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See Nesterov’s book for proofs of the below.
We say that a function f is convex if for all  and y on its domain and all 0 < o < 1 we have

flaz+ (1 —a)y) < af(z)+ (1 -a)f(y).
If f is differentiable, equivalent definitions are that

fy) > f(@) + (f'(x),y — ),
(f'(z) = f'(y),x —y)) > 0.

If f is twice-differentiable, an equivalent definition is that
V2f(z) = 0.

For a differentiable convex f, the following conditions are equivalent to the condition that the gradient f’ is
L-Lipschitz continuous:
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You can define Lipschitz continuity under a different norm, and in this case the first condition becomes
Ilf ()= f'(y)llq < L||z—yl|l, where |||/, and || - || are dual norms. For all the other inequalities, you replace
all instances of [ — || with ¢ — y[l, and | f/(x) — f'(4)] with | f'(2) ~ £'(3)s-

For twice-differentiable f, any of the above are equivalent (under the Euclidean norm) to

V2f(z) < LI.
The following conditions are equivalent to the condition that a differentiable f is u-strongly convex:
x— f(x) — g||:v||2 is convex
f4) = f@) + (f@),y —2) + Sl — g
(f'(@) = f'(y),z —y) > pllz — ylI?
a(l —a)u ”

flaz+ (1= a)y) < af@)+ (1 - a)f(y) -

1

z -yl



The following are not equivalent to u-strong convexity but are implied by it:
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For a twice-differentiable f strong-convexity is equivalent to:
V2f(x) = pl.

If f is p-strongly convex and f’ is L-Lipschitz continuous then we have
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