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Vectors, Matrices

@ Scalar (1 by 1): (V

o
@ Column Vector (m by 1): a = | a»
— CLS Pl
@ Row Vector (1 by n):
Oeo(y)CLT: a1 a9 &3}
@ Matrix (m by n): 2 ai1 QAo R
i di12 dA22
a a
@ Matrix (nbym): L i e
i a1 a12
(A7) = (A)f A
L U2] a2

@ A matrix is if A=AT




Addition and Scalar Multiplication

® Vector Addition:

o - 3 2 = ai o0
i PG _52_ _&2"52_
@ Scalar Multiplication: _ : g :
ab = o oL S
k. § bg i 43 Ckbg p

® These are associative and commu’rc_x’rive:
A (BT A+ B0
AFB=B+ A

@ Applying them to a set of vectors is called a

C = Ctlbl —|—CM2b2 A cvnbn



Inner Product

The between vectors of the same length is:

n

ai— E a;b; = a1b1 + agba + -+ - + anby =
1]
The inner product is a scalar:

(CLTb)_1 = 1/(aTb)
It is commutative and distributive across addition:
alb=bla

g Kb LT b d
In general it is not associative (result is not a scalar):

a’ (b c) # (a'b) ¢

Inner product of non-zero vectors can be zero:

alh = () Here, a and b are called



Matrix Multiplication

@ We can ‘post-mulitply’ a matrix by a column vector:

4 - 2 - e =
Qet 7O 2% G 3 L1 Ay T1
¢ ik 78
Ay = o1+ o2 - alg ] L2 o Ao X2
e
B ER Dt s n gl P T | A3 L3 |

@ We can ‘pre-multiply’ a matrix by a row vector:

air G412 413
SL’TA — [ aaaw Lot U3 } A9 1. 5 RO LS — [ a:Tal wTag SL‘Tag }

a31 a3z2 0433

@ In general, we can multiply matrices A and B when the number

of columns in A matches the number of rows in B:

g B : 1 o T syl
a11 a1z aiz 4 b1 b2 /b13 a; 6 a3 by ajbs
B b T T T
AB ="|[Casr "oy’ "dan bo1 D22 | bog || = CL2T171 agpr ay bs )
1z i/ By
| 031 a32 033 931032 \b3z/ | L fazbr —a30s a3b3 |




D

Matrix Multiplication

Matrix multiplication is associative and distributive across (+):
A(BC) = (AB)C
A(B+C)=AB+ AC
In general it is not commutative:

AB + BA

Transposing product reverses the order (think about dimensions):

(AB oo B A%

Matrix-vector multiplication always yields a vector:
1 1Y o Tl
Ay =z (Ay)=7=(Ay)ie=y A

Matrix powers dont change the order: (AB)* = ABARB
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Identity Matrix

@ The has 1's on the diagonal and Os otherwise:
it QL AF
Vo —sedeaf) < A€ ()
ORI

@ Multiplication by the identity matrix of the appropriate size

yields the original matrix:

I.A=A= Al,

@ Columns of the identity matrix are called

0

o
w2
|

0
1
0




Triangular/Tridiagonal

@ A diagonal matrix has the form:

7)o

D = diag(d)

@ An upper ’rriangul;lr matrix has the form:

!

g di 0 0
0. “dg @
0 ()" 4¢3 !
Uy o U122 neds
U oo sy
0 0 Uuss

@ 'Triangularity’ is closed under_mulfiplicm‘ion

@ A tridiagonal matrix has the form:

7

B R
Lapietoo: faze o)
RO i e

0

0 143

0

taq |

@ ‘Tridiagonality’ is lost under multiplication



Rank-1, Elementary Matrix

@ The inner product between vectors is a scalar, the
outer product between vectors is a matrix:

Ujvy U1V UIU3
UUT — U2U1 U2V2 U2U3
usvp U3V  U3V3

@ The identity plus a rank-1 matrix is a called an

E =1 auv®

@ These are 'simple’ modifications of the identity matrix



Orthogonal Matrices

@ A set of vectors is if:
4 4 = 0,1 #
@ A set of orthogonal vectors is if:
4 ¢ =1
@ A matrix with orthonormal columns is called orthogonal

@ Square orfthogonal matrices have a very useful property:

R'Q=1=QQ"
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Linear Combinations

® Given Kk vectors, a linear combination of the vectors is:

C — Oélbl —I—OéQbQ o Oénbn

@ If all alphai=0, the linear combination is

@ This can be re-written as a matrix-vector product:

C = [ bl bQ bg } 8%

@ Conversely,

I 1
NS e

= = O
| |

|
=~ O
|




Linear Dependence

@ A vector is on a set of vectors if it
can be written as a linear combination of them:

c = a1b1 + asbs + ... b,

@ We say that c is 'linearly dependent’ on {bi, ba,...,bs},
and that the set {c,bi, bs,...,bs} is ‘linearly dependent’

@ A set is linearly dependent iff the zero vector can be
written as a non-trivial combination:

a0, 81 0 = a0 8- @o00E e 00 > | O1#t, - o, Uy, dependent



Linear Independence

@ If a set of vectors is not linearly dependent, we say it is

@ The zero vector cannot be written as a non-trivial
combination of independent vectors:

0=a1b;y + asby, +...a,b,, = a; =0 VY,

@ A matrix with independent columns has

@ In this case, Ax=0 implies that x=0



Linear [In]Dependence

@ Independence in R




Vector Space

e A is a set of objects called 'vectors’, with
closed operations ‘addition” and ‘scalar multiplication’
satisfying certain axioms:

1.& P

4+ (Y ht) =ty +2

exists a “zero-vector” 0 s.t. V., 24+ 0 =2

Ve, exists an ‘additive inverse’ —z, s.t. z + (—x) =0
1=

(c1c2)x = c1(cox)

clx+y)=cr+cy

(c1 + ). =c1x + co

@ Examples: R, R* R"™ R™"

O, SISl



Subspace

@ A (non-empty) subset of a vector space that is closed
under addition and scalar mulfiplication is a

@ Possible subspaces of R*:
@ O vector (smallest subspace and in all subspaces)
@ any line or plane through origin

@ All of R?

@ All linear combinations of a set of vectors {al,a2,...,an}
define a subspace

@ We say that the vectors or the
subspace, or that their IS the subspace



Subspace

@ Subspaces generated in R




Column-Space

@ The column-space (or range) of a matrix is the subspace
spanned by its columns:

R(A) = {All b such that Ax = b}

@ The system Ax=b is solvable iff b is in As column-space



Column-Space

@ The (or ) of a matrix is the subspace
spanned by its columns:

R(A) = {All b such that Ax = b}

@ The system Ax=b is solvable iff b is in As column-space

® Any product Ax (and all columns of any product AB)
must be in the column space of A

@ A non-singular square matrix will have %(A) = R™

® We analogously define the ;
R(AT) ="{AIlD sueh that 5# = b }



Dimension, Basis

@ The vectors that span a subspace are not unique

® However, the of vectors needed to
span a subspace is unique

® This number is called the or of the
subspace

@ A minimal set of vectors that span a space is called a
for the space

@ The vectors in a basis must be linearly independent
(otherwise, we could remove one and still span space)



Orthogonal Basis

@ Any vector in the subspace can be represented
uniquely as a linear combination of the basis

@ If the basis is orthogonal, finding the unique
coefficients is easy:

C = Oélbl —I—OéQbQ 1 Oénbn

by c = aibl by ashi by L. e bb,,
— by O

o1 = bl ¢/by by

@ The Gram-Schmidt procedure is a way to construct an
orthonormal basis.



@ Basis in R2:




Orthogonal Subspace

o . : Two subspaces are orthogonal if
every vector in one subspace is orthogonal to every vector
in the other

o In R
@ {0} is orthogonal to everything
@ Lines can be orthogonal to 10}, lines, or planes
@ Planes can be orthogonal to {0}, lines (NOT planes)

@ The set of ALL vectors orthogonal fo a subspace is also a
subspace, called the

@ Together, the basis for a subspace and its orthogonal
complement span R"

@ So if k is the dimension of the original subspace of R", then
the orthogonal complement has dimension n-k
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Matrices as Transformation

@ Instead of a collection of scalars or (column/row)
vectors, a matrix can also be viewed as a
applied to vectors:

T(x) = Ax
® The domain of the function is R™

® The range of the function is a subspace of R"
(the column-space of A)

@ If A has full column rank, the range is R"



Matrices as Transformation

@ Many transformation are possible, for example:

scaling rotation reflection projection

® The transformation must be linear:
T(axr + By) = oT'(x) + oT(y)

@ Any linear transformation has a matrix representation



Null-Space

@ A linear transformation cant move the origin:
T(0)=A0=0

@ But if A has linearly dependent columns, there are
non-zero vectors that transform to zero:

Tr26 5. bR A I

@ A square matrix with this property is called

® The set of vectors that transform to zero forms a
subspace called the of the matrix:

N(A) = {All z such that Az = 0}



Orthogonal Subspaces (again)

@ The null-space:
N (A) = {All z such that Az = 0}

@ Recall the row-space:
R(A: =% AlL b suchithofslsd = b }

@ The row-Space is orthogonal to Null-Space
@ Let y be in R(AT), and x be in I(A):

Y xS Al A — 2 U= 0



Fundamental Theorem
® Column-space: R(A) = {All b such that Ax = b}

@ Null-space: = N(A) = {All x such that Ax = 0}
o Row-space:  R(A') = {All b such that 2 A = b’}

@ The describes
the relationships between these subspaces:

r = dim(R(A4)) = dim(R(A"))
n=r+(n—r)=dim(R(A))+ dim(N(A))
@ Row-space is orthogonal complement of null-space

@ Full version includes results involving ‘left’ null-space



Inverses

® Can we undo a linear transformation from Ax to b?

@ We can find the inverse iff A is square + non-singular
(otherwise we either lose information to the null-space
or cant get to all b vectors)

@ In this case, the unique Al satisfies:

AHASEF — AR
@ Some useful identities regarding inverses:
(A=—NT S 4T
(%4)_1 = v_lA_l (assuming A! and B! exist)
(AB) " '<E .



Inverses of Special Matrices

@ Diagonal matrices have diagonal inverses:

A e AT 0 0
D = AP0 Dzt 0 o el )
0 0 d?) i 0 0 1/d3 k

@ Triangular matrices have triangular inverses:

Uip Uiz U3
L= 0 uoy uss
0 0 Us3s

@ Tridiagonal matrices do not have sparse inverses

@ Elementary matrices have elementary inverses (same uv'):
(I+ oo’ )y = 0 (" au v)

@ The transpose of an orthogonal matrix is its inverse:

R'Q=I1=QQ"
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Matrix Trace

@ The of a square matrix is the sum of its diagonals:

n

tT(A) — Z A4

peam]
® It is a linear transformation:

vir(A+ B) = ~vtr(A) + vir(B)
® You can reverse the order in the trace of a product:
tr(AB) = tr(BA)
@ More generally, it has the cyclic property:

tr(ABC) =tr(CAB) = tr(BCA)



Matrix Determinant

The determinant of a square matrix is a scalar number associated with it
that has several special properties

Its absolute value is the volume of the

parallelpiped formed from its columns

area =

det(A) = O iff A is singular :
|determinant

det(AB) = det(A)det(B), det(I) = 1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| I
|
|
v
I

det(AT) = det(A), det(A™) = 1/det(A)
exchanging rows changes sign of det(A)
Diagonal/triangular: determinant is product(diagonals)

determinants can be calculated from LU factorization:

@ A = PLU = det(P)det(L)det(U) = (+/-)prod(diags(V))
(sign depends on even/odd number of row excahnges)



Eigenvalues

@ A scalar lambda is an 2igenvalue (and u is an eigenvecion)
of A if:
Au.= Au

@ The eigenvectors are vectors that only change in
magnitude, not direction (except sign)

@ Multiplication of eigenvector by A gives exponential
growth/decay (or stays in 'steady state’ if lambda = 1):

AAAAY = MAAu = N AAu = M Au = \*u



Computation (small A)

@ Multiply by I, move everything to LHS:
Arx = Az, (A—)X)z =0
@ Eigenvector x is in the null-space of (A-AI)

@ Eigenvalues A make (A-AI) singular (have a Null-space)
@ Computation (in principle):
@ Set up equation det(A-AI) = O (characteristic poly)
@ Find the roots of the polynomial (eigenvalues)
@ For each root, solve (A-AI)x = O (eigenvector)

@ Problem: In general, no algebraic formula for roots



Eigenvalues (Properties)

@ Eigenvectors are not unique (scaling)
@ sum(A;) = tr(A), prod(Ai) = det(A), eigs(At) = 1/eigs(A)

@ Real matrix can have complex eigenvalues (pairs)

@ Eg: ;
45

e
O o

e e e L ] A —F,

o If two matrices have the same eigenvalues, we say
that they are similar

@ For non-singular W, WAW-™! is similar to A:

Ax ="t
AW "Wz = Mz
WAW ' (Wz) = A\(Wx)



D

® The maximum eigenvalue satisfies: )\ = max

D

D

Spectral Theorem

A matrix with n

a matrix S containing its eigenvectors

A1

g A — A4

A2

can be diagonalized by

A3

for any symmetric matrix:

@ the eigenvalues are real

@ the eigenvectors can be made orthonormal (so S'=ST)

The minimum eigenvalue satisfies:

S

1 Ax
L=l xlx
el A
T =
oo L0 s el i

The IS elgenvalue with largest absolute value



Definiteness

@ A matrix is called if all eigenvalues
are positive

o If this case: V..o 2" Az >0

@ If the eigenvalues are non-negative, the matrix is
called and:

Vx;éo $TA$ 2 0
@ Similar definitions hold for negative [semi-]definite

@ If A has positive and negative eigenvalues it is
(x"AX can be positive or negative)
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Vector Norm

@ A norm is a scalar

measure of a vectors length

@ Norms must satisfy three properties:

z|| > 0 (with equality iff = 0)
vzl = Jylllz]
r+yl| < ||lz|| + ||lyl| (the triangle inequality)
@ The most important norm is the norm:
ol A T
| g

@ Other important norms:

Jzlli =) |z

1

Jelloo = max|a



Cauchy-Scwartz

@ Apply law of cosines to triangle formed from x and v:

ly —2ll2 = [lyl3 + lIzll2 — 2/yl|2||z]|2 cos &

eUse:  |lg-zlli=(@2) (@ 2

@ To get relationship between lengths and angles:
Ui m
|z||2]|y]]2
@ Get Cauchy-Schwartz inequality because |cos(0)] < 1:

cosl =

y 2| < |lzll2llyll2

@ A generalization is Holders inequality:
’yTx‘ < |lzllpllyllg (for 1/p+1/q=1)



Orthogonal Transformations

@ Geometrically, an orthogonal transformation is some
combination of rotations and reflections

@ Orthogonal matrices
Q7|3 =2" Q" Qr = 2"z = [|z|);

(Qz) (QUr = Oy =Ty
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Linear Equations

® Given A and b, we want to solve for x:

o Sk e gl e
Aﬂf—b _1 1—_y___5_

@ This can be given several interpretations:

@ By : X is the intersection of hyper-planes:
2 —haje—"
TEE—
@ By : X Is the linear combination that gives b:
2 2 1
- [T P
o : X is the vector transformed to b:

T =xb



Geometry of Linear Equations

2y Rows: 2y Columns:
Find Infersection of Find Linear Combination
Hyperplanes or Columns

1.7*Columnl

+ 2.2%Column?2
>g(so x = [1.7,2.2]")
Solution (x) b




Solutions to Ax=b

@ The non-singular case is easy:

@ Column-space of A is basis for R", so there is a
unique x for every b (ie. x = A''b)

@ In general, when does Ax=b have a solution?

D



What can go wrong?

@ By Rows:

No Intersection Infinite Intersection



What can go wrong?

@ By Columns:

vector not in column space
(no solution)

ector in column space
(infinite solutions)



Solutions to Ax=b

@ The non-singular case is easy:

@ Column-space of A is basis for R", so there is a
unique x for every b (ie. x = A''b)

@ In general, when does Ax=b have a solution?
o
@ In general, when does Ax=b have a unique solution?

@ When b is in the column-space of A, and the

@ Note: this can sftill happen if A is not square...



Solutions to Ax=b

@ This rectangular system has a unique solution

e 9
1 LR o
o T B

@ b is in the column-space of A (x1 = 2, x2 = 3)

@ columns of A are independent (no null-space)



Characterization of Solutions

@ If Ax=b has a solution, we say it is

@ If it is consistent, then we can find a
in The column-space

@ But an element of the null-space added to the
particular solution will also be a solution:

Alx, 4 yn ¥ = A, SWty, — S el A — b

@ So the general solufion is:
x = (sol'n from col-space) + (anything in null-space)

@ By fundamental theorem, independent columns =>
trivial null-space (leading to unique solution)



Triangular Linear Systems

@ Consider a square linear system with an upper
triangular matrix (non-zero diagonals):

L 0 o R0 T L1 51
0  wu9s ugj X9 bo
0 0 uss L3 bg

@ We can solve this system bottom to top in O(n®)
b3

U3z T3 = b3 b i

52 — U23L2

U2T2 + U23L3 = bo Ty =

U9

Dy =) s s~V ion Ty
L1 —

U11T1 + U122 + Uiz3T3 = b7

us3

@ This is called
(there is an analogous method for lower triangular)



Gaussian Elimination (square)

® Gaussian elimination uses to
transform a linear system into a triangular system:
2210 5 Lo Wt LD = F el
43?1 65132 = — 2
—2581 £ 7%2 =0y 235‘3 — 9

add -2 times first row to second
add 1 times first row to third

2331 i < b el X'y = 5
—85132 e —21’3 - —12
8513‘2 i 3:133 — 14

add 1 times second row to third
21 + To + Fiat = 5!
—8&8ry + —2x3 = —12
U2y BT 2

Diagonals 12,-8,1} are called the



Gaussian Elimination (square)

@ Only one thing can go wrong: O in pivot position

Non-Singular Case Singular Case
Ti1ie e T o r3 = b1 s S 00 e
2561 ) g2 2372 i 5373 — bQ 2551 0 2372 By 5563 v
Adry 4 «0xs + 8e =D e 1 dxy e 813 =

X1 ot Borae-EE

g mev Lo eEe, T3

3r3 = 3 ey

L3 =

2372 =t 4333 = 41,3 Gl

Fix with row exchange Cant make triangular...
X1 —+ L9 5 1 L3 —
2332 il 4333 —

3(12'3
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LU factorization

@ Each elimination step is equivalent to multiplication by
a

E: add -2 times first row to second

100 gha o 4 Op. i
Ed=| 280 LG
P R e SR

@ So Gaussian elimination takes Ax=b and pre-multiplies
by elementary matrices {E,F,G} until GFEA is triangular

F: add 1 times first row to third
G: add 1 times second row to third

GFEA =

(AR

)

R A

1
0
1

GO ]

0
0
1

1
i
0

O3 =

" C (R

2
0
0

1
—8
0

k
=
1




LU factorization

@ We'll use U to denote the upper triangular GFEA
@ Note: E-'F1GlU = A, we'll use L for E-IF-1G, so A = LU
@ L is lower triangular:

@ inv. of elementary is elementary w/ same vectors:

EE-! =

E
.
0

0
1
0

0
0
1_

O

W Rl o o

Pt G D)
| |

@oilany - o

o=t C3)

A )

=]

@ product of lower triangular is lower friangular:

E—lF—lG—l

COE D .

CON b e

—t s O

ol

R

- D




LU for Non-Singular

@ So we have A=/, and linear system is | /x = b

@ After compute L and U, we can solve a non-singular system:
@ x = (L b) (where ' ' means back-substitution)
@ Cost: ~(1/3)n3 for factorization, ~n? for substitution

@ Solve for different b’: x = U (L b') (no re-factorization)

@ If the pivot is O we perform a row exchange with a

K4y
PA__l

el
28

¥
2 -

P 9] 3
O 4TG0



Notes on LU

@ Diagonals of | are 1 but diagonals of |/ are not:

o factorization: divide pivots out of |/ fo get
diagonal matrix U (A= iS unique)
@ If A is symmetric and positive-definite: | =UT
o factorization (A = [ LT) is faster: ~(1/6)n?

@ Often the fastest check that symmetric A is
positive-definite

@ LU is faster for band-diagonal matrices: ~w®n
(diagonal: w= 1, tri-digonal: w = 2)

@ LU is not optimal, current best: O(n237¢)



QR Factorization

@ LU factorization uses lower triangular elementary
matrices to make A friangular

® The QR factorization uses orthogonal elementary
matrices to make A friangular

® Householder transformation:

1 1
H=1I-gww, b=l

@ Because orthogonal transformations preserve length,
QR can give more numerically stable solutions



Spectral Decomposition
@ Any symmeitric matrix can be written as:
A=QAQ" = ) Mg/

@ Where U contains the orthonormal eigenvectors and
Lambda is diagonal with the eigenvalues as elements

@ This can be used to 'diagonalize’ the matrix:
QTAQ = A
@ It is also useful for computing powers:

A* = QAQTQAQTQAQT = QAAAQT = QA*Q”



Spectral Decomposition and SVD
@ Any symmeitric matrix can be written as:
A=QAQ" = ) Mg/

@ Where U contains the orthonormal eigenvectors and
Lambda is diagonal with the eigenvalues as elements

@ Any matrix can be written as:
= UZVT Tk ZO’@U@U;T
="

® Where U and V have orthonormal columns and Sigma is
diagonal with the ‘singular’ values as elements
(square roots of eigenvalues of ATA)



Singular/Rectangular System

@ The general solution to Ax=b is given by transforming A to
echelon form:

: oy Ao x
S X X X 2 X X X
" 8 % ; < EpE s XL X Eeee Variables
— X X X X X .
05 %0 [0 s O D" S0 02 (no PIVOT)
0O 0 (0 0 10f 10 [OF O
3 N/ QAR S %
@ 1. Solve with free variables O: (one solution to Ax=b)
@ If this fails, b is not in the column-space
@ 2. Solve with free variables e;: (basis for nullspace)

@ 3. Full set of solutions: x = + 2P
(any solution) = (one solution) + (anything in null-space)



Pseudo-Inverse

@ When A is non-singular, Ax=b h
x=A"b

as the unique solution

@ When A is non-square or singular, the system may be
incompatible, or the solution might not be unique

@ The pseudo-inverse matrix A*, is the unique matrix
such that x=A*b is the vector with minimum |Ix|l; that

minimizes ||Ax-bll;

@ It can be computed from the SVD:

AT =VQU & —dladio] [

(1/0; ifo; £ 0

@ If A is non-singular, A* = A’

\



Inversion Lemma

@ Rank-1 Matrix: uv" (all rows/cols are linearly dependent)

@ Low-rank representation of m X m matrix:

.

NXN NXm
mXm mXxn
@ Sherman-Morrison-Woodbury Matrix inversion Lemma:

o (A + UCV)!=A-AUC! + VAIU)IVATL

@ If you know A, invert (nx n) instead of (m X m)

(ie. useful if A is diagonal or orthogonal)



Some topics not covered

@ Perturbation theory, condition number, least squares

@ Differentiation, quadratic functions, Wronskians

@ Computing eigenvalues, Krylov subspace methods

@ Determinants, general vector spaces, inner-product spaces
@ Special matrices (Toeplitz, Vandermonde, DFT)

@ Complex matrices (conjugate transpose, Hermitian/unitary)



