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Several authors have recently examined parameter estimation
in graphical models with `1-regularization.

Regularization and structure learning in a convex framework.

First works looked at Gaussian graphical models.

Recent works consider log-linear models of discrete data.
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For example, assume we have a pairwise undirected graphical
model,

p(x) ,
1

Z

∏
i

φi (xi )
∏
j>i

φij(xi , xj),

with node parameters wi and edge parameters wij .

Assume that wij = 0 is equivalent to removing the edge (i , j).

We can use group `1-regularization for simultaneous parameter
estimation and structure learning:

min
w
−

n∑
i=1

log p(xi |w) + λ
∑
i

∑
j>i

||wij ||2,
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A list of papers on this topic (incomplete):

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et

al., 2006], [Lee et al., 2006], [Meinshausen & Bühlmann, 2006],

[Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007],

[Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al.,

2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008],

[Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],

[Schmidt et al., 2008], [Fan & Feng, 2009], [Höling & Tibshirani, 2009],

[Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin

et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt &

Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al.,

2010].
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Many of these papers have made the pairwise assumption:

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et

al., 2006], [Lee et al., 2006], [Meinshausen & Bühlmann, 2006],

[Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007],

[Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al.,

2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008],

[Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],

[Schmidt et al., 2008], [Fan & Feng, 2009], [Höling & Tibshirani, 2009],

[Krishnamurphy & d’Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin

et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt &

Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al.,

2010].
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[Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007],

[Shimamura et al., 2007], [Yuan & Lin, 2007], [d’ Aspremont et al.,

2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008],

[Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],

[Schmidt et al., 2008], [Fan & Feng, 2009], [Höling & Tibshirani, 2009],
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The pairwise assumption is inherent to Gaussian models.

The pairwise assumption has not traditionally been associated
with log-linear models [Goodman, 1971], [Bishop et al., 1975].

The assumption is restrictive if higher-order statistics matter.

Eg. Mutations in both gene A and gene B lead to cancer.

This work gives give one way to go beyond pairwise potentials.
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The challenge in going beyond pairwise potentials is the
exponential number of possible higher-order potentials:

We consider the special case of hierarchical log-linear models.

We give a convex formulation that utilizes overlapping group
`1-regularization to enforce the hierarchy.

We give an active set method that rules out non-hierarchical
higher-order potentials.

We use projected gradient methods and Dykstra’s cyclic
projection algorithm to optimize with respect to the active set.
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General Log-Linear Models

In log-linear models [Bishop et al., 1975] we write the probability
of a vector x ∈ {1, 2, . . . , k}p as a normalized product

p(x) ,
1

Z

∏
A⊆S

φA(xA),

over each subset A of S , {1, 2, . . . , p},

We consider a full parameterization of these potential functions,
and a more parsimonious weighted Ising parameterization.
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General Log-Linear Models

The full parameterization for a threeway potential on binary nodes,

log φijk (xijk ) = I(xi = 1, xj = 1, xk = 1)wijk111 + I(xi = 1, xj = 1, xk = 2)wijk112

+ I(xi = 1, xj = 2, xk = 1)wijk121 + I(xi = 1, xj = 2, xk = 2)wijk122

+ I(xi = 2, xj = 1, xk = 1)wijk211 + I(xi = 2, xj = 1, xk = 2)wijk212

+ I(xi = 2, xj = 2, xk = 1)wijk221 + I(xi = 2, xj = 2, xk = 2)wijk222.

φA(xA) has k |A| parameters wA.

Setting wA = 0 is equivalent to removing the potential.

In pairwise models we assume wA = 0 if |A| > 2.
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Group `1-Regularization for General Log-Linear Models

We can extend the work on pairwise models to the general case by
solving [Dahinden et al., 2007]:

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA||wA||2,

However,

Sparsity in the groups A does not correspond to conditional
independence.

Without a cardinality restriction, we have an exponential
number of variables.
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Hierarchical Log-Linear Models

Instead of using a cardinality restriction, we use:

Hierarchical Inclusion Restriction:
If wA = 0 and A ⊂ B, then wB = 0.

We can only have (1, 2, 3) if we also have (1, 2), (1, 3), and (2, 3).
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Hierarchical Log-Linear Models

This is the well-known class of hierarchical log-linear models
[Bishop et al., 1975].

Much larger than the set of pairwise models

Group-sparsity corresponds to conditional independence.

However, we can’t enforce the hierarchical constraint with
(disjoint) group `1-regularization.
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Overlapping Group `1-Regularization for Hierarchical
Constraints

Bach [2008], Zhao et al. [2009] enforce hierarchical inclusion
restrictions with overlapping group `1-regularization.

Example:

We can enforce that B is zero whenever A is zero by using
two groups: {B} and {A,B}.
The resulting regularizer is λB ||wB ||2 + λA,B ||wA,B ||2
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Overlapping Group `1-Regularization for Hierarchical
Log-Linear Models

We can learn hierarchical log-linear models by solving

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA(
∑

{B|A⊆B}

||wB ||22)1/2.

Under reasonable assumptions a minimizer of this convex
optimization problem will satisfy hierarchical inclusion.

A nicer way to write this:

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA||w∗A||2.

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Introduction
Higher-Order Log-Linear Models

Optimization
Experiments

Conclusion

General Log-Linear Models
Hierarchical Log-Linear Models
Overlapping Group `1-Regularization

Overlapping Group `1-Regularization for Hierarchical
Log-Linear Models

We can learn hierarchical log-linear models by solving

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA(
∑

{B|A⊆B}

||wB ||22)1/2.

Under reasonable assumptions a minimizer of this convex
optimization problem will satisfy hierarchical inclusion.

A nicer way to write this:

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA||w∗A||2.

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Introduction
Higher-Order Log-Linear Models

Optimization
Experiments

Conclusion

Hierarchical Search
Projected Gradient Methods
Cyclic Projection Methods

Outline

1 Introduction

2 Higher-Order Log-Linear Models

3 Optimization
Hierarchical Search
Projected Gradient Methods
Cyclic Projection Methods

4 Experiments

5 Conclusion

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Introduction
Higher-Order Log-Linear Models

Optimization
Experiments

Conclusion

Hierarchical Search
Projected Gradient Methods
Cyclic Projection Methods

Active Set Method

We want to avoid considering the exponential number of
possible higher-order potentials.

We know the solution will be hierarchical, so we propose to
only consider groups that satisfy hierarchical inclusion.

The resulting method guarantees a weak form of global
optimality.
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Active, Inactive, Boundary Groups

We call A an active group if A or some superset of A is
non-zero.

If A is not active, and some subset of A is zero, we call A an
inactive group.

The remaining groups are called boundary group.

Boundary groups can be made non-zero without violating
hierarchical inclusion.
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Optimality of Boundary Groups

With inactive groups fixed, the optimality conditions with respect
to a boundary group A are

||∇wA

n∑
i=1

log p(xi |w)||2 ≤ λA.

If the gradient is 0 for active groups:

These are necessary and sufficient optimality conditions if
inactive groups are fixed.

They are necessary conditions of global optimality.
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Active Set Method

Similar to Bach [2008], we use an active set method:

Find the set of active groups, and the boundary groups
violating the necessary conditions.

Solve the problem with respect to these variables.

This adds groups that satisfy hierarchical inclusion, and where the
model poorly estimates the higher-moment in the data.

(analogous to the greedy method of [Gevarter, 1987] for fitting
maximum entropy distributions subject to marginal constraints
[Cheeseman, 1983]).
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Example of Active Set Method

Initial boundary groups.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5
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Example of Active Set Method
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Example of Active Set Method

Find new active groups.
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Example of Active Set Method
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Example of Active Set Method

No new boundary groups, so we are done.

1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

1,2,3,4 1,2,3,5 1,2,4,5 1,3,4,5 2,3,4,5

1,2,3,4,5

1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1 2 3 4 5
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Example of Active Set Method

In this example, we only needed to consider 4 of 10 possible
threeway interactions, 1 of 5 fourway interactions, and no
fiveway interactions.

The active set method can save us from looking at an
exponential number of higher-order factors.

We still need to efficiently optimize the active groups and
sub-optimal boundary groups...
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Optimizing the Active Set

Solving with the current active set is a group `1-regularization
problem with overlapping groups,

min
w
−

n∑
i=1

log p(xi |w) +
∑
A⊆S

λA||w∗A||2.

We write this non-smooth problem as an equivalent smooth
problem with simple Euclidean norm cone constraints,

min
w,g
− log p(x|w) +

∑
A⊆S

λAgA,

s.t. ∀A, gA ≥ ||w∗A||2.
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Euclidean Norm Cone

w1

w2

{{w, g}|g ≥ ||w||2}
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Projected Gradient

Projected gradient methods [Goldstein, 1964, Levitin and
Poljak, 1965] are widely used for optimization with simple
constraints.

These methods use iterations of the form

wk+1 = PC(wk − α∇f (wk)).

The function PC(w) computes the Euclidean projection of a
point w onto the convex set C,

PC(w) = arg min
x∈C
||x−w||2.
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Projection onto Euclidean Norm Cone

It is easy to project onto the Euclidean norm cone [Boyd and
Vandenberghe, 2004, Exercise 7.3(c)]:

PC(w∗A, gA) =


(0, 0), if ||w∗A||2 ≤ −gA,
(w∗A, gA), if ||w∗A||2 ≤ gA,
1+gA/||w∗

A||2
2 (w∗A, ||w∗A||2), if ||w∗A||2 > |gA|.

Thus, it is simple to analytically compute the projection onto a
single constraint.
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Projected Gradient Algorithm

f(w)

wk
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Projected Gradient Algorithm

wk - !gk

f(w)

wk
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Projected Gradient Algorithm

wk - !gk

P(wk - !gk)

f(w)

wk
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Enhanced Projected Gradient Methods

The basic projected gradient method converges slowly, but several
enhancements are possible:

Spectral projected gradient: Barzilai-Borwein step length and
non-monotomic line search [Birgin et al., 2000].

Accelerated projected gradient: Extrapolation step to achieve
a better worst-case convergence rate [Nesterov, 2004].

Inexact projected quasi-Newton: L-BFGS approximation to
Hessian matrix [Schmidt et al., 2009].
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Projection onto the Intersection of Simple Sets

We can easily compute the projection onto each norm cone.

But since the groups overlap we can’t do this independently.

We want the projection onto the intersection of simple sets.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.

Bregman [1965] showed that cyclically projecting onto general
convex sets converges to a point in their intersection.
(but not necessarily the projection)

Dykstra [1983] showed that a simple modification makes the
method converge to the projection for general convex sets.

Deutsch and Hundal [1994] showed that Dykstra’s algorithm
converges at a geometric rate for polyhedral sets.
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von Neumann’s Result
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von Neumann’s Result

Take two intersecting subspaces.
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von Neumann’s Result

We want to project a point onto their intersection.
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And keep going...
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von Neumann’s Result

The limit is the projection onto the intersection.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.

Bregman [1965] showed that cyclically projecting onto general
convex sets converges to a point in their intersection.
(but not necessarily the projection)

Dykstra [1983] showed that a simple modification makes the
method converge to the projection for general convex sets.

Deutsch and Hundal [1994] showed that Dykstra’s algorithm
converges at a geometric rate for polyhedral sets.
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Bregman’s Algorithm

We have an arbitrary number of convex sets.
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Bregman’s Algorithm

Start with some initial point.
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Project onto convex set 1.
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Bregman’s Algorithm

In general, the limit is not the projection.
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Dykstra’s Algorithm

We want to project a point onto the intersection of convex sets.
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Dykstra’s Algorithm

Project onto convex set 1, and store the difference.
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Remove the difference from projecting on convex set 1.
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Multivariate Flow Cytometry Experiments

Does it empirically help to have higher-order potentials?

We first consider a small data set where we can tractably compute
the normalizing constant:

Multivariate flow cytometry [Sachs et al., 2005].

We compared:

Pairwise with `2-regularization and group `1-regularization.

Threeway with `2-regularization and group `1-regularization.

Hierarchical with overlapping group `1-regularization.

We trained on 1/3, used 1/3 to select λ, and used 1/3 as a test
set (for 10 random splits).
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Flow Cytometry Data

Pairwise Threeway HLLM
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Traffic and USPS Experiments

We next consider two larger data sets:

Traffic flow level [Shahaf et al., 2009].

USPS digits data discretized into four states.

On these experiments we used weighted Ising potentials, and used
a pseudo-likelihood for training/test.
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Traffic Flow Data

Pairwise Threeway HLLM
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USPS Data

Pairwise Threeway HLLM
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Structure Estimation

We sought to test whether the HLLM model could recover a
true structure.

We generated samples from a 10-node data set with potentials
(2, 3)(4, 5, 6)(7, 8, 9, 10) and parameters from N (0, 1).

We recorded the number of false positives of different orders
for the first model along the regularization path that includes
the true model.

Eg., with 20000 samples the order was
(8,10)(7,9)(9,10)(7,10)(4,5)(8,9)(2,3)(4,6)(8,9,10)(7,8)
(7,8,9)(7,8,10)(5,6)(1,8)(5,9)(3,8)(3,7)(4,5,6)(1,7)(7,9,10)
(7,8,9,10)
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Synethetic Data: Types of Errors

Types of errors made by HLLM:
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Extensions

Dykstra’s algorithm may be useful for other overlapping group
`1-regularization problems.

The model can be applied to learn hierarchical conditional
random fields.

The main remaining issue is finding inactive groups that do
not satisfy sufficient optimality conditions. A simple heuristic
is to look at an extended boundary.
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Summary

We give a convex formulation of structure learning in
hierarchical log-linear models.

We proposed methods to deal with the exponential number of
variables.

We found that going beyond pairwise potentials gives similar
or better results on every data set we tried.

(thanks to the reviewers, and code will be online soon...)
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