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Introduction

4 We build a classifier that assists doctors in de-
tecting Coronary Heart Disease from the mo-

tion of 16 left ventricle segments in ultrasound
video
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4+ Conditional Random Fields (CRFs) are used to
model correlations between segments

4+ Our new Group-L1 reqularized optimization al-
gorithm lets us simultaneously learn the pa-
rameters and structure of CRFs

Conditional Random Fields
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+ Discriminative classifier modeling local and
pairwise potentials of labels Y given data X

+ We use untied parameters, and condition on
both local and global features

Left Ventricular Segmentation

L1-Regularization for
Structure Learning
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4 We want to learn the

graph structure of the
CRF labels

+ L1 Regularization of
edge parameters during
learning leads to sparsity

*e

.
L
.
~
.
e,
.
.
.
.
.
.
|

........ © Unconstrained Solution O Unconstrained Solution
.1 © L2-Regularized Solution}.| | ' :

.
L
0
~
.
e,
.
.
.
.
.
|

..........
.
-

4

--------

Efficient Optimization

+ No existing Group-L1 method satisfies all of
the following:
(1) they handle a large number of variables
(2) they handle a large number of groups
(3) they have fast convergence
4+ We use a novel Projected Gradient method
that satisfies all 3 of these properties
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+ However, each edge has multiple parameters so
we must consider Group-L1 Reqularization

Group-L1 Regularization

+ We place an L2 Regularizer on the node pa-
rameters and a Group-L1 Regularizer on the
edge parameters
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+ If we use p=2 or p=w, this leads to group
sparsity (edges are removed)

L1-Regularization Path Group-L1 Regularization Path

x|T := arg min ||x — x*||5
X*
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4+ We use the Spectral Projected Gradient
method to achieve fast convergence, which
uses non-monotone iterations and the Barzilai-
Borwein scaling
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introducing extra variables that bound the p-
norms of the individual groups
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+ This formulation lets us handle a large number
of variables and groups, since the projection
separates into a simple optimization for each
group. Below are the «o-norm 2D cases:
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Results

+ Comparison of structure learning methods for
10-node synthetic CRF:

Fixed Structure Generative Generative LI Discriminative LI

Acyclic

Relative Classification Accuracy
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+ Comparison of structure learning methods for
detecting heart motion abnormality:

Fixed Structure Generative Generative LI Discriminative LI

Acyclic

Relative Classification Accuracy

Conclusion

4+ Cyclic generative models outperformed acyc-
lic models

+ Generative models were not better than the
fixed ‘Full’ structure

4+ Discriminatively learned structure with appro-
priate Group-L1 reqularization outperformed
generative and fixed structures



