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Abstract

This project surveys and examines optimization ap-
proaches proposed for parameter estimation in Least
Squares linear regression models with an L1 penalty on
the regression coefficients. We first review linear regres-
sion and regularization, and both motivate and formalize
this problem. We then give a detailed analysis of 8 of the
varied approaches that have been proposed for optimiz-
ing this objective, 4 focusing on constrained formulations
and 4 focusing on the unconstrained formulation. We then
briefly survey closely related work on the orthogonal design
case, approximate optimization, regularization parameter
estimation, other loss functions, active application areas,
and properties of L1 regularization. Illustrative implemen-
tations of each of these 8 methods are included with this
document as a web resource.

1 Introduction

This report focuses on optimizing on the Least Squares
objective function with an L1 penalty on the parameters.
There is currently significant interest in this and related
problems in a wide variety of fields, due to the appealing
idea of creating accurate predictive models that also have
interpretable or parsimonious representations. Rather than
focus on applications or properties of this model, the main
contribution of this project is an examination of a variety of
the approaches that have been proposed for parameter esti-
mation in this model.

The bulk of this document focuses on surveying 8 differ-
ent optimization strategies proposed in the literature for this
problem. Each will be examined in detail, focusing on their
comparative strengths and weaknesses, and how each deals
with a function that has non-differentiable points. After ex-
amining these methods in detail, we will briefly discuss sev-
eral closely related issues. These include optimization in the
special case of an orthogonal design matrix, approximate
optimization for large problems, selecting appropriate val-
ues for the regularization parameter, optimizing other loss

functions subject to an L1 penalty, several active applica-
tion areas, and finally we discuss several interesting proper-
ties of L1 regularization.

However, we will first briefly review the linear regression
problem, the Least Squares approach, L2 and L1 penalties,
and finally formalize the problem being examined. We do
this review in order to motivate the interest in this model,
and to introduce the notation that will be used consistently
throughout the report. We emphasize the latter point be-
cause much of the related work was produced in different
areas, and the notation used is not consistent across works.

1.1 Linear Regression

In the typical univariate linear regression scenario, the
input is n instances of a process described byp + 1 vari-
ables, and we seek to find a linear combination of a selected
p variables (the features) that best predicts the remaining
variable (the target). We typically define the design matrix
X as a matrix havingn rows andp columns, representing
thep variables forn instances. Similarly, we define the tar-
get vectory as a column vector of lengthn containing the
corresponding values of the target variable. The problem
can then be formulated as finding a ‘good’ value for the
lengthp coefficient vectorw and the scalar bias termw0 in
the following model (taken overi from 1 to n):

yi = w0 +
p∑

j=1

xijwj + εi (1)

εi denotes the noise (or error) term for instancei, and it is
typically assumed that the values ofεi have zero mean, and
are both independently and identically distributed. Thus,
we typically do not modelε directly. However, we cannot
solve forw andw0 directly given onlyX andy, becauseε
is unknown. In addition, the noise term may cause the same
or similar values ofxi to yield different values. We thus
define a ‘loss’ function that assesses how well a given set of
parametersw predictsy from X.



1.2 Least Squares

By far the most popular loss function used for regression
problems the Least Squares estimate, alternately referred to
as minimizer of the residual sum of squared errors (RSS)
[1]:

RSS =
n∑

i=1

(yi − w0 −
p∑

j=1

xijwj)2 (2)

We can remove the need to writew0 by appending a col-
umn vector of1 values toX and increasing the lengthw by
one. This lets us write (2) more elegantly in matrix form:

RSS = ||Xw − y||22 (3)

The Least Squares estimate is defined as thew that min-
imizes this expression. This minimization forms a con-
tinuously differentiable unconstrained convex optimization
problem. Differentiating (3) with respect tow (and dividing
by 2) we obtain:

XT (Xw − y) (4)

Since we will need it later, we see that the Hessian of (3)
is simply:

XT X (5)

We can obtain thenormal equationsby equating (4) with
0 and solving forw [1]:

w = (XT X)−1XT y (6)

However, the matrixXT X may be singular (or nearly
singular), making it difficult to invert. Iterative solvers or
the pseudoinverse can be used to overcome this problem,
however these methods do not overcome several problems
associated with using the RSS formulation itself.

1.3 L2 Regularization

The instability of minimizing the RSS can be illustrated
with an example. Consider the case where two of the vari-
ables are highly correlated. This allows thewi value asso-
ciated with one variable to grow very large in the positive
direction, while the other grows appropriately large in the
negative direction cancelling the first variable’s effect [1].
This yields a high variance model that becomes an increas-
ingly unrealistic model as the correlation increases. These
high variance models can produce wildly differingw values
(and subsequent predictions) given different instances, or
even minor perturbations of the same instances. Thus, the
final result of producing high variance models is directly
related to the potential numerical instability of the Least
Squares procedure.

Tikhonov regularization addresses the numerical insta-
bility of the matrix inversion and subsequently produces
lower variance models. This method adds a positive con-
stant to the diagonals ofXT X, to make the matrix non-
singular [2]. The analytic solution then becomes:

w = (XT X + λI)−1XT y (7)

If we replace one diagonal value of theI matrix with
zero (corresponding tow0), it is easy to show that this mini-
mizes the following penalized RSS function with respect to
w andw0:

n∑

i=1

(yi − w0 −
p∑

j=1

xijwj)2 + λ

p∑

j=1

w2
j (8)

Examining the form of (8), we see that this is an un-
constrained continuously differentiable convex optimiza-
tion problem, and that it is the RSS with a penalty term
proportional to the squared values ofw (exceptw0). This
is referred to as L2 regularization. We do not penalizew0

since we do not want the model to depend on the mean of
they vector. However, in order to simplify both the notation
used in this work and in the associated implementations, we
centerthe data by settingw0 to ȳ =

∑n
1 yi/n, and work

with acenteredtarget vector (as in [1]), reducing to the fol-
lowing problem (in matrix notation):

||Xw − y||22 + λ||w||22 (9)

[2] provides several intuitive motivations for this form
of regularization: (i) In terms of statistics, it can be inter-
preted as prior knowledge thatw should not be too large,
(ii) in terms of optimal design, it can be interpreted as bal-
ancing large values of the variables compared to meeting
the target, (iii) in terms of prediction, largew values cause
large variations inXw (when applying the model to new in-
stances), and may not achieve high predictive performance
(iv) in terms of optimization, it gives a compromise between
solving the system and having a smallw.

1.4 L1 Regularization

While L2 regularization is an effective means of achiev-
ing numerical stability and increasing predictive perfor-
mance, it does not address another problem with Least
Squares estimates, parsimony of the model and inter-
pretability of the coefficient values. While the size of the
coefficient values is bounded, minimizing the RSS with a
penalty on the L2-norm does not encourage sparsity, and the
resulting models typically have non-zero values associated
with all coefficients. It has been proposed that, rather than
simply achieving the goal of ‘shrinking’ the coefficients,
higherλ values for the L2 penalty force the coefficients to



be more similar to each other in order to minimize their joint
2-norm [3]. A recent trend has been to replace the L2-norm
with an L1-norm. This L1 regularization has many of the
beneficial properties of L2 regularization, but yields sparse
models that are more easily interpreted [1].

An additional advantage of L1 penalties is that the mod-
els produced under an L1 penalty often outperform those
produced with an L2 penalty, when irrelevant features are
present inX. This property provides an alternate motivation
for the use of an L1 penalty. It provides a regularized fea-
ture selection method, and thus can give low variance fea-
ture selection, compared to the high variance performance
of typical subset selection techniques [1]. Furthermore, this
does not come with a large disadvantage over subset selec-
tion methods, since it has been shown that Least Squares
with an L1 penalty comes as close as subset selection tech-
niques do to an ideal subset selector [3].

1.5 Unconstrained Formulation

Replacing the squared values in (9) with the L1 norm
yields the following expression:

||Xw − y||22 + λ||w||1 (10)

It is clear that this remains an unconstrained convex op-
timization problem in terms ofw. However, this problem
is now non-differentiable whenwi = 0 for anywi. Thus,
we cannot obtain a closed form solution for the global min-
imum in the same way that is done with the L2 penalty.
This drawback has led to the recent introduction of a multi-
tude of techniques for determining the optimal parameters.
Several of these algorithms directly use the above uncon-
strained optimization problem, while other techniques use
equivalent constrained formulations.

1.6 Constrained Formulation

The most straightforward method to represent (10) as a
constrained optimization problem is as follows (note thatt
is inversely related toλ):

||Xw − y||22 (11)

s.t.||w||1 ≤ t

The objective function in this minimization is convex,
and the constraints define a convex set. Thus, this forms a
convex optimization problem. From this, we know that any
local minimizer of the objective subject to the constraints
will also be global minimizer. As we will review shortly,
the non-differentiable constraints can be converted into a
set of linear constraints, and thus the feasible region forms
a polyhedron. Combining this with the property that the

objective is quadratic inw, we see that the problem can be
interpreted as a Quadratic Programming problem.

2 Least Squares Optimization with L1 Regu-
larization

Although it is likely that it had been explored earlier, es-
timating Least Squares parameters subject to an L1 penalty
was presented and popularized independently under the
namesLeast Absolute Selection and Shrinkage Operator
(LASSO) in [3] andBasis Pursuit Denoising[4]. The
acronym for the former has become the dominant expres-
sion describing this problem, and for the remainder of the
paper we will use the term LASSO to denote the RSS prob-
lem with L1 regularization. [3] presented several different
methods for optimizing the LASSO, each of which differed
significantly from the method used in [4]. Since these origi-
nal works, there have been a wide variety of approaches pro-
posed for the LASSO minimization problem. Many have
simply been minor variations on methods already proposed,
but many offer unique ways of viewing the problem. This
section will examine in detail 8 different ways to compute
the LASSO estimate. These 8 methods were selected to rep-
resent very different approaches to computing the LASSO
estimate, and includes both the most influential works that
are not minor variations on previous works, and several less
influential but unique works (in our opinion). We think that
these works represent a substantial sample of the different
approaches that have been proposed for circumventing the
non-differentiability of the problem. We will first overview
4 methods for optimizing constrained formulations. We fo-
cus on these approaches first primarily for historical rea-
sons, since 3 of these types of approaches were used by the
authors of the original LASSO and Basis Pursuit Denois-
ing works. We then turn our focus to 4 methods that di-
rectly minimize the unconstrained formulation, 2 of which
are much more recent contributions.

2.1 Quadratic Programming, Sequentially Added
Sign Constraints

The influential work in [3] that proposed the acronym
LASSO presented two methods to convert the constraints in
the constrained formulation (11) into a a set of linear con-
straints. We will first examine the method recommended by
the authors.

A naive method to represent the constraints in (11) as
a set of linear equalities is to make one linear constraint
for each of the possible combinations of the signs of the
elements ofw. This is best illustrated by example, below
we show the constraints required for 3 variables:

+w1 + w2 + w3 ≤ t



+w1 + w2 − w3 ≤ t

+w1 − w2 + w3 ≤ t

+w1 − w2 − w3 ≤ t

−w1 + w2 + w3 ≤ t

−w1 + w2 − w3 ≤ t

−w1 − w2 + w3 ≤ t

−w1 − w2 − w3 ≤ t

It is clear that any minimizer of the RSS subject to these
constraints will also be the minimizer of (11). However, it
is also clear that this forms a Quadratic Programming prob-
lem with 2p constraints. Thus, we cannot even tractably
iterate over all the constraints generated by this expansion
for non-trivial values ofp (for example,p = 50). To avoid
this major drawback, Tibshirani proposed the following al-
gorithm (where LS(X,y) is the solution to the unpenalized
Least Squares problem):

Algorithm 1 Tibshirani’s Method
1: w = LS(X, y)
2: constraints = {null}
3: while ||w||1 ≤ t do
4: addsign(w) to constraints
5: w = minw||Xw − y||22 subject toconstraints
6: end while

At termination, this algorithm must reach a solution that
satisfies the constraints (in order to exit thewhile loop).
Furthermore, we see that all possible constraints in the ex-
pansion must be satisfied, even those that were not intro-
duced. This algorithm therefore achieves the optimal so-
lution subject to the constraints. It is natural to ponder
the worst case performance of this approach. If we con-
sider the case wheret = 0, then this approach will need
to introduceO(2p) constraints, and subsequently needs to
solveO(2p) Quadratic Programming problems. Although
this case seems pathological and the optimal solution when
t = 0 is w = 0, in practice we may still be interested in
very small values oft.

Fortunately, we can make a slight modification to this al-
gorithm to dramatically improve its performance. The mod-
ification that we can make is that rather than testing whether
||w||1 ≤ t, we can test whether||w||1 ≤ t + ε for some
small positiveε. Since the problems becomes more restric-
tive at each iteration, the value of||w||1 shrinks and this mi-
nor modification requires us to solve a significantly smaller
number of Quadratic Programs. Although this modification
is not discussed in [3], it is obvious that the authors must use
this or a similar modification in order to achieve their stated
result that the algorithm converges in approximately0.5p to
0.75p iterations. Note that our empirical results found that

a slightly larger number of iterations (although still linear
in terms ofp) was required to achieve an acceptable level of
precision.

Despite immensely reducing the iteration count and
number of constraints required by making this simple mod-
ification, this method still has one obvious weakness. We
still need to solve a potentially large number of Quadratic
Programming problems to obtain the solution to the original
Quadratic Programming problem. Furthermore, the solu-
tion from the previous iteration is typically not well-suited
for use in initializing the current iteration. This first reason
that the previous solution is not well-suited is that the solu-
tion to the previous iteration is by definition infeasible for
the current iteration’s constraints, so we must expend effort
finding a feasible point. Although finding a ‘close’ feasible
point is trivial, the second reason that the previous itera-
tion’s solution may not be a good starting point is that the
values (initially) change wildly between iterations. Once a
sign constraint is introduced, it is common to observe that
variables change wildly from highly to positive to highly
negative or vice versa (especially in the case of correlated
variables).

2.2 Quadratic Programming, Non-Negative Vari-
ables

The second method proposed in [3] to represent the con-
straint in (11) as a set of linear equalities avoids the need
to solve more than 1 Quadratic Program. This approach
uses a modified design matrix̄X = [X,−X] and represents
each variablewi as the difference between two non-negative
variables (corresponding to the positive and negative com-
ponents ofwi):

wi = w+
i − w−i

If wi is positive, thenw+
i = wi andw−i = 0, if wi is

negative thenw−i = wi andw+
i = 0, and ifwi is zero then

w+
i = w−i = 0. These identities can be enforced by forcing

both variables to be non-negative introducing the equality
constraint|wi| = w+

i + w0
i . However, this latter constraint

proves unnecessary since we only require the positive and
negative components to satisfy an upper bound on||w||1.

We can use this representation to create an equivalent
form of (11) that has2p variables,2p constraints enforc-
ing non-negativity and 1 constraint enforcing that the posi-
tive and negative components satisfy the original constraint.
For the case of 3 variables, this would involve the following
constraints:

w1+ ≥ 0
w1− ≥ 0



w2+ ≥ 0
w2− ≥ 0
w3+ ≥ 0
w3− ≥ 0

3∑

i=1

[w+
i + w−i ] ≤ t

Although this method doubles the number of variables in
the problem, it requires only a (known and bounded) linear
number of constraints, and only requires the solution to 1
Quadratic Programming problem. However, note that these
constraints are degenerate, and thus the Quadratic Program-
ming solution used to solve this problem must be handle
degenerate constraints.

Tibshirani states that this method is generally faster than
the method presented earlier, but not always. Our empiri-
cal experiments support this conclusion. The non-negative
variable approach is clearly faster whent is close to 0, and
is generally faster over a large range of the values thatt can
take. However, whent becomes sufficiently loose that the
optimal solution closely resembles the Least Squares solu-
tion (and degeneracy of the constraints has a larger influ-
ence), Tibshirani’s method might offer an advantage.

2.3 Interior Point Method, Non-Negative Vari-
ables with Log Barrier

Basis Pursuit Denoising was proposed in [4], and the
equivalence between the LASSO and Basis Pursuit Denois-
ing was originally recognized in [5]. We follow the deriva-
tion of the algorithm proposed in [4], based on the more el-
egant presentation of the approach given in [5], stating this
method in terms of our own notation. To (hopefully) avoid
confusion, note that in this section we will useλ to repre-
sent the dual variables, andt to represent the L1 penalty
parameter, even though this method actually is supposed to
be parametrized in terms ofλ.

The method of [4] also operates on non-negative vari-
ablesw+ and w− and thus operates on2p non-negative
variables. Note also that we must again double the size of
our design matrix and represent it asX̄ = [X,−X]. How-
ever, in this case we reformulate our optimization problem
into the following equivalent form (with̄1 being a vector of
ones):

minw,λ
1
2
||λ||22 + t1̄T w (12)

s.t. λ = y − X̄w

Now, to deal with the non-negativity constraint on the
variables, we use a log-barrier penalty with a positive para-
meterµ:

minw,λ
1
2
||λ||22 + t1̄T w − µ

2p∑
p=1

log wp (13)

s.t. λ = y − X̄w

Introducing slack variablesz, and usingW = diag(w)
andZ = diag(z), [5] writes the KKT conditions of this
system as (note, that we are definingra, rb, andrc here as
the left-hand sides of the equations):

ra : −X̄T λ− z + t1̄T = 0 (14)

rb : y − X̄w − λ = 0
rc : µ1T −WZ1̄ = 0

The main idea behind the method of [4] is to, at each
iteration, perform a single Newton step on these KKT con-
ditions, followed by a decrease in the vale ofµ. [5] pro-
vides the following analytic solutions for computing the
Newton directions (∆w, ∆λ, ∆z) for this system (using
D = Z−1W , and solving these equations in order):

∆λ = (I + XDX)−1(rb −X(Z−1rc −Dra) (15)

∆z = ra −XT ∆λ

∆w = Z−1(rc −W∆z)

Conjugate Gradient methods are used to solve for∆λ.
Due to the non-negativity of the variables, the Newton step
is truncated as follows (note that this slightly modified from
[5] on include the possibility of a full Newton step):

βw = minp:∆wp<0{−wp/∆wp, 1} (16)

βλ,z = minp:∆zp<0{−zp/∆zp, 1}

This gives the following update equations for the the
variables, and the method suggested for updating the log
barrier parameter:

wnew = w + .99βw∆w (17)

λnew = λ + .99βλ,z∆λ

znew = z + .99βλ,z∆z

µnew = (1−min(.99, βw, βλ,z))

[5] provides expressions for initializing the variables
w, λ, z, and for diagnosing convergence using a tolerance
on the primal and dual feasibility, and the duality gap. To
illustrate the main idea behind this approach, we present
high-level pseudocode in Algorithm 2.



Algorithm 2 Chen’s Method
1: initialize w, λ, z, µ
2: while {PRIM FEAS,DUAL FEAS,DUAL GAP} > ε

do
3: Compute∆λ, ∆w, ∆z,
4: Computeβx, βλ,z

5: Updatew, λ, z
6: Updateµ
7: end while

This Interior Point algorithm provides a very different
approach to solving the problem than those proposed by
Tibshirani. The main advantage of this method is its ex-
tremely fast convergence in terms of the number of iter-
ations required to reach a solution of suitable precision.
However, this method has two major disadvantages. Firstly,
convergence of the method is sensitive to the initial value
of µ, and no method is provided for computing an appropri-
ate initial value. Secondly, the computationally complexity
of computing the Newton direction for the dual variables
is high, and this computation dominates the runtime of this
algorithm. Furthermore, [5] reports that the complexity of
solving this system increases as we approach the optimal
solution.

2.4 Active Set Method, Local Linearization

[6, 7] has been the most influential work since the origi-
nal LASSO and Basis Pursuit Denoising works. This work
presents a method that does not require doubling the number
of variables in the problem, does not need an exponential
number of constraints, does not give degenerate constraints,
has fast convergence properties, and finally the iteration cost
can be kept relatively low through efficient implementation.

The two key components of the implementation of [6, 7]
are the use of a local linearization aboutw, and the use of
an Active Set method that operates only on the non-zero
variables and a single zero-valued variable. This leads to the
following optimization problem (for now we will assume
thatθ = sign(w) and note thatσ simply indicates members
of the Active Set):

minhσf(wσ + hσ) (18)

s.t. θT
σ (wσ + hσ) ≤ t

Here we have (and will continue to) abuse the original
notation slightly to avoid introducing permutation matri-
ces (which are not really necessary to understand the algo-
rithm). The solution to the KKT conditions of this problem
is:

µ = max(0,
θT

σ (XT
σ Xσ)−1XT

σ y − t

θT
σ (XT

σ Xσ)−1θσ
) (19)

hσ = (XT
σ Xσ)−1(XT

σ (y −Xσwσ)− µθσ)

The Active Set is initially empty, and at the end of each
iteration we add one zero-valued element to this set. Specif-
ically, we add the element (not already inσ) that has the
largest (absolute value of its) violation. Usingw† = w + h
(remember that elements outside the active set will be 0 as
will corresponding elements ofh) andr† = y − Xw†, we
define the violation as follows:

v† =
XT r†

||XT
σ r†||∞ (20)

Sincesign(0) is not well defined, theθi value for the
element to be introduced into the Active Set is set to the
sign of its violation. If the magnitude of the violation for all
variables outside the active set is less than 1, then optimal-
ity is achieved. Using this, we see that in each iteration the
algorithm adds the most violating variable to the active set,
then solves forµ and subsequentlyhσ. However, the algo-
rithm becomes slightly more complicated when we consider
that a variable in the active set may change sign during an
iteration. In this case, the estimatew†σ is termedsign infea-
sible. If an estimate is sign infeasible, then the algorithm
finds the first new zero component in the directionhσ, and
determines whether a descent direction can be achieved by
flipping its sign (inθσ), or whether this variable should be-
come0 and thus be removed from the active set.

It is clear that the cost of early iterations of this method
will be small, since the active set will be small. However,
note the active set grows as large as the number of variable
on later iterations. The key to maintaining efficient itera-
tions with larger active sets is the maintenance and updating
of a QR factorization ofXT

σ Xσ.
We will now consider convergence properties of this

method. It is clear that the potential for removing elements
from the active set could lead to a large number of itera-
tions. However, in our experiments variables rarely needed
to be removed from the active set. Furthermore, [8] later
proved that this method shares the same asymptotic com-
plexity as solving an ordinary Least Squares problem. An-
other appealing property of this method is the potential to
use a ‘warm-start’ to compute the LASSO parameters for
several (increasing) values oft (under the same asymptotic
complexity). However, note that in this case it is more com-
mon to need to remove variables from the active set ([8]
presents empirical results on this).

The method of [7, 6] (and the subsequent work of [8] un-
der the Least Angle Regression framework) is currently the
most widely used methods for estimating the LASSO pa-
rameters for non-trivial problems. It has several appealing
properties that make it a natural choice among those meth-
ods discussed thus far. However, one of its disadvantages
is that is must perform at least one iteration for every vari-
able present in the final model. If this number is large, this



approach may not be as effective as approaches such as the
Interior Point method that optimizes over all variables. An-
other disadvantage of this method is that it is the most diffi-
cult to implement (followed by the Interior Point method).
This may seem to be a minor disadvantage, but many exist-
ing implementations of this method do not scale up to very
large problems, and the non-trivial nature of the implemen-
tation could make several of the upcoming methods (which
yield trivial implementations even when considering huge
problems) more appealing for some researchers.

2.5 Iterated Ridge Regression

We now turn our focus to methods that directly address
the unconstrained formulation. As with the constrained
methods, we begin with a method that is primarily of his-
torical interest. In addition to the two Quadratic Program-
ming approaches discussed already, in [3] a third method
was mentioned (lacking significant details) for computing
LASSO parameters. The reason cited for the lack of details
was that the method proved to be innefficient. The method
was later re-invented (with details filled) by [9], describ-
ing it as an efficient alternative (due to its relationship to
Newton’s method). The method is based on the following
approximation:

|wi|1 ≈ w2
i

|wi|1 (21)

Substituting this approximation into the unconstrained
formulation (10), we can obtain an expression similar to
Least Square with an L2 penalty (Ridge Regression):

wnew = (XT X + λdiag(|w|)−1)−1XT y (22)

We can now usewnew and resolve the above to obtain a
better estimate. This can be iterated beginning from the L2
penalized solution until convergence. However, note that
this approximation becomes numerically unstable as anywi

approaches0, and that this is exactly what we expect at the
optimal solution. To avoid this problem, we can use a gen-
eralized inverse ofdiag(|w|). This removes values that are
too close to 0 from the estimation, and avoids this problem.
However, this inverse introduces a new problem, variables
that are set to 0 can never move away from 0, and thus it
could potentially lead to sub-optimal results if the initial-
ization is inadequate [9].

In all of our experiments, we found that this algorithm
did achieve the optimal solution, and we were not able to
find a problem where the optimal is not found, unless a vari-
able is initialized close enough to 0 that it is removed imme-
diately. This agrees with the experiments in [9], where the
optimal solution was always found despite their conjecture
that it may not be. In our experiments, we found that this
method seemed to have no difficulty dealing with variables

that have the wrong sign (even if they are close to 0). Nev-
ertheless, it is possible that our tests (and those of [9]) were
not thorough enough to produce a case where the results
were sub-optimal.

Although it is not mentioned in [3] or [9], it is clear that
we can remove columns ofX that correspond to variables
that have been set to 0. This significantly speeds up the
runtime of the algorithm, since later iterations solve smaller
problems for sparse models. Another point to be made with
respect to our implementation is that in general this method
proved highly efficient, but occasionally the method took a
large number of iterations to converge. It is possible that
this might be resolved with a better stopping condition (nei-
ther [3] or [9] proposed one, so a very naive approach was
temporarily used, and there was not sufficient time to update
this before the deadline), or if a line minimization approach
was used to potentially truncate the step sizes.

In summary, this method may represent a highly effec-
tive method, its iterations have a relatively low computa-
tional cost and the method has very good global conver-
gence properties. However, we can’t fully recommend this
approach at this time due to the above implementation is-
sues, and the possibility that this method could produce sub-
optimal results.

2.6 Grafting

[10] present an optimization approach for a variety of
loss functions in a general regularization framework. In a
special case of this framework, we can compute LASSO
estimates. This method also addresses the unconstrained
problem, and the key idea behind the method is to use a
definition of the function gradient that gives variables cur-
rently at0 the appropriate sign.

Using the Least Squares derivative, we see that the deriv-
ative of the unconstrained formulation (10) (assuming vari-
ables are non-zero) is:

XT (y −Xw) + λsign(w) (23)

For variables that have a value of zero, we use the fol-
lowing convention:

sign(wi) = 1 if XT
i (y −Xw) > λ (24)

sign(wi) = −1 if XT
i (y −Xw < λ

And by convention the gradient is set to 0 ifXT
i (y −

Xw) = λ. This definition of the derivative gives the zero-
valued variables the appropriate sign when they are intro-
duced. We sketch out the Grafting procedure as follows.
We begin with all variables set to a value of 0. At each
iteration, we first test convergence by testing whether the
following is true for alli:



|XT
i (y −Xw)| ≤ λ (25)

If this equation is false, the variable whose derivative has
the largest magnitude is added to the free set, and then an
(‘off the shelf’) Quasi-Newton method with BFGS updat-
ing is used to optimize all the variables in the free set. This
is quite similar at a high level to the active set method dis-
cussed earlier (although now for the unconstrained formu-
lation), and the methods produce similar results after each
iteration. One of the advantages that Grafting has over the
active set method is the much simpler bookkeeping of the
set of variables being optimized. The ‘free set’ is recom-
puted after each Quasi-Newton optimization terminates as
the set of non-zero variables, and the zero-valued variable
that has the largest absolute value of its derivative. Thus,
the method is simpler to implement since it does not need
to treat ‘sign infeasibility’ as a special case.

[10] argues that Grafting is much more efficient than
directly applying a Quasi-Newton to the full variable set
(assuming that the final model is sparse). However, with
our implementations Grafting was significantly slower than
the active set method discussed earlier. In its defense,
this may have been primarily due to the use of Matlab’s
’fminunc’ function, and the methods may be closer in
performance given a more optimized implementation of a
(limited-memory) Quasi-Newton method or other optimiza-
tion strategy.

2.7 Gauss-Seidel

Recently presented in [11] is an approach that promises
“no external matrix storage”, no “matrix operations”, and
no “optimization software” required, in order to provide an
attractive avenue between the biological sciences commu-
nity and the LASSO. They propose a Gauss-Seidel method
presented for the case of Logistic Regression, but we can
derive a Least Squares formulation of the same method that
yields an interesting property.

This method is fairly similar to Grafting, but has a no-
table difference. Before we examine this difference, we’ll
examine the similarities. As in Grafting, we begin with all
variables set to 0, and at each iteration we introduce 1 zero-
valued variable with maximum ‘violation’, optimize this
free set, then recompute the free set and continue optimiz-
ing until we satisfy an optimality criteria. This method uses
the same definition of the derivative as in Grafting, and the
maximum ‘violating’ variable among zero-valued variables
is exactly the variable with highest magnitude of derivative
as defined in Grafting.

The difference between Grafting and the Gauss-Seidel
method is thus the method used to optimize the free vari-
ables. While Grafting uses a Quasi-Newton routine to find
the optimal solution for the variables in the free set, the

Gauss-Seidel method optimizes the most violating variable
in the free set one at a time (beginning with the single zero-
valued variable). In the case of Logistic Regression, this
1-dimensional minimization involves a bracketed line min-
imization. However, for the Least Squares problem, the ob-
jective function is quadratic, and thus we can exactly com-
pute the minimizer of this quadratic objective through a
Newton update (usinggi to denote the gradient with respect
to variablei as defined above):

wnew
i = wi − gi/Hii (26)

This requires the diagonal elements of the Hessian, in the
case of Least Squares with an L1 penalty the diagonals of
the Hessian have the following form:

Hii =
n∑

j=1

X(j, i)2 (27)

However, since the Hessian does not depend onw, we
only need to compute these values once (although this is
not mentioned in the original paper). To summarize, al-
though we would make much more progress on each itera-
tion using a Quasi-Newton method, the individual iterations
of the Gauss-Seidel method have a closed form solution
and we can compute the necessary Hessian elements off-
line (although we must still compute the gradient at every
iteration). Because of these extremely cheap line searches,
the Gauss-Seidel algorithm may outperform Grafting (and
in fact its runtime was competitive with most methods dis-
cussed in this document for variables with smaller values of
p). The obvious advantages of the Gauss-Seidel approach
are its simplicity and its low iteration cost. Consequently,
the obvious disadvantage of this approach is its convergence
properties. Although convergence is proven, the number of
iterations required for this algorithm is substantially larger
than for any others. In addition, as more variables are added
to the free set, a larger number of iterations is required to op-
timize them. Clearly, after a large enough number of vari-
ables have been introduced, this approach becomes infeasi-
ble.

2.8 Shooting

Moving from Gauss-Seidel (one of the most recent meth-
ods proposed) we can naturally return to one of the first
methods proposed for this problem (beyond the methods of
the original authors). One of the first alternate optimization
strategies is outlined in [12], where an optimization strategy
referred to as ‘Shooting’ is presented. Despite its colorful
name (to accompany the LASSO), this algorithm is rarely
referred to in the related works on this problem. This is pos-
sibly due to the fact that it is overshadowed by a Newton
method presented for a larger set of regularization penalties



in the same work, and that it occupies less than1/4 of a
page to describe in its entirety. We will present this algo-
rithm in its full form in a way that avoids introducing the
unnecessary notation used in [12]. DefineSj as follows:

Sj = −XT
j y +

∑

i 6=j

XT
j Xiwi (28)

Now, define an update to variablewj as:

if Sj > λ , then:wj =
λ− Sj

XT
j Xj

(29)

if Sj < −λ , then:wj =
−λ− Sj

XT
j Xj

if |Sj | ≤ λ , then:wj = 0

The algorithm proceeds as follows: Beginning from the
Ridge Regression solution, (1) for eachj from 1 to p, com-
puteSj and updatewj , repeat (1) until convergence.

Although not mentioned in the original work, clearly we
can pre-compute all needed values ofXT

j y andXT
j Xj since

they do not depend onw. And so for each iteration through
the for loop we only need to compute

∑
i 6=j XT

j Xiwi. We
can see that this closely resembles the Gauss-Seidel ap-
proach, but does away with keeping track of free variables,
and computing the values for the full gradient or finding
the most violating variable. It simply needs to compute
1 element of the gradient at each iteration, then update
the variable. In addition, we found that it converges in a
much smaller number of iterations than the Gauss-Seidel
approach, although it still requires substantially more than
all other methods discussed in this document. However,
in terms of iteration cost and implementation simplicity,
‘Shooting’ is the clear winner.

3 Related Work

The remaining sections of this document briefly survey
related work on several topics. We first review methods that
have been proposed in the case where the design matrixX
is orthogonal. We then turn our attention to methods that
have been proposed for optimizing the LASSO that do not
achieve the optimal solution. We then present a survey of
other loss functions that an L1 penalty has been applied to,
and some of the notable optimization methods used in these
works. Our focus then shifts to methods that have been pro-
posed for finding an appropriate value of the regularization
parameter, and we find that this ties back to our discussion
of optimization methods. Finally, we overview some inter-
esting properties of L1 penalties, and examine several im-
portant application areas where L1 penalties are currently
or may soon have an impact.

3.1 Orthogonal Design

There have several approaches proposed for computing
the LASSO estimate in the special case whereXT X = I.
In the Basis Pursuit Denoising literature (where Orthogo-
nal Design matrices can be constructed), [5] introduced a
method based on the Block Coordinate Relaxation (BCR)
strategy. Specifically, it minimizes the objective with re-
spect to a block of variables, keeping the others fixed. 2
methods are proposed for selecting these blocks (systematic
cycling and optimal descent). Convergence of the algorithm
is proved, and an empirical test (based on CPU cycles) with
the Interior Point method of [4] is performed. It is shown
that the BCR strategy is at least as fast as this Interior Point
method, and that the BCR strategy can yield approximate
solutions much more efficiently.

Tibshirani also briefly discussed the orthogoncal design
case, defining the optimal solution and showing that the
LASSO gives the same estimate as the Garotte function in
this case [3]. Later, an efficient and trivial algorithm that
takes advantage of this definition was presented in [6].

3.2 Approximation Methods

Computing the optimal LASSO parameters is a convex
optimization problem, and thus any local minimum found
is guaranteed to be a global minimum. In addition, we
have surveyed in this work several highly efficient algo-
rithms for computing the optimal LASSO parameters. Nev-
ertheless, several works (in prominent Machine Learning
venues) have presented highly efficient but sub-optimal al-
gorithms.

[13] made the observation that the LASSO is equivalent
to a technique called the ‘adaptive ridge’, that places a sep-
arate non-negative penalty on the absolute value of each
coefficient (similar to a Relevance Vector Machine). This
equivalence simply requires an obvious constraint on the
sum of the values of these penalties. Using this equivalence,
they propose to use a Fixed Point algorithm for computing
the adaptive ridge, in order to compute LASSO parameters.
Beginning from an L2 penalized solution, the Fixed Point
algorithm iterates between estimating these values, and es-
timating the coefficient vector (similar to the Expectation
Maximization algorithm). However, the authors say that
the method is likely not to be globally convergent. This
counter-intuitive result appears to be due to the slightly dif-
ferent constraints that the adaptive ridge uses, and that the
constraint enforcing the equivalence with the LASSO is not
properly taken advantage of during the Fixed Point itera-
tions. The author’s implementation of this approach was in-
cluded in several experiments. Based on these experiments,
(i) we confirmed that this method indeed does not find the
optimal solution, (ii) the models generated are too sparse



for small value ofλ (as in Relevance Vector Machines) and
not sparse enough for large values ofλ, and (iii) the method
finds its sub-optimal solution highly efficiently, but there is
no significant saving over some of the optimal methods.

More recently, [14] presented a highly efficient but sub-
optimal approach for the LASSO problem. This approach
used a gradient descent-based approach related to L1 boost-
ing. The motivation in this work was to avoid Quadratic
Programming (we hope it clear from this work that this can
be done while maintaining optimality) and approximately
estimate the parameters for very large problem sizes. An
implementation of this technique is also available (in R),
but we did not experiment with it.

3.3 Other Loss Functions

Although the LASSO formulation has become very pop-
ular, L1 regularization has become an even more popular
topic recently in the context of classification. Here, the tar-
get variable takes one of several classes, and Least Squares
generally gives poor predictions compared to techniques
such as Support Vector Machines, Boosting, and of particu-
lar interest to the topic of this work, Logistic Regression.

Presented in [3] was a strategy for estimating L1 penal-
ized parameters of loss functions that can yield a quadratic
IRLS approximation. This simply involves using an IRLS
loop that uses a (weighted) LASSO solver. [15] extended
the Active Set method of [6, 7] to IRLS models (under the
name ‘Generalized LASSO’), focusing specifically on Lo-
gistic Regression. The ‘Grafting’ method of [10] and the
Gauss-Seidel method of [11] were also presented for the
case of Logistic Regression. Finally, note that it is trivial to
convertany LASSO solver into a weighted LASSO solver
by running the algorithm on re-weighted inputs. Thus, no-
tice that the use of a potentially generic LASSO solver in
the IRLS iterations proposed by [3] means that any algo-
rithm proposed for optimizing the LASSO can be used for
Logistic Regression (and other IRLS approximated func-
tions such as the L1 or Huber loss) with an L1 penalty.

Several techniques have also been presented exclusively
for the case of Logistic Regression with an L1 penalty, al-
though it is clear that many of these techniques would also
apply in the LASSO scenario. [16] used a strategy for Lo-
gistic Regression with an L1 penalty called stochastic sub-
gradient descent. The key idea behind this method is to ‘jit-
ter’ away from the point of non-differentiability by taking
a small step along a sub-gradient. The weights do not be-
come exactly zero in this model, and are thresholded when
the algorithm terminates. [17] presented an approach based
on cyclic coordinate descent (with a minor modification to
allow re-introduction of variables currently at 0). Three dif-
ferent approaches based on iterative scaling for Logistic Re-
gression with an L1 loss were suggested in [18].

Although Least Squares and Logistic Regression are ap-
plicable in a wide variety of scenarios, L1 penalties have
been extended to even wider array of problems. This in-
cludes Multi-layer Perceptrons (Neural Networks trained
by backpropagation) [10], Support Vector Machines [13],
Generalized Additive Models [13], Probit Regression [19],
the L1 loss [20], and the Huber loss [20]. Finally, as dis-
cussed in [21], the Boosting algorithm optimizes a criteria
that is approximated by an L1 penalty on the appropriate
loss function.

3.4 Regularization Parameter Estimation

A parallel issue to optimizing the LASSO parameters
given a fixed value ofλ is selecting a good value of the
regularization parameterλ. [3] proposed three methods for
computing an appropriate value ofλ. The first was the
simple but computationally expensive cross-validation pro-
cedure (since it involves solving a large number of simi-
lar problems). The second was a computationally simple
but less accurate unbiased estimate of risk (here only one
problem is solved). Finally, the third (and recommended by
the author) method is a generalized cross-validation scheme
that is less computationally expensive than cross-validation
but provides a better estimate than the unbiased estimate of
risk. [16] later proposed a randomized variant of Gener-
alized Approximate Cross Validation for regularization pa-
rameter estimation. This work also proposed to use a strat-
egy called ‘slice modeling’ to solve the similar optimization
problems more effectively.

Another contribution of the influential work of [6, 7]
was an extremely useful tool for hyperparameter estima-
tion, that also vastly increases the interpretability of the
models. They observed that the coefficient values follow
a piecewise-linear path ast is changed. Combined with
their active set method that allows ‘warm-starts’ from lower
t values, they presented a homotopy-based algorithm that
computes the LASSO coefficients for all values oft. [8]
later termed the phrase ‘regularization path’ for this idea,
and showed that this method allows computation of all pos-
sible values oft using the same asymptotic complexity of
solving an ordinary Least Squares problem. Although it
was not explored in detail in this work, it likely that several
of the other LASSO optimization methods discussed could
also be used for efficient computation of the regularization
path.

3.5 Properties of L1 Regularization

From a statistical point of view, it well-known that op-
timizing parameters under an L2 penalty is equivalent to
finding the mean (and mode) of the posterior distribution
of the parameters (ie. a MAP estimate) subject to Gaussian



prior probabilities on the parameters [3]. It was shown in
[3] that an L1 penalty is equivalent to finding the mode (but
not necessarily mean) of the posterior distribution of the pa-
rameters under a double exponential prior (whose heavy-
tailed nature yields further insights into the sparse nature
of the solutions). Finally, [15] presented a method to com-
pute posterior predictive probabilities over the predictions
made using a model that was estimated subject to an L1
penalty, by using exponential hyper-priors and analytically
integrating them out. This leads to an efficient method for
estimating the variance of predictions made by the model.

The concept of Bridge regularization is discussed in [1].
Bridge regularization involves a penalty term on theLq

norm of the parameters, withq ≥ 0 (and not necessarily
integral). L2 penalties correspond to the case whereq is
2, while L1 penalties correspond to the case whereq is 1
(subset selection is defined as the case whereq is 0). An
interesting note is that L1 penalties are the smallest Bridge
penalties that yield a convex set for the constraint region
[3]. This view also leads to a geometric interpretation of
the sparseness properties of the Lasso (see [1]). [12] gives
a more general form of the corresponding statistical priors
associated with Bridge penalties.

An interesting observation about the sparsity of the
LASSO coefficients was made in [8]. They state that the
number of non-zero coefficients is bounded byn − 1. In-
terestingly, they state that then− 1 coefficients for a given
value of λ will not necessarily include those selected for
the maximum value ofλ. A related observation made by
[6] is that the search fort can be restricted to the range
[0, |XT y|∞] (although we found that in practice this bound
can be very generous).

A final interesting and important property of L1 regu-
larization is the recent work in [22] on the effective sam-
ple complexity of using L1 regularization compared to L2
regularization. This work shows that the sample complex-
ity (ie. which the authors define as the number of instances
needed to learn ‘well’) grows at least linearly in the number
of irrelevant features for many loss functions when using L2
regularization (this includes if L2-based preprocessing such
PCA was used), while the sample complexity grows only
logarithmically when L1 regularization is used.

3.6 Applications

Many of the works related to the LASSO have focused
exclusively on publicly available (small) benchmark data
sets. Among the more ambitious and diverse applications,
[5] applied the method to detection of incoming radar signa-
tures, [16] applied Basis Pursuit to epidemiological studies,
and [23] applied Logistic Regression with an L1 penalty
for identifying features associated with program crashes.
Among the most recent works, two of the areas where the

LASSO is showing significant potential are the analysis of
microarray and other forms of genetic data [15, 11], and in
Natural Language Processing applications [18]. This data
usually has an extremely large number of features and rel-
atively few instances. Thus, sparse interpretable models
are highly desirable. Another area where the author of this
work sees a need for sparse regularization is Computer Vi-
sion, where computationally expensive and redundant filter
banks are currently used. Increasing the sparsity of these
filter banks would be highly desirable, and could vastly in-
crease the speed at which data can be analyzed.

3.7 Conclusion

This project has surveyed and examined a variety of
approaches proposed for parameter estimation in Least
Squares linear regression models with an L1 penalty on the
regression coefficients. It was shown that there are several
varied methods to circumvent the non-differentiability of
the objective function, and that there currently exist highly
effective methods for solving this problem.

We showed that despite the stigma surrounding Tibshi-
rani’s proposed method, that an exponential number of con-
straints are never required. We discussed Tibshirani’s other
proposed (and more popular) method, and observed that
doubling the number of variables to avoid an exponential
number of constraints may not be beneficial, and that when
using this formulation we must be careful to address de-
generacy. We then reviewed an Interior Point Log-Barrier
method, which in general had the best convergence rate for
non-trivial problems, but had the highest iteration cost and
proved to be sensitive to the initial value of the log-barrier
parameter. We outlined the currently very popular Active
Set method. This method introduces variables one at a time
and maintains a QR factorization of part of the design ma-
trix to allow fast iterations while maintaining a fast conver-
gence rate.

For methods that directly address the unconstrained
problem, we first discussed an Iterated Ridge Regression
approach that may be an excellent option, but we were un-
able to say for certain due to issues of convergence and opti-
mality of the solution. We also proposed a simple extension
to this method that discards unneeded columns ofX to sig-
nificantly speed up the algorithm. We discussed Grafting, a
method similar to the Active Set approach that uses exist-
ing Quasi-Newton software to enable a simpler, but slower,
implementation. After Grafting, we discussed the very sim-
ilar Gauss-Seidel method. This method took advantage of
the simple nature of 1-dimensional line searches over this
quadratic objective to yield an extremely low iteration cost,
although the number of iterations required is substantially
higher. Finally, we presented the extremely simple but sur-
prisingly effective Shooting method. Through appropriate



pre-computation, we showed each iteration of this algo-
rithm is dominated by simply computing a single element
of the gradient, and that this is by far the simplest method
to implement.

Finally, accompanying this document is a webpage lo-
cated at http://www.cs.ubc.ca/ schmidtm/c542B.html. This
page contains contains simple implementations of the 8
techniques that were the focus of this paper (in addition to
several others). Since these implementations were created
primarily to help understanding of the algorithms them-
selves, the webpage also contains links to existing imple-
mentations available online, that may be more efficient and
address more general cases.
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