Support Vector Random Fields

Chi-Hoon Lee, Russell Greiner, Mark Schmidt
presenter: Mark Schmidt
Overview

• Introduction
• Background
 – Markov Random Fields (MRFs)
 – Conditional Random Fields (CRFs) and Discriminative Random Fields (DRFs)
 – Support Vector Machines (SVMs)
• Support Vector Random Fields (SVRFs)
• Experiments
• Conclusion
Introduction

- **Classification Tasks**
 - **Scalar Classification**: class label depends only on features:
 - IID data
 - **Sequential Classification**: class label depends on features and 1D structure of data:
 - strings, sequences, language
 - **Spatial Classification**: class label depends on features and 2D+ structure of data:
 - images, volumes, video
Notation

- Through this presentation, we use
 - X: an Input (e.g. an Image with m by n elements)
 - Y: a joint labeling for the elements of X
 - S: a set of nodes (pixels)
 - x_i: an observation in node I
 - y_i: an class label in node I
Problem Formulation

• For an instance:
 – \(X = \{x_1, \ldots, x_n\} \)

• Want the most likely labels:
 – \(Y = \{y_1, \ldots, y_n\} \)

• Optimal Labeling if data is independent:
 – \(Y = \{y_1|x_1, \ldots, y_n|x_n\} \)

 (Support Vector Machine)
• Labels in Spatial Data are NOT independent!

 – spatially adjacent labels are often the same
 \textit{(Markov Random Fields and Conditional Random Fields)}

 – spatially adjacent elements that have similar features often receive the same
 \textit{label} \textit{(Conditional Random Fields)}

 – spatially adjacent elements that have different features may not have correlated
 \textit{labels} \textit{(Conditional Random Fields)}
Background:

Markov Random Fields (MRFs)

- Traditional technique to model spatial dependencies in the labels of neighboring elements.
- Typically uses a generative approach: model the joint probability of the features at elements \(X = \{x_1, \ldots, x_n\} \) and their corresponding labels \(Y=\{y_1, \ldots, y_n\} \):
 \[
P(X,Y)=P(X|Y)P(Y)
 \]

- Main Issue:
 - Tractably calculating the joint requires major simplifying assumptions: (ie. \(P(X|Y) \) is Gaussian and factorized as \(\prod_i p(x_i|y_i) \), and \(P(Y) \) is factored using H-C theorem).
 - Factorization makes restrictive independence assumptions, AND does not allow modeling of complex dependencies between the features and the labels.
MRF vs. SVM

- **MRFs** model dependencies between:
 - the features of an element and its label
 - the labels of adjacent elements

- **SVMs** model dependencies between:
 - the features of an element and its label
Background:

Conditional Random Fields (CRFs)

- **A CRF**
 - A discriminative alternative to the traditionally generative MRFs
 - Discriminative models directly model the posterior probability of hidden variables given observations: $P(Y|X)$
 - No effort is required to model the prior. 😊
 - Improve the factorized form of a MRF by relaxing many of its major simplifying assumptions
 - Allows the tractable modeling of complex dependencies
MRF vs. CRF

- **MRFs** model dependencies between:
 - the features of an element and its label
 - the labels of adjacent elements
- **CRFs** model dependencies between:
 - the features of an element and its label
 - the labels of adjacent elements
 - the labels of adjacent elements and their features
Background: **Discriminative Random Fields (DRFs)**

- DRFs are a 2D extension of 1D CRFs:
 \[P(Y \mid X) \propto \prod_{i \in S} A_i(y_i, X) \prod_{j \in N_i} I_{ij}(y_i, y_j, X) \]

- \(A_i \) models dependencies between \(X \) and the label at \(i \) (GLM vs. GMM in MRFs)
- \(I_{ij} \) models dependencies between \(X \) and the labels of \(i \) and \(j \) (GLM vs. counting in MRFs)
- Simultaneous parameter estimation as convex optimization
- Non-linear interactions using basis functions
Backgrounds: Graphical Models

Fig. 1. A MRF. Shaded nodes (x_i) are the observation nodes (pixels) and unshaded nodes (y_i) are hidden variables (labels).

Fig. 2. Graphical structure of a DRF, the extension of a CRF in the 2-dim lattice structure.
Issues

- initialization
- overestimation of neighborhood influence (edge degradation)
- termination of inference algorithm (due to above problem)
- GLM may not estimate appropriate parameters for:
 - high-dimensional feature spaces
 - highly correlated features
 - unbalanced class labels

- Due to properties of error bounds, SVMs often estimate better parameters than GLMs

Due to the above issues, ‘stupid’ SVMs can outperform ‘smart’ DRFs at some spatial classification tasks
Support Vector Random Fields

• We want:
 – the appealing generalization properties of SVMs
 – the ability to model different types of spatial dependencies of CRFs

• Solution:
 Support Vector Random Fields
Support Vector Random Fields: Formulation

\[P(Y \mid X) = \frac{1}{Z} \exp \left\{ \sum_{i \in S} \log(O(y_i, \Gamma_i(X))) + \sum_{i \in S} \sum_{j \in N_i} V(y_i, y_j, X) \right\} \]

- \(\Gamma_i(X) \) is a function that computes features from the observations \(X \) for location \(i \),
- \(O(y_i, i(X)) \) is an SVM-based Observation-Matching potential
- \(V(y_i, y_j, X) \) is a (modified) DRF pairwise potential.
Support Vector Random Fields: Observation-Matching Potential

- **SVMs** decision functions produce a (signed) ‘distance to margin’ value, while **CRFs** require a strictly positive potential function.

- Used a modified* version of [Platt, 2000] to convert the **SVM** decision function output to a positive probability value that satisfies positivity.

- *Addresses minor numerical issues.
Support Vector Random Fields:
Local-Consistency Potential

• We adopted a DRF potential for modeling label-label-feature interactions:
 \[V(y_i, y_j, x) = y_i y_j (\eta \cdot \Phi_{ij}(x)) \]

• \(\Phi \) in DRFs is unbounded. In order to encourage continuity, we used
 \[\Phi_{ij} = (\max(T(x)) - |T_i(x) - T_j(x)|) / \max(T(X)) \]

• Pseudolikelihood used to estimate \(\eta \)
Support Vector Random Fields: Sequential Training Strategy

1. Solve for Optimal SVM Parameters (Quadratic Programming)
2. Convert SVM Decision Function to Posterior Probability (Newton w/ Backtracking)
3. Compute Pseudolikelihood with SVM Posterior fixed (Gradient Descent)

- Bottleneck for low dimensions: Quadratic Programming
- Note: Sequential Strategy removes the need for expensive CV to find appropriate L2 penalty in pseudolikelihood
Support Vector Random Fields: Inference

1. Classify all pixels using posterior estimated from SVM decision function
2. Iteratively update classification using pseudolikelihood parameters and SVM posterior (Iterated Condition Modes)
SVRF vs. AMN

• Associative Markov Network:
 – another strategy to model spatial dependencies using Max Margin approach

• Main Difference?
 – SVRF: use ‘traditional’ maximum margin hyperplane between classes in feature space
 – AMN: multi-class maximum margin strategy that seeks to maximize margin between best model and runner-up

• Quantitative Comparison:
 – Stay tuned...
Experiments: Synthetic

• Toy problems:
 – 5 toy problems
 – 100 training images
 – 50 test images

• 3 unbalanced data sets: Toybox, Size, M

• 2 balanced data sets: Car Objects
Experiments: Synthetic
Experiments: Synthetic

[Graph showing accuracy chart with categories: Car, Toybox, Size, M, Objects. The categories are labeled as balanced, few edges, unbalanced, unbalanced, unbalanced, and balanced, many edges. The bars are colored and labeled for SVM, LR, SVRFs, and DRFs.]
Experiments: Real Data

• Real problem:
 – Enhancing brain tumor segmentation in MRI
 – 7 Patients
 – Intensity inhomogeneity reduction done as preprocessing
 – Patient-Specific training: Training and testing are from different slices of the same patient (different areas)
 – ~40000 training pixels/patient
 – ~20000 test pixels/patient
 – 48 features/pixel
Experiment: Real problem
Experiment: Real problem

(a) Accuracy: Jaccard score
\[\frac{TP}{TP+FP+FN} \]

(b) Convergence for SVRFs and DRFs
Conclusions

• Proposed SVRFs, a method to extend SVMs to model spatial dependencies within a CRF framework
• Practical technique for structured domains for $d \geq 2$
• Did I mention kernels and sparsity?
• The end of (SVM-based) ‘pixel classifiers’?

• Contact:
 chihoon@cs.ualberta.ca, greiner@cs.ualberta.ca, schmidtm@cs.ualberta.ca