bach, 2008b].

• Conditional and interventional models: We have considered unconditional models in
this chapter, but as in Chapter 5 we could also consider conditional models and models with
interventional potentials.
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• Other group structures: Rather than using the `2 group norm, we could apply Dykstra’s
algorithm with the `∞ group norm (or any norm where we can efficiently compute the projec-
tion). Further, we can still apply Dykstra’s algorithm under different assignments of variables
to overlapping groups. It is also possible that better performance would be achieved by a
different selection of the regularization weights λA.

• Other overlapping group schemes: Jacob et al. [2009] consider a different notion of
overlapping groups to encourage a sparsity pattern that is a union of groups. They represent
each variable as a combination of auxiliary variables and penalize these (disjoint) variables.
We could enforce hierarchical inclusion in this framework by adding to each group all subsets of
the group, as opposed to all supersets in (6.1). An advantage of this is that the projection (or
soft-threshold) could easily be computed using the methods of Chapter 3, but a disadvantage
is that it would be grossly over-parameterized (we would have an auxiliary variable for every
subset of each non-zero factor). Further, although the result would still be hierarchical it
might be the case that the auxiliary variables associated with lower-order groups would be
zero (since the parameters of the lower-order group would be represented by the version
associated with a higher-order group), so it seems less likely that an efficient active-set method
that finds the globally optimal solution could be developed.

• Sufficient conditions: The active-set method converges to a method satisfying necessary
optimality conditions for (6.1) and conditions that are sufficient under the constraint that
inactive groups are fixed at zero. However, it may terminate at a point that is not a global
optimum of the full problem (6.1) since it may terminate at a point where making an inactive
group non-zero could improve the objective. Thus, an outstanding issue is deriving an efficient
way to test (or bound) sufficient optimality conditions over all variables in order to ensure
global optimality, as in [Bach, 2008b]. Since the gradient of the objective function is bounded
in magnitude, it is likely that such tests are possible. Given such a test, a related issue is
developing an efficient search procedure for finding sub-optimal inactive groups. Even if such
a test is intractable in general, several heuristic strategies are possible that would improve the
likelihood that we find the global optimum. For example, we could test not only all boundary
groups, but all groups that would become boundary groups if the current boundary groups
were non-zero. This test would still only need to consider a polynomial number of groups
more than is non-zero at the current iterate.
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Chapter 7

Discussion

In this chapter, we discuss several issues that have been ignored in this work, as well as several
interesting extensions of this work and possible directions of future work.

• Missing data and hidden variables: In this work, we have assumed that all variables
are observed in all training samples. We can also consider scenarios where the values of
some variables are missing or where the values of some variables are hidden by marginalizing
over the missing values. In the case of undirected models, if we use O to denote the observed
variables and H to denote the hidden variables, we could write the probability of the observed
variables in this scenario as

p(xO) ,
∑
xH

p(xO,xH) =
1

Z

∑
xH

p̃(xO,xH),

where we have used p̃(xO,xH) to denote the unnormalized product of the potential functions.
Although in principle this is a straightforward extension, the sum over values of the hidden
variables complicates the optimization. In particular, computing this sum might require
approximate inference. Further, this sum leads to a (non-linear) concave term in the negative
log-likelihood, so the objective function is no longer convex. We could consider directly
finding a local minimum of the resulting non-convex optimization problem with one of the
methods we describe in Chapter 3. Alternately, we could find a local minimum by using
the expectation maximization (EM) algorithm [Dempster et al., 1977] to yield a sequence of
convex optimization problems of the form addressed in Chapter 3 that would upper bound
the objective function.

• Mixture models: In Chapter 6 we considered using higher-order potentials to model com-
plicated distributions that are not fully-characterized by pairwise statistical dependencies.
An alternative and complementary strategy to increase the representational power of models
is with mixtures. Here, we would represent the probability of an observed vector as a convex
combination of independent graphical models

p(x) ,
C∑
c=1

πcp(x|wc),

where
∑C

c=1 πc = 1. Even though the individual graphical models are independent, the use
of a convex combination introduces dependencies between all variables (assuming we have at
least C = 2 mixture components). For example, even if we use a completely disconnected
graph, all variables are dependent in the joint distribution [Bishop, 2006, §9.3.3]. Previous
work has examined mixtures of tree-structured graphical models [Meila and Jordan, 2000],
but we could consider mixtures of general graphical models. As with the case of missing
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variables, this formulation is not convex but we could use the EM algorithm to find a local
minimum by solving a sequence of convex problems of the form addressed in Chapter 3.

• Stochastic inference and online estimation: In this work we have focused on the case of
deterministic approximations to the marginals in undirected graphical models. An alternative
class of methods exist that generate stochastic samples from the distribution in order to
approximate the marginals [Koller and Friedman, 2009, §12]. The advantage of these methods
is that, as the sample size increases, they converge to the true marginals. However, with
finite sample sizes the approximation will not be exact and there may be discontinuities in
the associated objective function. One way to optimize under this sort of approximation
is with stochastic approximation methods where we alternate between generating samples
and updating the parameters [Younes, 1989]. It is well known that projections can be used
within stochastic approximation methods [Kushner and Yin, 2003, §5], while more recent work
has examined stochastic approximation methods that use the soft-threshold operator [Duchi
and Singer, 2009]. We could also use the stochastic approximation framework to apply the
techniques we describe in an online setting, where rather than a fixed training set we receive
training samples one at a time.

• Other types of structure learning: This work has concentrated on the cases of linearly-
parameterized DAG models, pairwise log-linear models, and hierarchical log-linear models.
However, it is possible to extend the ideas we discuss here to other types of models. For
example, we could consider learning the structure of chain-graph models [Lauritzen, 1996,
§3.2.3] (models that combine directed and undirected edges), by using a search-based method
to search through the space of (block-)DAG models and using group `1-regularization to
learn the undirected structure within the blocks. Similarly, the methods of Chapter 4 may
be useful for structure learning in ancestral graph Markov models, a generalization of DAG
models that is closed under marginalization and conditioning [Richardson and Spirtes, 2002].
It might also be possible to use the ideas of Chapter 6 to learn probabilistic context free
grammars or first-order probabilistic models [Rusell and Norvig, 2003, §14.6 and §23.1], or
Markov logic networks [Richardson and Domingos, 2006].

• Bayesian methods: The regularized parameter estimates we use in this work can be inter-
preted as the maximizers of a posterior distribution under an appropriate prior. If we have a
small sample size and are interested in the task of structural estimation, it may prove more
useful to find the posterior probability of an edge parameter taking a value of zero in this
posterior distribution. In this case, it does not make sense to use an `1-regularizer because
the edge posterior is zero in the posterior with probability zero. Thus, in this case we would
need to consider a prior/regularizer that places an atom at zero in the prior distribution.
Although there has been some work on exact computation of edge posteriors in models with
a small number of variables [Koivisto and Sood, 2004], a variational or stochastic approxima-
tion would likely be needed to approximate the edge posteriors. In the variational case, the
methods of Chapter 2 or 3 may be useful in implementing the variational update, similar to
our work in [Marlin et al., 2009].

• Max-margin training: For CRFs, an alternative to optimizing the conditional likelihood
is to use a maximum-margin training objective [Taskar et al., 2003]. The maximum-margin
objective is non-differentiable (when formulated as an unconstrained optimization), but does
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not depend on the normalizing constant in the model. Instead, it depends on the most
likely configuration under the model (or the second most likely, in some variations). While
computing the normalizing constant is still NP-hard (as opposed to the #P-hard task of
evaluating the normalizing constant), there exist several special cases where we can compute
the most likely configuration even though we can not compute the normalizing constant.
For example, [Taskar et al., 2004] consider using maximum-margin training in binary models
with constraints that enforce sub-modular potentials (assuming a fixed structure). We could
consider a variant on this method (or other cases where we can efficiently compute the most
likely configuration) where we use (group) `1-regularization of the edge parameters to learn a
sparse structure. Unlike training with the conditional likelihood, if we enforce sub-modularity
of the edge potentials it would be possible to evaluate the objective function in this problem
(without using approximations) even for a non-trivial number of nodes.

We conclude by noting that implementations of the methods discussed in this thesis will be
made available on the author’s homepage.
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Appendix A

Data Structures for Checking
Acyclicity

The following material is needed for the fast of implementation of acyclicity checks in the DAG-
search method used in Chapter 4. Giudici and Castelo [2003] propose using an ancestor matrix
data structure to efficiently test whether local moves preserve acyclicity, and they give procedures
for updating the ancestor matrix. However, the authors do not give a procedure for constructing
the ancestor matrix given a graph, while the analysis of the runtimes of the updates is not correct.
In this section, we give an efficient procedure for building an ancestor matrix given a DAG, review
the ancestor matrix update rules and their runtimes, present several special cases that lead to faster
updates of the ancestor matrix, and present the reversal witness matrix data structure that allows
us to quickly check whether reversals will introduce a cycle.

A.1 Ancestor Matrix

The ancestor matrix for a DAG with n nodes is an n by n binary matrix, that we will denote by
A. We set element Aij of the matrix to 1 if i is an ancestor of j in the graph, meaning that there
is a directed path from i to j. Otherwise, we set Aij to 0 (by convention, we set Aii = 0). In this
section we will express the runtimes of all operations in terms of n, since it is possible that we will
need to use the data structure on a maximally connected directed acyclic graph.

Given the ancestor matrix for a directed acyclic graph, it is trivial to test whether adding a new
edge will introduce a cycle. To see this, note that the graph is acyclic before introducing the new
edge, so if a cycle is introduced the new edge must be part of the cycle. We can thus test whether
a new edge from i to j introduces a cycle by simply testing whether j is an ancestor of i;

Input: Ancestor matrix A, edge (i, j) to test.
Output: Returns 1 if adding (i,j) will cause a cycle
return Aji;

Algorithm 13: Using an ancestor matrix to test whether an addition preserves acyclicity.

If we want to test whether each of the O(n2) possible edges will introduce a cycle, with the
ancestor matrix we can do this in O(n2). This is substantially more efficient than the O(n4) cost
of naively checking each single-edge-augmented graph independently with an O(n2) search.

Above, we assume that the ancestor matrix is given. However, it will only lead to a net
computational gain if we can efficiently construct it from a given graph, and efficiently update it
after single edge changes. Below, we make use of topological sorting to give an efficient procedure
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for constructing an ancestor matrix.

Input: Graph G
Output: A valid ancestor matrix A for G
initialize all elements of A to zero;
find a topological ordering of G;
foreach node c in order do

foreach parent p of c do
Apc ← 1 ;
foreach ancestor a of p do

Aac ← 1;

Algorithm 14: Constructing an ancestor matrix.

The topological sort can be done in O(n2) [Kahn, 1962, Cormen et al., 2001, §22.4], while
constructing the ancestor matrix by computing the ancestors of each node in topological order
requires at most O(n3) (it is possible that the total cost could be reduced to O(n2), the size of
the structure). Below, we give the procedure for updating the ancestor matrix after a single edge
addition.

Input: Ancestor matrix A and edge (p, c) to add
Output: A valid ancestor matrix A with (p, c) added
if Apc = 1 then

return ; // fast update, p was already an ancestor of c

Apc ← 1 ; // p is now an ancestor of c
foreach descendant d of c do

Apd ← 1 ; // p is now an ancestor of all descendants of c

foreach ancestor a of p do
Aac ← 1 ; // ancestors of p are now ancestors of c
foreach descendant d of c do

Aad ← 1 ; // ancestors of p are now ancestors of descendants of c

Algorithm 15: Updating an ancestor matrix after an addition.

Similar to finding all ancestors of a node by looking at the corresponding column of the ancestor
matrix, we can find all descendants of a node by looking at the corresponding row. The above
procedure require O(n2) in the worst-case, due to the need to update the up to O(n2) members of
the product of ancestors and descendants of the two nodes (the runtime was incorrectly state as
O(n) by Giudici and Castelo [2003]). Note the line marked as fast update; if p is already an ancestor
of c when we add the edge (p, c), then no new ancestor relations can arise and the update only
costs O(1). Also note that if we constructed the ancestor matrix for a given graph by repeatedly
applying the addition algorithm (starting from an empty graph), that this would require O(n4).
Thus, our topological ordering construction algorithm is more efficient than this naive method.

Next, we give a procedure for updating the ancestor matrix after deleting an edge. The method
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below is called after an edge (p, c) has just been removed from the graph G:

Input: Graph G, ancestor matrix A, and edge (p, c) to delete
Output: A valid ancestor matrix A with (p, c) deleted
foreach parent p∗ of c do

if App∗ = 1 then
return ; // fast update, c is still a descendant of p

find a topological ordering of G;
foreach node j in order starting from c do

Akj → 0, ∀k ; // clear ancestors of j

foreach node j in order starting from c do
foreach parent i of j do

Aij ← 1 ;
foreach ancestor a of i do

Aaj ← 1;

Algorithm 16: Updating an ancestor matrix after a deletion.

In the worst case, the above procedure will cost O(n3) since we may need to rebuild the ancestor
matrix for most of the graph. However, the update will only require up to O(n) in the case marked
fast update. In this case, p remains an ancestor of c after deleting (p, c) so the ancestor relationships
do not change. To update the ancestor matrix after a reversal, we call the above deletion procedure
followed by the addition procedure.

A.2 Reversal Witness Matrix

By similar reasoning to the addition case, reversing an existing edge (i, j) in a directed acyclic
graph will introduce a cycle if and only if i is an ancestor of some ancestor of j. In other words, if
some descendant of i is an ancestor of j, then reversing the edge from i to j will introduce a path
from j to itself via the newly reversed edge. We make this more formal below.

Input: Ancestor matrix A, edge (i, j) to test.
Output: Returns 1 if reversing (i,j) will cause a cycle
foreach ancestor a of j do

if Aia = 1 then
return 1;

return 0;

Algorithm 17: Using an ancestor matrix to test whether a reversal preserves acyclicity.

Since we have the current ancestor matrix available, we can easily find the up to O(n) ancestors
of j. Since we do a constant amount of work for each ancestor the procedure checks whether
reversing (i, j) will introduce a cycle in at most O(n). Subsequently, we can check all edges in
O(n3).

We now outline a data structure that we refer to as a reversal witness matrix. In this context,
we say that a witness exists for an edge (i, j) if some descendant of i is an ancestor of j. Thus,
reversing an edge will cause a cycle if and only if a witness exists. The reversal witness matrix
is simply an n by n sparse binary matrix that is set to 1 if the edge from i to j exists and has a

155



witness. We consider the following simple procedure for constructing the reversal witness matrix
given a graph. It assumes that the above procedure for testing a reversal given the ancestor matrix
is available, and can be called to test an edge (i, j) with the interface testReversal(A,p,c).

Input: Graph G and ancestor matrix A
Output: A valid reversal witness matrix R for G
initialize all elements of R to zero;
foreach edge (i, j) in G do

R(i, j)← testReversal(A,p,c);

Algorithm 18: Constructing a reversal witness matrix.

Above, we can construct the reversal witness matrix in O(n3) by simply using the ancestor
matrix to check whether each edge of the O(n2) edges can be reversed. We now give a procedure
for updating the reversal witness matrix for a single edge (p, c) after the addition of the edge (i, j).

Input: Reversal witness matrix R, ancestor matrix A, an edge (p, c) to update after adding
edge (i, j)

Output: A valid reversal witness matrix R with (p, c) added
if Rpc = 1 then

return ; // fast update, this edge already has a witness

if (p is not i or an ancestor of i) and (c is not j or a descendant of j) then
return ; // fast update, p has no new descendants, c has no new ancestors

R(i, j)← testReversal(A,p,c);

Algorithm 19: Updating a reversal witness matrix after an addition.

In the above, the fast updates require O(1) while the slow updates require O(n). Thus, this
data structure is more efficient than using the ancestor matrix alone whenever a fast update is
performed. We update the reversal witness matrix after a deletion by rebuilding it.
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Appendix B

Projection onto Norm Cones

When applied to group `1-regularization problems, the SPG and PQN methods discussed in Chap-
ter 3 employ the operation of projecting onto a norm cone. That is, for a given x0 and g0 they
compute the projection

PCp(x0, g0) , arg min
||x||p≤g

∣∣∣∣∣∣∣∣[ x
g

]
−
[

x0

g0

]∣∣∣∣∣∣∣∣
2

.

for the given norm || · ||p. By non-negativity of norms, we can equivalently solve

arg min
x,g

1

2
||x− x0||22 +

1

2
(g − g0)2, s.t. ||x||p ≤ g. (B.1)

In this appendix, we give simple algorithms for solving (B.1) for different norms examined in this
work.

B.1 Scalar Norm

We first consider the one-dimensional case where we simply have a scalar x. In this case, prob-
lem (B.1) can be written as

arg min
x,g

1

2
(x− x0)2 +

1

2
(g − g0)2, s.t. |x| ≤ g. (B.2)

In this case, the projection onto the scalar norm cone Ca is given by

PCa(x0, g0) =


(x0, g0), if |x0| ≤ g0,
(sign(x0)

|x0|+g0
2 , |x0|+g02 ), if |x0| > g0, |x0|+ g0 > 0,

(0, 0), if |x0| > g0, |x0|+ g0 ≤ 0.

(B.3)

Proof. If |x0| ≤ g0, then the first case follows because x = x0 and g = g0 satisfy the constraints
and achieve the minimum possible objective value of zero in (B.2). Thus, it remains to show the
other two cases and below we assume that |x0| > g0.

First, note that |x| ≥ 0 implies that in a solution (x∗, g∗) we must have that g∗ ≥ 0. Further,
x∗ can not have the opposite sign to x0: x

∗x0 ≥ 0. To show this, assume that x∗x0 < 0. Then

1

2
(x∗ − x0)2 +

1

2
(g∗ − g0)2 =

1

2
(x∗)2 − x∗x0 + x20 +

1

2
(g∗ − g0)2

>
1

2
(x∗)2 + x20 +

1

2
(g∗ − g0)2

> x20 +
1

2
(g∗ − g0)2

= (0− x0)2 +
1

2
(g∗ − g0)2.
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This would imply that (0, g∗) achieves a lower objective value than (x∗, g∗), and since g∗ ≥ 0 we
obtain a contradiction.

We can similarly show that |x∗| ≤ |x0|, since if |x∗| > |x0| and g∗ ≥ |x∗| then (|x0|, g∗) would
achieve a lower objective value while remaining feasible. Further, using that |x∗| ≤ |x0| and
g0 < |x0| we can similarly show that g∗ ≤ |x0|, since if g∗ > |x0| then (x∗, |x0|) would achieve a
lower objective (while remaining feasible).

We now establish the second two cases of (B.3) under the assumption that x0 ≥ 0. Since we
know x∗x0 ≥ 0 this implies x∗ ≥ 0 and we can re-write (B.2) as

arg min
x,g

1

2
(x− x0)2 +

1

2
(g − g0)2, s.t. 0 ≤ x ≤ g.

Ignoring the trivial case where x0 < g0, in a solution of this problem it must be the case that
x∗ = g∗. To see this, assume that g∗ > x∗. Then we can increase x∗ to improve the objective
function since we know that g∗ ≤ x0. We use that x∗ = g∗ to eliminate x and obtain the simple
problem

arg min
g

1

2
(g − x0)2 +

1

2
(x− g0)2, s.t. g ≥ 0.

Introducing a Lagrange multiplier µ ≥ 0 for the inequality constraint the Lagrangian of this problem
is

1

2
(g − x0)2 +

1

2
(g − g0)2 − µg.

Setting the derivative of the Lagrangian to zero we have that

0 = g − x0 + g − g0 − µ.

From this we obtain that

g∗ =
x0 + g0 + µ

2
,

for some µ ≥ 0. By complementary slackness we must have g∗µ = 0. If g∗ = 0, this implies that
µ = −x0 − g0, which can only be positive if x0 + g0 ≤ 0. This establishes the third case of (B.3)
(when x0 ≥ 0). Otherwise we have µ = 0 and

g∗ =
x0 + g0

2
.

We can use a simlar argument to show that we obtain the same result but with x0 replaced by |x0|
and x∗ = −g∗ when we have x0 < 0.

B.2 `2 Norm

We next consider projecting onto the Euclidean norm cone. In this case, we can write problem (B.1)
as

arg min
x,g

1

2
||x− x0||22 +

1

2
(g − g0)2, s.t. ||x||2 ≤ g. (B.4)

The projection onto the Euclidean norm cone C2 is given by [Boyd and Vandenberghe, 2004, Exercise
8.3(c)]

PC2(x0, g0) =


(x0, g0), if ||x0||2 ≤ g0,
( x0
||x0||2

||x0||2+g0
2 , ||x0||2+g0

2 ), if ||x0||2 > g, ||x0||2 + g0 > 0,

(0, 0), if ||x0||2 > g, ||x0||2 + g0 ≤ 0.

(B.5)
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Proof. We first establish that in an optimal solution (x∗, g∗) of (B.4), that x∗ is in the same
direction as x0. To do this, assume we can write x∗ = αx0 + y, where α is a scalar and y is a
non-zero vector containing the part of x∗ that is orthogonal to x0. Then we have that

1

2
||x∗ − x0||22 +

1

2
(g∗ − g0)2 =

1

2
||(αx0 + y)− x0||22 +

1

2
(g∗ − g0)2

=
1

2
||(α− 1)x0 + y||22 +

1

2
(g∗ − g0)2

=
1

2
|α− 1|2||x0||22 + (α− 1)xT0 y +

1

2
||y||22 +

1

2
(g∗ − g0)2

=
1

2
|α− 1|2||x0||22 +

1

2
||y||22 +

1

2
(g∗ − g0)2

>
1

2
|α− 1|2||x0||22 +

1

2
(g∗ − g0)2

=
1

2
||(α− 1)x0||22 +

1

2
(g∗ − g0)2

=
1

2
||αx0 − x0||22 +

1

2
(g∗ − g0)2.

Since y 6= 0, this implies that (αx0, g
∗) achieves a lower objective value than x∗ while it is feasible

due to the feasilibility of (αx0 + y, g∗) and orthogonality of x0 and y. This establishes that y must
be zero and that x∗ = αx0 for some α. By a similar argument to the scalar case we can show that
x∗i (x0)i ≥ 0 for all i, so we have that α ≥ 0.

We next review a basic identity, that if x = αx0 for some scalar α ≥ 0 then

||x− x0||22 = ||αx0 − x0||22
= α2xT0 x0 − 2αxT0 x0 + xT0 x0

= (α||x0||2 − ||x0||2)2

= (||x||2 − ||x0||2)2.

We can use this identity to re-write (B.4) as

arg min
x,g

1

2
(||x||2 − ||x0||2)2 +

1

2
(g − g0)2, s.t. ||x||2 ≤ g.

Except in the trivial first case of (B.5), by similar reasoning to the scalar case we will have that
g∗ = ||x∗||2 in the solution of this problem. Thus, we can eliminate ||x||2 to give the much simpler
problem

arg min
x,g

1

2
(g − ||x0||2)2 +

1

2
(g − g0)2, s.t. g ≥ 0.

This is identical to the scalar case for x0 ≥ 0 but with x0 replaced by the non-negative scalar ||x0||2.
We can thus derive the optimal g∗ in (B.5) from the same argument used in the previous proof.
In the case where g∗ > 0, the constraint that ||x∗||2 = g∗ along with knowing that x∗ is in the
direction of x0 imply that x∗ = (x0/||x0||2)g∗.
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B.3 `∞ Norm

We next consider projecting onto the `∞ norm cone. We first concentrate on the case where x0 is
a 2-vector with (x0)1 ≥ (x0)2 ≥ 0. In this case, we can write problem (B.1) as

arg min
x1,x2,g

1

2
(x1 − (x0)1)

2 +
1

2
(x2 − (x0)2)

2 +
1

2
(g − g0)2, s.t. g ≥ x1 ≥ 0, g ≥ x2 ≥ 0. (B.6)

The solution of this special case of projecting onto the `∞ norm cone is given by

PC∞((x0)1, (x0)2, g0) = (B.7)
((x0)1, (x0)2, g0), if ||x0||∞ ≤ g0,
( (x0)1+g0

2 , (x0)2,
(x0)1+g0

2 ), if ||x0||∞ > g0,
(x0)1+g0

2 > (x0)2,

( (x0)1+(x0)2+g0
3 , (x0)1+(x0)2+g0

3 , (x0)1+(x0)2+g0
3 ), if ||x0||∞ > g0,

(x0)1+g0
2 ≤ (x0)2,

(x0)1+(x0)2+g0
3 > 0

(0, 0), if ||x0||∞ > g0,
(x0)1+g0

2 ≤ (x0)2,
(x0)1+(x0)2+g0

3 ≤ 0

(B.8)

Proof. We start by noting that if the inputs satisfy the constraints then we once again simply
return the inputs in the first case. If this is not the case, then a similar argument to the scalar case
shows that in an optimal solution (x∗1, x

∗
2, g
∗) it must be the case that x∗1 = g∗. Subsequently, we

can (as before) eliminate x1 from (B.6) to give the problem

arg min
x2,g

1

2
(g − (x0)1)

2 +
1

2
(x2 − (x0)2)

2 +
1

2
(g − g0)2, s.t. g ≥ 0, g ≥ x2 ≥ 0.

Since (x0)2 ≥ 0 and we require g ≥ x2, the constraint x2 ≥ 0 will be satisfied at a solution even if
it is not included explicitly, so we remove it and write the Lagrangian for this problem is

1

2
(g − (x0)1)

2 +
1

2
(x2 − (x0)2)

2 +
1

2
(g − g0)2 − µ1g + µ2(x2 − g)

At a solution we require that the gradient of the Lagrangian with respect to both g and x2 is equal
to zero:

0 = (g − (x0)1 + g − g0 − µ1)− µ2
0 = x2 − (x0)2 + µ2

Note that the first term in the first equation is the gradient of the Lagrangian for the problem of
projecting onto the scalar norm cone. If we use (x̃1, g̃) to denote the result of projecting ((x0)1, g0)
onto the scalar norm cone, then the first term in the first equation is zero at (x̃1, x2, g̃) for any
x2. Thus, If it happens to be the case that g̃ > (x0)2, then all constraints are satisfied and
complementary slackness implies that µ2 = 0 so the solution to the problem is (x̃1, (x0)2, g̃). This
establishes the second case of (B.8).

If g̃ ≤ (x0)2, then we can show that x∗1 = x∗2 = g∗. Thus, we can eliminate both x1 and x2 and
write the optimization as a bound constrained optimization in g. Solving this problem as we did
in the scalar case yields the third and fourth cases of (B.8).
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Although the result above only applies to a very restricted scenario, we can generalize it to
compute the general `∞ norm cone projection. In particular, we can clearly remove the restriction
(x0)1 ≥ (x0)2 by sorting the elements of x0 before projecting. We can further remove the constraint
that (x0)1 and (x0)2 are non-negative by projecting their absolute values and then assigning the
appropriate signs to the results. Finally, we can use an inductive argument to generalize the result
to arbitrary p-vectors. Below, we give pseudo-code for a general method that requires O(p log p)
time (due to the need to sort x0).

Input: Scalar g and p-vector x
if g ≥ ||x||∞ then

return; // input value satisfies constraints

sorted ← {sort(|x|), 0}; // sort absolute values in descending order, append zero

s← 0;
for k ← 1 to p do

s← s+sorted(k);
α← (s+ g)/(k + 1); // trial value for g
if α > 0 and α <sorted(k + 1) then

for i← 1 to p do
xi ←sign(xi) min{|xi|, α} ; // threshold values.

g ← α;
return;

x← 0;
g ← 0;

Algorithm 20: Projection onto `∞ norm cone.

B.4 `1 Norm

We now turn to the task of projecting onto the `1 norm cone. We first concentrate on the case
where x0 only contains non-negative elements. In this case, we can write problem (B.1) as

arg min
x,g

1

2
||x− x0||22 +

1

2
(g − g0)2, s.t.

p∑
i=1

xi ≤ g,x ≥ 0. (B.9)

The solution of this special case of projecting onto the `1 norm cone is given by

PC1(x0, g0) = (max{0,x0 − θ}, g0 + θ), (B.10)

where the max operation is done element-wise and where θ ≥ 0 is the minimum (scalar) value such
that the constraints are satisfied.

Proof. The Lagrangian for problem (B.9) is

1

2
||x− x0||22 +

1

2
(g − g0)2 + θ(

p∑
i=1

xi − g)− yTx,
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with a scalar Lagrange multiplier θ for the sum constraint and a vector of Lagrange multipliers y
for the non-negativity constraints. Setting the gradient of the Lagrangian with respect to g to zero
we obtain

0 = g − g0 − θ.

From this we obtain that the optimal g∗ has the form

g∗ = g0 + θ. (B.11)

Setting the gradient of the Lagrangian with respect to x to zero we obtain

0 = x− x0 + θ − y.

From this we obtain that the optimal x∗ has the form

x∗ = x0 − θ + y.

By complementary slackness, we have that x∗i yi = 0 for all i. If yi = 0 then we have

x∗i = (x0)i − θ.

Similarly, if x∗i = 0 we have that
yi = −(x0)i + θ.

Since we require yi ≥ 0, we see that x∗i can be zero only if (x0)i − θ < 0. Combining both cases,
we have that x∗i has the form

x∗i = max{0, (x0)i − θ}. (B.12)

We have now established the form of (B.10), and it remains to show that we must find the minimum
θ ≥ 0. Using (B.11) and (B.12) to eliminate x and g in (B.9), we obtain

arg min
θ

1

2
||max{0,x0 − θ} − x0||22 +

1

2
(g0 + θ − g0)2, s.t.

p∑
i=1

max{0, (x0)i − θ} ≤ g0 + θ, θ ≥ 0.

We can simplify the objective function in this expression to give

arg min
θ

1

2
||min{x0, θ}||22 +

1

2
θ2, s.t.

p∑
i=1

max{0, (x0)i − θ} ≤ g0 + θ, θ ≥ 0.

where the min operation is done element-wise. We see that for θ ≥ 0 that the first term in this
objective function is monotonically increasing in θ while the second term is strictly monotonically
increasing in θ. Thus, the constrained minimizer of this objective function is the minimum θ ≥ 0
satisfying the constraints.

As before, we can extend (B.10) to allow negative elements of x by multiplying the result of
projecting the absolute values by the signs of the corresponding input elements. Below, we give
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pseudo-code for a general method that computes the projection onto the `1 norm cone.

Input: Scalar g and p-vector x
if g ≥ ||x||1 then

return; // input value satisfies constraints

sorted ← {0,sort(|x|)}; // sort absolute values in ascending order, append zero

for k ← 1 to p do
θ ←sorted(k + 1);
if α+ θ >

∑p
i=1 max{0,x− θ} then

break;

θ =sorted(k) +
∑p

i=1 max{0,x− (g+sorted(k))}/(k + 1);
g = g + θ;
x = max{0,x− θ};

Algorithm 21: Projection onto `1 norm cone.

By replacing the for loop with a binary search for k, the implementation above can be modified
to run in O(p log p) time. Similar to [Duchi et al., 2008b], this can be futher reduced to O(p) by
using a linear-time median-finding algorithm rather than sorting.

B.5 Nuclear Norm

We finally consider the case of projecting onto the nuclear norm cone. In this case, we can write
problem (B.1) for an input matrix X0 as

arg min
X,g

1

2
||X −X0||2F +

1

2
(g − g0)2, s.t. ||X||σ ≤ g. (B.13)

Here, we use ||X||σ to denote the nuclear norm of X, the sum of the singular values of the matrix
X. We denote the singular value decomposition of X0 by X0 = U0Σ0V

T
0 , where Σ0 a diagonal

matrix containing the singular values σ0. Using this notation, the solution of (B.13) is given by

PCσ(X0, g0) = (U0Σ̃V
T
0 , g̃), (B.14)

where Σ̃ is a diagonal matrix with elements σ̃, and (σ̃, g̃) is the result of projecting (σ0, g0) onto
the `1 norm cone.

Proof. We first establish that in an optimal solution (X∗, g∗) that X∗ must have the same singular
vectors as X0 (for all non-zero singular values). To do this we note that solving (B.13) is equivalent
to minimizing the Lagrangian for some µ ≥ 0:

min
X,g

1

2
||X −X0||2F +

1

2
(g − g0)2 + µ||X||σ − µg,

We can re-write this problem as

min
g

1

2
(g − g0)2 − µg + min

X

1

2
||X −X0||2F + µ||X||σ.

Focusing on the inner minimization over X, Cai et al. [2010, Theorem 2.1] implies that the optimal
solution X∗ has the same singular vectors as X0.
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Using this property we can re-write (B.13) as

arg min
σ,g

1

2
||U0diag(σ)V T

0 − U0diag(σ0)V
T
0 ||2F +

1

2
(g − g0)2, s.t. ||U0diag(σ)V T

0 ||σ ≤ g.

Since U0 and V0 are orthogonal, we can re-write this as

arg min
σ,g

1

2
||σ − σ0||22 +

1

2
(g − g0)2, s.t.

p∑
i=1

σi ≤ g, σ ≥ 0.

the projection of (σ0, g0) onto the `1 norm cone.
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