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Abstract. In this paper we propose Support Vector Random Fields
(SVRFs), an extension of Support Vector Machines (SVMs) that ex-
plicitly models spatial correlations in multi-dimensional data. SVRFs
are derived as Conditional Random Fields that take advantage of the
generalization properties of SVMs. We also propose improvements to
computing posterior probability distributions from SVMs, and present
a local-consistency potential measure that encourages spatial continu-
ity. SVRFs can be efficiently trained, converge quickly during inference,
and can be trivially augmented with kernel functions. SVRFs are more
robust to class imbalance than Discriminative Random Fields (DRFs),
and are more accurate near edges. Our results on synthetic data and a
real-world tumor detection task show the superiority of SVRFs over both
SVMs and DRFs.

1 Introduction

The task of classification has traditionally focused on data that is “independent
and identically distributed” (iid), in particular assuming that the class labels for
different data points are conditionally independent (ie. knowing that one patient
has cancer does not mean another one will). However, real-world classification
problems often deal with data points whose labels are correlated, and thus the
data violates the iid assumption. There is extensive literature focusing on the
1-dimensional ‘sequential’ case (see [1]), where correlations in the labels of data
points in a linear sequence exist, such as in strings, sequences, and language.
This paper focuses on the more general ‘spatial’ case, where these correlations
exist in data with two-dimensional (or higher-dimensional) structure, such as in
images, volumes, graphs, and video.

Classifiers that make the iid assumption often produce undesirable results
when applied to data with spatial dependencies in the labels. For example, in
the task of image labeling, a classifier could classify a pixel as ‘face’, even if all
adjacent pixels were classified as ‘non-face’. This problem motivates the use of
Markov Random Fields (MRFs) and more recently Conditional Random Fields
(CRFs) for spatial data. These classification techniques augment the perfor-
mance of an iid classification technique (often a Mixture Model for MRFs, and
Logistic Regression for CRFs) by taking into account spatial class dependencies.
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Support Vector Machines (SVMs) are classifiers that have appealing theoret-
ical properties [2], and have shown impressive empirical results in a wide variety
of tasks. However, this technique makes the critical iid assumption. This paper
proposed an extension to SVMs that considers spatial correlations among data
instances (as in Random Field models), while still taking advantage of the pow-
erful discriminative properties of SVMs. We refer to this technique as Support
Vector Random Fields (SVRFs)

The remaining sections of this paper are organized as follows. Section 2 for-
malizes the task and reviews related methods for modeling dependencies in the
labels of spatial data. Section 3 reviews Support Vector Machines, and presents
our Support Vector Random Field extension. Experimental results on synthetic
and real data sets are given in Sect. 4, while a summary of our contribution is
presented in Sect. 5.

2 Related Work

The challenge of performing classification while modeling class dependencies is
often divided into two perspectives: Generative and Discriminative models [1].
Generative classifiers learn a model of the joint probability, p(x, y) = p(x|y)p(y),
of the features x and corresponding labels y. Predictions are made using Bayes
rule to compute p(y|x), and finding an assignment of labels maximizing this
probability. In contrast, discriminative classifiers model the posterior p(y|x) di-
rectly without generating any prior distributions over the classes. Thus, dis-
criminative models solely focus on maximizing the conditional probability of the
labels, given the features. For many applications, discriminative classifiers of-
ten achieve higher accuracy than generative classifiers [1]. There has been much
related work on using random field theory to model class dependencies in gener-
ative and more recently discriminative contexts [3, 4]. Hence, we will first review
Markov Random Fields (typically formulated as a generative classifier), followed
by Conditional Random Fields (a state-of-the-art discriminative classifier built
upon the foundations of Markov Random Fields).

2.1 Problem Formulation

In this work, we will focus on the task of classifying elements (pixels or regions) of
a two-dimensional image, although the methods discussed also apply to higher-
dimensional data. An image is represented with an M by N matrix of elements.
For an instance X = (x11, x12, . . . , x1N , . . . , xM1, xM2, . . . , xMN ), we seek to
infer the most likely joint class labels:

Y ∗ = (y∗11, y
∗
12, . . . , y

∗
1N , . . . , y∗M1, y

∗
M2, . . . , y

∗
MN )

If we assume that the labels assigned to elements are independent, the fol-
lowing joint probability can be formulated: P (Y ) =

∏M
i=1

∏N
j=1 P (yij). However,

conditional independency does not hold for image data, since spatially adjacent
elements are likely to receive the same labels. We therefore need to explicitly
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consider this local dependency. This involves addressing three important issues:
How should the optimal solution be defined, how are spatial dependencies con-
sidered, and how should we search the (exponential size) configuration space.

2.2 Markov Random Fields (MRFs)

Markov Random Fields (MRFs) provide a mathematical formulation for model-
ing local dependencies, and are defined as follows [3]:

Definition 1. A set of random variables Y is called a Markov Random Field
on S with respect to a neighborhood N, if and only if the following two conditions
are satisfied, where S − {i} denotes the set difference, yS−{i} denotes random
variables in S−{i}, and Ni denotes the neighboring random variables of random
variable i:

1. P (Y ) > 0
2. P (yi|yS−{i}) = P (yi|yNi

)

Condition 2 (Markovianity) states that the conditional distribution of an
element yi is dependent only on its neighbors. Markov Random Fields have
traditionally sought to maximize the joint probability P (Y ∗) (a generative ap-
proach). In this formulation, the posterior over the labels given the observations
is formulated using Bayes’ rule as:

P (Y |X) ∝ P (X|Y )P (Y ) = P (Y )
n∏

i

P (xi|yi) (1)

In (1), the equivalence between MRFs and Gibbs Distributions [5] provides an
efficient way to factor the prior P (Y ) over cliques defined in the neighborhood
Graph G. The prior P (Y ) is written as

P (Y ) =
exp(

∑
c∈C Vc(Y ))∑

Y ′∈Ω exp(
∑

c∈C Vc(Y ′))
(2)

where Vc(Y ) is a clique potential function of labels for clique c ∈ C, C is a set of
cliques in G, and Ω is the space of all possible labelings. From (1) and (2), the
target configuration Y ∗ is a realization of a locally dependent Markov Random
Field with a specified prior distribution. Based on (1) and (2) and using Z to
denote the (normalizing) “partition function”, if we assume Gaussian likelihoods
then the posterior distribution can be factored as:

P (Y |X) =
1
Z

exp
[ ∑

i∈S

log(P (xi|yi)) +
∑

c∈C

Vc(Yc)
]

(3)

The Gaussian assumption for P (X|Y ) in (1) allows straightforward Maximum
Likelihood parameter estimation. Although there have been many approximation
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algorithms designed to find the optimal Y ∗, we will focus on a local method called
Iterated Conditional Modes [5], written as:

y∗i = arg max
yi∈L

P (yi|yNixi) (4)

Assuming Gaussians for the likelihood and a pairwise neighborhood system for
the prior over labels, (4) can be restated as:

y∗i = arg max
yi∈L

1
Zi

exp
[
log(P (xi|yi)) +

∑

j∈Ni

βyiyj

]
(5)

where β is a constant and L is a set of class labels.
This concept has proved to be applicable in a wide variety of domains where

there exists correlations among neighboring instances. However, the generative
nature of the model and the assumption that the likelihood is Gaussian can be
too restrictive to capture complex dependencies between neighboring elements or
between observations and labels. In addition, the prior over labels is completely
independent from the observations, thus the interactions between neighbors are
not proportional to their similarity.

2.3 Conditional Random Fields (CRFs)

CRFs avoid the Gaussian assumption by using a model that seeks to maxi-
mize the conditional probability of the labels given the observations P (Y ∗|X)
(a discriminative model), and are defined as follows [1]:

Definition 2. Let G = (S, E) be a graph such that Y is indexed by the vertices
S of G. Then (X, Y ) is said to be a CRF if, when conditioned on Y , the random
variables yi obey the Markov property with respect to the graph: P (yi|X, ys\i) =
P (yi|X, yNi).

This model alleviates the need to model the observations P (X), allowing the
use of arbitrary attributes of the observations without explicitly modeling them.
CRFs assume a 1-dimensional chain-structure where only adjacent elements are
neighbors. This allows the factorization of the joint probability over labels. Dis-
criminative Random Fields (DRFs) extend 1-dimensional CRFs to 2-dimensional
structures [6]. The conditional probability of the labels Y in the Discriminative
Random Field framework is defined as:

P (Y |X) =
1
Z

exp
( ∑

i∈S

Ai(yi, X) +
∑

i∈S

∑

j∈Ni

Iij(yi, yj,X)
)

(6)

Ai is the ‘Association’ potential that models dependencies between the obser-
vations and the class labels, while Ii is the ‘Interaction’ potential that models
dependencies between the labels of neighboring elements (and the observations).
Note that this is a much more powerful model than the assumed Gaussian As-
sociation potential and the indicator function used for the Interaction potential
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(that doesn’t consider the observations) in MRFs. Parameter learning in DRFs
involves maximizing the log likelihood of (6), while inference uses ICM [6].

DRFs are a powerful method for modeling dependencies in spatial data.
However, several problems associated with this method include the fact that it
is hard to find a good initial labeling and stopping criteria during inference, and
it is sensitive to issues of class imbalance. Furthermore, for some real-world tasks
the use of logistic regression as a discriminative method in DRFs often does not
produce results that are as accurate as powerful classification models such as
Support Vector Machines (that make the iid assumption).

3 Support Vector Random Fields (SVRFs)

This section presents Support Vector Random Fields (SVRFs), our extension of
SVMs that allows the modelling of non-trivial two-dimensional (or higher) spatial
dependencies using a CRF framework. This model has two major components:
The observation-matching potential function and the local-consistency potential
function. The observation-matching function captures relationships between the
observations and the class labels, while the local-consistency function models re-
lationships between the labels of neighboring data points and the observations at
data points. Since the selection of the observation-matching potential is critical
to the performance of the model, the Support Vector Random Field model em-
ploys SVMs for this potential, providing a theoretical and empirical advantage
over the logistic model used in DRFs and the Gaussian model used in MRFs,
that produce unsatisfactory results for many tasks. SVRFs can be formulated
as follows:

P (Y |X) =
1
Z

exp
{ ∑

i∈S

log(O(yi, Υi(X))) +
∑

i∈S

∑

j∈Ni

V (yi, yj , X)
}

(7)

In this formulation, Υi(X) is a function that computes features from the observa-
tions X for location i, O(yi, Υi(X)) is the observation-potential, and V (yi, yj , X)
is the local-consistency potential. The pair-wise neighborhood system is defined
as a local dependency structure. In this work, interactions between pixels with
a Euclidean distance of 1 were considered (ie. the radius 1 von Neumann neigh-
borhood). We will now examine these potentials in more detail.

3.1 Observation-Matching

The observation-matching potential seeks to find a posterior probability distri-
bution that maps from the observations to corresponding class labels. DRFs
employ a Generalized Linear Models (GLM) for this potential. However, GLMs
often do not estimate appropriate parameters. This is especially true in image
data where feature sets may have a high number of dimensions and/or several
features have a high degree of correlation. This can cause problems in parameter
estimation and approximations to resolve these issues may not produce optimal
parameters [7].
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Fortunately, the CRF framework allows a flexible choice of the observation-
matching potential function. We overcome the disadvantages of the GLM by
employing a Support Vector Machine classifier, seeking to find the margin maxi-
mizing hyperplane between the classes. This classifier has appealing properties in
high-dimensional spaces and is less sensitive to class imbalance. Furthermore, due
to the properties of error bounds, SVMs tends to outperform GLMs, especially
when the classes overlap in the feature space (often the case with image data).
Parameter estimation for SVMs involves optimizing the following Quadratic Pro-
gramming problem for the training data xi (where C is a constant that bounds
the misclassification error):

max
∑N

i=1 αi − 1
2

∑N
i

∑N
j αiαjyiyjx

T
i xj

subject to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0 (8)

Consequently, the decision function, given the parameters αi for the l training
instances and bias term b, is (for a more thorough discussion of SVMs, we refer
to [2]): f(x) =

∑l
i=1(αiyix · xi) + b

Unfortunately, the decision function f(x) produced by SVMs measures dis-
tances to the decision boundary, while we require a posterior probability func-
tion. We adopted the approach of [8] to convert the decision function to a pos-
terior probability function. This approach is efficient and minimizes the risk of
overfitting during the conversion, but has some ambiguities and potential difficul-
ties in numerical computation. We have addressed these issues in our approach,
which will be briefly outlined here.

We estimate a posterior probability from the Support Vector Machine deci-
sion function using the sigmoid function:

O(yi = 1, Υi(X)) =
1

1 + exp(Af(Υi(X)) + B)
(9)

The parameters A and B are estimated from training data represented as
pairs (f(Υi(X)), ti), where f(·) is the Support Vector Machine decision function,
and ti denotes a relaxed probability that yi = 1 as in (9). We could set ti = 1, if
the class label at i is 1(ie. yi = 1). However, this ignores the possibility that Υi(X)
has the opposite class label (ie. -1). Thus, we employed the relaxed probability:
ti = N++1

N++2 , if yi = 1, and ti = 1
N−+2 , if yi = −1 (N+ and N− being the

number of positive and negative class instances). By producing the new forms of
training instances, we can solve the following optimization problem to estimate
parameters:

min−
l∑

i=1

[
ti log p(Υi(X)) + (1− ti) log(1− p(Υi(X)))

]
(10)

where
p(Υi(X)) =

1
1 + exp(Af(Υi(X)) + B)
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[8] adopted a Levenberg-Marquardt approach to solve the optimization prob-
lem, finding an approximation of the Hessian matrix. However, this may cause
incorrect computations of the Hessian matrix (especially for unconstrained op-
timizations [7]). Hence, we employed Newton’s method with backtracking line
search to solve the optimization. In addition, in order to avoid overflows and
underflows of exp and log functions, we reformulate Eq.10 as follows:

−
(
ti log p(Υi(X)) + (1− ti) log(1− p(Υi(X)))

)

= ti(Af(Υi(X)) + B) + log(1 + exp(−Af(Υi(X))−B)) (11)

3.2 Local-Consistency

In MRFs, local-consistency considers correlations between neighboring data points,
and is considered to be observation independent. CRFs provide more powerful
modelling of local-consistency by removing the assumption of observation in-
dependence. In order to use the principles of CRFs for local-consistency, an
approach is needed that penalizes discontinuity between pairwise sites. For this,
we use a linear function of pairwise continuity:

V (yi, yj , X) = yiyjν
T Φij(X) (12)

Φij(X) is a function that computes features for sites i and j based on obser-
vations X. As opposed to DRFs, which penalize discontinuity by considering the
absolute difference between pairwise observations [6], our approach introduces
a new mapping function Φ(·) that encourages continuity in addition to penaliz-
ing discontinuity (using max(Υ (X)) to denote the vector of max values for each
feature):

Φij(X) =
max(Υ (X))− | Υi(X)− Υj(X) |

max(Υ (X))
(13)

3.3 Learning and Inference

The proposed model needs to estimate the parameters of the observation-matching
function and the local-consistency function. Although we estimate these para-
meters sequentially, our model outperforms the simultaneous learning approach
of DRFs and significantly increases its computational efficiency.

The parameters of the Support Vector Machine decision function are first es-
timated by solving the Quadratic Programming problem in (8) (using SVMlight
[9]). We then convert the decision function to a posterior function using (10) and
the new training instances. Finally, we adopted pseudolikelihood [3] to estimate
the local consistency parameters ν, due to its simplicity and fast computation.
For training on l pixels from K images, pseudolikehood is formulated as:

ν̂ = arg max
ν

K∏

k=1

l∏

i=1

P (yk
i |yk

Ni
, Xk, ν) (14)
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As in [6], to ensure that the log-likelihood is convex we assume that ν is Gaussian
and compute the local-consistency parameters using its log likelihood l(ν̂):

l(ν̂) = arg max
ν

K∑

k=1

l∑

i=1

{
On

i +
∑

j∈Ni

V (yk
i , yk

j , Xk)− log(zk
i )

}
− 1

2τ
νT ν (15)

In this model, zk
i is a partition function for each site i in image k, and τ is a

regularizing constant. Equation (15) is solved by gradient descent, and note that
the observation matching function acts as a constant during this process. Due
to the employment of SVMs, the time complexity of learning is O(S2), where S
is the number of pixels to be trained, although in practice it is much faster.

The inference problem is to infer an optimal labeling Y ∗ given a new instance
X and the estimated model parameters. We herein adopted the Iterated Condi-
tional Modes (ICM) approach described in Section 2.2 [5], that maximizes the
local conditional probability iteratively. For our proposed model and [6], ICM is
expressed as,

y∗i = arg max
yi∈L

P (yi|yNi
, X) (16)

Although ICM is based on iterative principles, it often converges quickly to a
high quality configuration, and each iteration has time complexity O(S).

4 Experiments

We have evaluated our proposed model on synthetic and real-world binary image
labeling tasks, comparing our approach to Logistic Regression, SVMs, and DRFs
for these problems. Since class imbalance was present in many of the data sets,
we used the Jaccard measure to quantify performance: f = TP

TP+FP+FN , where
TP is the number of true positives, FP denotes the number of false positives,
and FN tallies false negatives.

4.1 Experiments on Synthetic data

We evaluated the four techniques over 5 synthetic binary image sets. These
binary images were corrupted by zero mean Gaussian noise with unit standard
deviation, and the task was to label the foreground objects (see the first and
second columns in Fig. 1). Two of the sets contained balanced class labels (Car
and Objects), while the other three contained imbalanced classes. The five 150
image sets were divided into 100 images for training and 50 for testing. Example
results and aggregate scores are shown in Fig. 1. Note that the last 4 columns
illustrate the outcomes from each technique– SVMs, Logistic Regression (LR),
SVRFs, and DRFs.

Logistic Regression and subsequently DRFs performed poorly in all three
imbalanced data sets (Toybox, Size, and M ). In these cases, SVMs outperformed
these methods and consequently our proposed SVRFs outperformed SVMs. In
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Fig. 1. Average scores on synthetic data sets

the first balanced data set (Car), DRFs and SVRFs both significantly out-
performed SVMs and Logistic Regression (the iid classifiers). However, DRFs
performed poorly on the second balanced data set (Objects). This is due to
DRFs simultaneous parameter learning, that tends to overestimate the local-
consistency potential. Since the observation-matching is underweighted, edges
become degraded during inference (there are more edge areas in the Objects
data). Terminating inference before convergence could reduce this, but this is
not highly desirable for automatic classification. Overall, our Support Vector
Random Field model demonstrated the best performance on all data sets, in
particular those with imbalanced data and a greater proportion of edge areas.

4.2 Experiments on Real data

We applied our model to the real-world problem of tumor segmentation in med-
ical imaging. We focused on the task of brain tumor segmentation in MRI, an
important task in surgical planning and radiation therapy currently being la-
boriously done by human medical experts. There has been significant research
focusing on automating this challenging task (see [10]). Markov Random Fields
have been explored previously for this task (see [10]), but recently SVMs have
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(a) T1 (b) T2 (c) T1-Contrast

Fig. 2. A multi-spectral MRI

shown impressive performance [11, 12]. This represents a scenario where our pro-
posed Support Vector Random Field model could have a major impact.

We evaluated the four classifiers from the previous section over 7 brain tumor
patients. For each patient, three MRI ‘modalities’ were available: T1 (visualiz-
ing fat locations), T2 (visualizing water locations), and an additional T1 image
with a ‘contrast agent’ added to enhance the visualization of metabolically ac-
tive tumor areas (refer to Fig. 2). The data was preprocessed with the Statistical
Parametric Mapping software [13] to non-linearly align the images with a tem-
plate in a standard coordinate system, and remove intensity inhomogeneity field
effects. This non-linear template alignment approach was quantified to be highly
effective in [14], and the inhomogeneity correction step computes a smooth cor-
rective field that seeks to minimize the residual entropy after transformation of
the log-intensity value’s probability distribution [15]. We used 12 features that
incorporate image information and domain knowledge (the raw intensities, spa-
tial expected intensities within the coordinate system, spatial priors for the brain
area and normal tissue types within the coordinate system, the template image
information, and left-to-right symmetry), each measured as features at 3 scales
by using 3 different sizes of Gaussian kernel filters. We used a ‘patient-specific’
training scenario similar to [11, 12].

Results for two of the patients are shown in Fig. 3, while average scores
over the 7 patients are shown in Fig. 4(a). Note that ‘SVM+prob’ in Fig. 3
denotes the classification results from the Support Vector Machine posterior
probability estimate. The Logistic Regression model performs poorly at this
task, but DRFs perform significantly better. As with the synthetic data in cases
of class imbalance, SVMs outperform both Logistic Regression and the DRFs.
Finally, SVRFs improve the scores obtained by the SVMs by almost 5% (a
significant improvement).

We compared convergence of the DRFs and SVRFs by measuring how many
label changes occured between inference iterations averaged over 21 trials (Fig.
4(a)). These results show that DRFs on average require almost 3 times as many
iterations to converge, due to the overestimation of the local-consistency poten-
tial.
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Fig. 3. An example of the classification result
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Fig. 4. Averaged accuracy and convergence in inference

5 Conclusion

We have proposed a novel model for classification of data with spatial dependen-
cies. The Support Vector Random Field combines ideas from SVMs and CRFs,
and outperforms SVMs and DRFs on both synthetic data sets and an important
real-world application. We also proposed an improvement to computing posterior
probability distributions from SVM decision functions, and a method to encour-
age continuity with local-consistency potentials. Our Support Vector Random
Field model is robust to class imbalance, can be efficiently trained, converges
quickly during inference, and can trivially be augmented with kernel functions
to further improve results.
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