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Limits (Informal Definition)

* Let ‘f’ be a function that assigns an input x’ to an output f(x).
* Wesay ‘f" has a limit ‘L’ at ‘c’:

— As ‘X’ gest closer and closer to ‘c’, the value f(x) gets closer and closer to ‘L.

* Example: the limit of f(x)=x% as ‘x’ goes to 2 is 4.

FOL7)= 1755 D As 4, ingu

/ 2 7
—:.- """ ﬂ.("( Clb_s&/ 4.0
_ Lo ’

|J?ZL?¥(),73):1782 2 the oulpad

o 9%\)1' (.IU.SP/ to
F(I55=15? L



Limits (Formal Definition)

 Formally, ‘t" has limit ‘L’ at ‘¢’ if:
— For all “error” values € > 0, there exists a “distance” 6 > 0 such that:

 We have |f(x) — L| < € for all ‘X’ where |x—c| < and x#c.
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Limit vs. f(c)
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 The standard notation for “f(x) has a limit of ‘L’ at ‘c
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 The limit is often simply equal to f(c), the function evaluated at ‘c’
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* However, it may not depend on f(c): x4
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Continuous Functions

 We say ‘f’ is continuous at ‘c’ if f(c) equals the limit of ‘f” at ‘c’:

lim = 1f(c)
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— We say it’s discontinuous at ‘c’ if this equality is false (doesn’t equal limit).

 We'll say a “function is continuous” if it’s continuous for all inputs.
— This roughly means that “small changes in x’ lead to small changes in f(x)”.

* Most simple functions like polynomials are continuous.
* The composition of continuous functions will also be continuous.



Average Rate of Change

* Consider the interval from ‘x’ to ‘x+h’ for some function ‘¥ and h > 0:

 The “average rate of change” of the function over the interval is:

Fx+h) = £x)
h

* For linear functions, f(x) = ax + b, this gives the slope ‘@’ for any x and h.




Derivative

 Get more accurate measure of instantaneous change with smaller ‘h’:
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* The derivative f’(x) is the limit of the rate of change as ‘h’ goes to zero:
O = |im fFx+h) =~ £(x)
h-0 h

* For linear functions, f(x) = ax + b, the derivative is the slope, f'(x) = a.




Derivatives and Continuity

 We say that ‘f’ is differentiable at ‘c’ if the derivative exists at ‘c’.

e If ‘f'is differentiable at ‘c’, it must be continuous.
— But ‘f’ can be continuous without being differentiable.
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Common Derivatives (Polynomials) :
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 Derivative of constant function is O:
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 Power rule for derivative of simple polynomial:
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— Example: if f(x) = x2 then f’'(x) =

* Multiplying f(x) by a constant changes derivative by a constant:
— Example: if f(x) = 2x% then f’(x) =



Common Derivatives (Exponential and Logarithm)

Derivatives can be computed term-wise:

TE A=y +h then £ =4'(0 +h'[4

The derivative of the exponential function (e*) is itself:
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The derivative of the logarithm function (base ‘e’) is the reciprocal:
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Note that we’re defining exp(x) and log(x) so that log(exp(x))=x.



Common Derivatives (Composition)

 The chain rule lets us take derivatives of compositions:
e ()Un(x) then  £'l) = S\U\(Y)) h'(x)

— Example: if f(x) = exp(x?), then f’(x) = exp(x?)2x.

e A 3BluelBrown video with intuition for common derivatives.



https://www.youtube.com/watch?v=CfW845LNObM

Tangent Line

* |f ‘f’ is differentiable at a point x°, the tangent line is given by:
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* The tangent line ‘g’ is the unique line such that at x° we have:

— Same function value: g(x°) = f(x9).

— Same derivative value: g’'(x°) = f*(x9).
* We often use the tangent line as a “local” approximation of f’.




Higher-Order Derivatives

* Second derivative f”’(x) is the derivative of the derivative function.
— Gives “instantaneous rate of change” of the derivative.

— Example: if f(x) = x3 then f’'(x) = 3x2 and f”’(x) =

* Sign of second derivative: whether function is “curved” up or down.

I/(\ATV’NJH " Carve "x < /:
\/"4.()()70 mf() 0 F)=D

 We if we take the derivative ‘k’-times and the derivatives exist,
we say that ‘" is k-times differentiable.



Stationary/Critical Points

* An ‘X" with f’(x)=0 is called a stationary point or critical point.
— The slope is zero so the tangent line is “flat”.

,\ A Y,

[

(_rifical pMLl(



Derivative Test and Local Minima

* An ‘X" with f’(x)=0 is called a stationary point or critical point.

— The slope is zero so the tangent line is “flat”.
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— If f'(x) = 0 and f”’(x) >= 0, we say that X’ is a local minimum.

* “Close to %/, there is no larger value of f(x)”.



Summation Notation and Infinite Summations

* For a sequence of variables x,, recall summation notation:
N
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* We can write sum of infinite sequence of variables as a limit:
n
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 Another common way to write infinite summations is:



Bounding Summations

e Some useful facts about summations:

¢ | _ (| % i < 6 H(énw "
Z “'} - 0 ) '\Z '7”
=1 ! 1=
| 020/’ - o0 ”a/'rwrye)”
ZT:O(/oat) = )

t ", "
i-\f': - O(\[?) . \T).":”o diveryes Fuster



Partial Derivatives

 Multivariate functions have more than one variable:
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* Partial derivative: derivative of one variable, with all others fixed:
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* Gradient is a vector containing partia

 Example:

Fonction
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Multivariate Quadratic

* Multivariate quadratic is a multi-variable degree-2 polynomial:
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Matrix Notation for Linear Functions (Objective)

e Common ways to write a multivariate linear function:
’F(y,)xl)x;):qlxl t a, X, qh—té
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* The last line uses matrix notation, defining vectors ‘a” and ‘x” as:
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Matrix Notation for Linear Functions (Gradient)

e So we can write a multivariate linear function as:
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* We can also write the gradient in matrix notation:
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Matrix Notation for Quadratic Functions (Objective)

e Common ways to write a multivariate quadratic function:
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e Using vectors ‘b” and x” and matrix ‘A’, and matrix multiplication:
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Matrix Notation for Quadratic Functions (Gradient)

* So we can write a multivariate quadratic function as:
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* We can also write the gradient in matrix notation (symmetric ‘A’):
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* In non-symmetric case: |
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Tangent [Hyper-]Plane

* |f ‘f’ is differentiable at a point x°, the tangent hyper-plane is given by:
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* The tangent hyper-plane ‘g’ is the unique hyper-plane such that at x%: p«{

— Same function value: g(x°) = f(x9).
— Same partial derivative values: 3— 9( °) = {.‘( 0)

* We often use the tangent hyper plane as a “local” approximation of ‘f".



