A guide to notation used in the course. Let me know if things are missing from this document that are not obvious.

Part 1: Supervised Learning

Throughout the course, we use \(n \) as the number of training examples and \(d \) as the number of the features. We use \(i \) when indexing a training example and \(j \) when indexing a feature.\(^1\) We use \(x_{ij} \) as feature \(j \) in training example \(i \), and we use \(y_i \) as the label of example \(i \) (so there are \(n \) values \(y_1, y_2, \ldots, y_n \)). We use \(y \) as a list of the \(n \) class labels, containing the label \(y_i \) in position \(i \). We use \(x_i \) as the list of all features for example \(i \), so \(x_i \) has \(d \) elements \(x_{i1}, x_{i2}, \ldots, x_{id} \) (and there are \(n \) lists \(x_1, x_2, \ldots, x_n \)). We use \(X \) as an \(n \times d \) matrix containing all the features, so \(x_{ij} \) is element \((i, j)\) of \(X \) and \(x_i \) gives the elements of row \(i \) of \(X \). We use \(x^j \) to refer to all elements of column \(j \), which is the list of values of feature \(j \) across all the \(n \) training examples.

Throughout the course, we use \(t \) as the number of test examples, and \(\tilde{X} \) refers to a \(t \times d \) matrix containing the test features. The notation \(\tilde{x}_i \) refers to the features of test example \(i \), while \(\tilde{x}_{ij} \) refers to feature \(j \) in test example \(i \). We use \(\tilde{y} \) as the true labels of the test examples, and \(\tilde{y}_i \) as the label of test example \(i \). We use \(\hat{y}_i \) as the prediction of a model on example \(i \), whether the prediction is made on training data or validation or test data (it should be obvious or not relevant from context).

When discussing validation sets, \(X_{\text{train}} \) and \(y_{\text{train}} \) are used as the subsets that we train on, while \(X_{\text{validate}} \) and \(y_{\text{validate}} \) are used as the subsets that we validate on. We use \(E \) to denote a generic prediction error, and usually this is followed with a subscript. For example, \(E_{\text{train}} \) is the training error, \(E_{\text{test}} \) is the test error, \(E_{\text{approx}} \) is the approximation error.

We use \(c \) as a class label, and occasionally use \(n_c \) as the number of training examples in class \(c \). We use the letter \(k \) generically throughout the course as something we count, and \(\epsilon \) as a generic number that we want to be small.

Some method-specific notations used in this section:

- We use \(t \) as a particular decision stump threshold, and \(k \) as the number of thresholds.
- \(p(y_i = \text{"spam"}|x_i) \) is used for the probability that the label \(y_i \) takes the value “spam” given that the features are \(x_i \).
- \(p(y_i|x_i) \) is used for the probability that the label is \(y_i \) given that the features are \(x_i \) (for example, \(y_i \) could be “spam” or “not spam” but without specifying a particular value).
- In the naive Bayes section, we’re a little sloppy in that we use the same notation for the MLE on the training data and the true population value.

\(^1\)When talking about two training examples, we sometimes use \(j \) as the index of the second training example.
• Naive Bayes uses n_{cijk} as the number of times that feature j is equal to k and the class label is c.

• Naive Bayes uses $p(\text{hello}|\text{spam})$ as short for $p(x_{ij} = \text{“hello”} \mid y_i = \text{“spam”})$.

• Decision theory slides use cost(\hat{y}_i, \tilde{y}_i) as the cost of prediction \hat{y}_i when the true label is \tilde{y}_i.

• In the norm slides we use r as a generic vector.

• We use $\|r\|_2$ as the L2-norm (square root of sum of squares of the elements in the vector), $\|r\|_1$ as the L1-norm (sum of absolute values), and $\|r\|_{\infty}$ as the L_{∞}-norm (max of absolute values). If the number is omitted, as in $\|w\|$, it refers to the L2-norm.

Part 2: Unsupervised Learning

We use \hat{y}_i as the cluster predicted for example i and \hat{y} as the set of predicted clusters for all n training examples. We use C as the set of indices of examples assigned to cluster c.

We use W as a k by d matrix where row c contains mean c. We use w_c as mean c, $w_{\hat{y}_i}$ to refer to the mean of the cluster of example i, and w_{cj} to refer to feature j in mean c. We use w_j as column j of the matrix W. We use \hat{X} as predicted values of the matrix X, and similarly \hat{x}_i are predicted values of x_i and \hat{x}_{ij} are predicted values of x_{ij}.

We use μ as the mean of the data (with μ_j being the mean for feature j if we have more than one feature) and σ as the standard deviation (with σ_j being the standard deviation for feature j if we have more than one feature).

Part 3: Linear models

In this section we start treating x_i and y_i as vectors, so we now have to be careful about whether vectors are row-vectors or column-vectors. Our default choice is that everything is a column-vector, so each x_i is a $d \times 1$ vector and y is an $n \times 1$ vector. Since x_i is now a column-vector, we need to be careful to define row i of X as x_i^T (instead of just x_i).

We use w as the $d \times 1$ vector of regression weights. We normally index into w using w_j. We sometimes add a y-intercept (“bias”) variable and use w_0 to denote this variable (in some settings later in the course β is used instead of w_0).

We use $\nabla f(w)$ to denote the gradient of a function f with respect to w. Assuming w has length d, this is a $d \times 1$ vector where position j contains the partial derivative of f with respect to w_j. We use r as the vector of “residuals”, $r = Xw - y$. An individual element i of r would be $r_i = w^T x_i - y_i$.

Gradient descent uses w^t as the parameter vector on iteration t (so t has a separate meaning than “number of test examples” here). The distinction between w^t (iteration t of gradient descent) and w^j (column j of matrix W) should be clear from the context. We use α^t as the step size on iteration t. We use w^* as a minimum of $f(w)$. Stochastic gradient uses f_i to refer to the loss function on example i.

We use Z as an $n \times k$ matrix of features obtained under a change of basis, and z_i as the list of k features in the new basis for example i. When we do linear regression under a change of basis, we use v as the $k \times 1$ vector of parameters (instead of the usual $d \times 1$ vector w). We use \hat{Z} as the transformation of test data \hat{X}.

We use λ as the (scalar) regularization parameter. It is assumed to be non-negative (and will almost always be positive).

We use $\text{sign}(\alpha)$ as a function that return $+1$ if α is positive and -1 if α is negative.
Multi-class classification uses the same matrix W as we used for k-means, and we use w_{y_i} as the w_c value for the true label y_i.

We use $h(z_i)$ as the sigmoid function applied element-wise to a vector z_i.

Some method-specific notation used in this section:

- p is used as the degree of the polynomial in the polynomial basis, and we sometimes use Z_p when we want to specify specifically that we’ve used a degree-p basis.
- We use K as the $n \times n$ Gram matrix, containing $z_i^T z_j$ in position (i,j). We use \tilde{K} as the $t \times n$ matrix containing $\tilde{z}_i^T z_j$ in position (i,j). We use u as the $n \times 1$ parameter vector when doing kernel methods for linear models. The kernel function is written as $k(x_i,x_j)$.
- When introducing MLE/MAP, we use D as generic data (indexed by D_i if it splits into IID training examples), w as generic parameters, and \hat{w} as the predicted MLE or MAP value of w.

Part 4: Latent-Factor Models

Linear latent-factor models use the approximation $X \approx ZW$, where we use the same notation for Z and W as above: Z is $n \times k$ with z_i^T as the rows and z_{ic} as individual elements, W is $k \times d$ with w_c^T as the rows and w_j as the columns and w_{cj} as the individual elements. To avoid expressions like $(w_j)^T z_i$, for inner products in this section we sometimes use notation $\langle w, x \rangle$ to represent the inner product $w^T x$. We use $\|X\|_F$ as the Frobenius norm (square root of sum of elements squared).

Part 5: Neural Networks

This section continues using the same notation, but we now use $W^{(l)}$ and $Z^{(l)}$ as the values in layer l. We also use w_{c0} as the bias on hidden unit c, and m as the number of layers.

When we introduce convolutions we use x as signal, w as a filter, and z as the output of the filter.