Overview of Big-O Notation

Mark Schmidt, 2024

Motivation - Will it fit in memory and finish running?

Suppose you have written code that takes in data.

function findMax(y) n = length(y)maxValue = -Inffor i in 1:n

end

end

end

- We want to get an idea of how the code will perform on large inputs.
 - Is it likely to run out of memory?
 - Is it likely to take a very long time?
- We use big-O notation to approximately answer these questions.
 - A crude measure of how memory or time scale with the data size.

```
if y[i] > maxValue
        maxValue = y[i]
```


Motivation - Will it fit in memory and finish running?

- Informally:
 - Big-O time complexity is the product of the loop indices for the deepest loops.
 - Big-O memory complexity: product of loop indices to go through all stored data at worst time.

- How can this measure be useful?
 - If the time/memory is O(2ⁿ) for inputs of size n, we can only use it for tiny datasets.
 - We can apply O(n²) algorithms to medium-sized datasets.
 - We can apply O(n) algorithms to huge datasets.
 - Algorithms that take O(log n) are extremely fast (barely gets slower as data size increases).
 - Some algorithms are even O(1), meaning they do not depend on dataset size.

Big-O: Formal Definition

- Formally, the notation "g(n) is in O(f(n))" means:
 - "for all sufficiently large "n", $g(n) \leq c^*f(n)$ for some constant c > 0."

I find this concept easiest to learn by examples....

Big-O Arithmetic (Single Variable)

- Some examples for you to work through (assume 'n' is a positive integer):
 - Any constant number is in O(1), so 10 is in O(1).
 - Because $10 \le 10^{*1}$ for any "n".
 - Here, 10 is a constant that makes the right "O" side bigger for any 'n'.
 - Any constant multiplied by 'n' is in O(n), so 5n is in O(n).
 - Because $5n \leq 5^*n$ for any "n".
 - Here, 5 is a constant that makes the right "O" side bigger for any 'n'.
 - Slower-growing terms can be ignored, so 20n + 50 = O(n).
 - Because $20n + 50 \leq 70n$ for any "n".
 - Here, 70 is a constant that makes the right "O" side bigger for any 'n'.

Big-O Arithmetic (Single Variable)

- Only large values of "n" matter, and only largest-exponent polynomial matters.
 - So $4n^3 + 50n^2 + 100n + 10000$ is in O(n³).
 - Because $(4n^3 + 50n^2 + 100n + 10000) \le 5n^3$ for n > 100.
- Slower-growing terms are trivially in the class of faster-growing terms.
 - $O(n^2)$ is in $O(n^3)$, as cubic will be larger for sufficiently large "n".
 - But usually we try to find smallest O() value, so we would use $O(n^2)$ and not $O(n^3)$ if we can.
- Exponentials grow faster than polynomials which grow faster than logarithms.
 - And $n^{10} + 2^n$ is in O(2ⁿ).
 - So $50n^3 + 5^*\log(n)$ is in O(n³).
- Basically, you drop multiplicative constants and remove terms that do not dominate for large "n".
 - 40*log(n) + 100 is in O(log(n)).
 - 3n*log(n) + 20n is in O(n*log(n)).
 - $3n^{*}\log(n) + 20n^{2}$ is in O(n²).
 - $4n2^{n} + 8n^{3} + 10n^{*}\log(n)$ is in O(n2ⁿ).

Example: Finding Maximum of a Vector (Memory)

- The input in this example is a list of "n" numbers.
 - The size of this input is thus "n" times the cost to store one number.
 - We assume that the cost to store one number is O(1).
 - So the cost of storing the input is O(n).
- The algorithm itself only stores the extra variables "maxVal" and "i". \bullet
 - Plus maybe some bookkeeping.
 - So the additional storage required by the algorithm is O(1).
- Combining the input storage and algorithm storage gives O(n) + O(1) or O(n) memory complexity.

```
function findMax(y)
        n = length(y)
        maxValue = -Inf
        for i in 1:n
                if y[i] > maxValue
                         maxValue = y[i]
                end
        end
end
```


Example: Finding Maximum of a Vector (Time)

- First two lines do not depend on "n", so we say it costs O(1).
 - We assume that "y" knows its own length.
- Runtime of lines inside "for" loop do not depend "n", so they also cost O(1).
 - We will assume that comparing and assigning numbers takes O(1).
- But the number of times we go through the "for" loop is "n".
 - So the cost is O(1) for the first lines, and then n*O(1) for the "for" loop.
 - So time complexity is $O(1) + n^*O(1)$ or O(n) time complexity.

```
function findMax(y)
        n = length(y)
        maxValue = -Inf
        for i in 1:n
                if y[i] > maxValue
                         maxValue = y[i]
                end
        end
end
```


Watch out for sub-functions!

• An alternative way to compute the maximum is with this line:

- Does this cost O(1) because there is no "for" loop?
- No! The "maximum" function still needs to loop through all elements of "y".
 - The "for" loop is just hidden inside the function.
 - The time complexity of the above line of code is O(n).
- What does having O(n) time complexity mean? •
 - If it takes ~ 1 seconds with n=10,000, it takes ~ 10 seconds with n=100,000.
 - For large inputs, time will grow linearly with input size.
 - You would expect this code to finish in a reasonable amount of time even if "n" is 1 billion.

- maximum(y)

Example: Finding Maximum and Minimum

• Consider finding the maximum and the minimum:

- There are 2 "for" loops, but they are not nested.
 - Each one costs O(n).

• So total cost of this code is in O(n)+O(n) which is O(n).

```
function findMax(y)
        n = length(y)
        maxValue = -Inf
        for i in 1:n
                if y[i] > maxValue
                         maxValue = y[i]
                end
        end
        minValue = Inf
        for i in 1:n
                if y[i] < minValue
                         minValue = y[i]
                end
        end
        return (minValue, maxValue)
```

end

Example: Showing all Pairs of Products

- Consider showing all products between numbers:
- In this case the "for" loops are nested.
 - Inner "for" loops costs O(n).
 - But outer "for" loop makes us call the "inner" loop "n" times.
- So the time complexity of this code is in $O(n)^*O(n)$ which is in $O(n^2)$.
 - Though the memory complexity is still O(n).
- This code will get slower at a faster than linear rate as "n" gets big.

```
function showAllPairs(y)
        n = length(y)
        for i in 1:n
                for j in 1:n
                         @show y[i]*y[j]
                end
        end
```

end

• You would not expect this code to finish in a reasonable amount of time if "n" is 1 billion.

Example: Returning all Pairs of Products

- Consider returning all products between numbers:
- The time complexity is still O(n²).
- But the memory complexity is now O(n²) too.
 - You would need nested "for" loops that go through all "n²" elements of "yy".
- This code's memory grows at a faster than linear rate as "n" gets big.
 - You would expect this code to run out of memory if "n" is 1 billion.
- An alternate way to implement this would be with an outer product: $y_{x} = y_{y'}$
 - Note that this 1 line would also cost $O(n^2)$ time and require $O(n^2)$ memory.

```
function allParis(y)
        n = length(y)
        yy = zeros(n,2)
        for i in 1:n
                for j in 1:n
                         yy[i,j] = y[i]*y[j]
                end
        end
        return yy
end
```

Standard Sorting and Searching Time Costs

- Some well-known big-O results:
 - Given a list of "n" numbers, sorting costs O(n*log(n)) time.
 - Sometimes just written as O(n log n).
 - Given a list of "n" numbers, finding kth largest costs O(n).
 - Faster than sorting: you can avoid sorting using a "select" algorithm.
 - Given a sorted list of "n" numbers, finding kth largest costs O(1).
 - You can just return the kth element.
 - Given a list of "n" numbers, finding smallest greater than " α " costs O(n).
 - Given a sorted list of "n" numbers, finding smallest greater than " α " costs O(log n).
 - Using a binary search where each step throws away half the remaining possible answers.
 - Standard operations on hash data structures cost O(1).
 - Looking up key, inserting new element, deleting element.

Big-O with <u>Multiple</u> Variables

Motivation for Multiple Variables

- Our input size often depends on more than one variable.
 - Our data matrix 'X' typically has 'n' rows and 'd' columns.
- We can still use big-O in this setting.
 - To consider time/memory in terms of both variables.
- Example:
 - It costs O(nd) memory to store 'X'.
 - It takes O(nd) time to find the maximum element of 'X'.
 - This is ok for large values of 'n' and 'd'.
 - Although if both 'n' and 'd' are large, this may be prohibitive.

Example: Computing Sum of Matrix

Consider code for computing sum of all elements of a matrix:

```
function matrixSum(X)
        (n,d) = size(X)
```

sm = 0for i in 1:n for j in 1:nd sm += X[i,j] end end return sm end

- The "sm +=" line costs O(1).
- The O(1) cost of the inner loop is repeated 'd' times, giving O(d).
- The O(d) cost of the outer loop is repeated 'n' times, giving O(nd).

Big-O Arithmetic (Multiple Variables)

- Additional rule for multiple variables:
 - Include terms that could be dominant for any combination of variables.

- Examples:
 - O(n) + O(d) is in O(n + d).
 - $O(n^3) + O(\log(d)) + O(n)$ is in $O(n^3 + \log(d))$.
 - $O(n^2) + O(nd) + O(d) + O(d^3)$ is in $O(n^2 + nd + d^3)$.
 - $O(n^2d^3) + O(d^3n^2) + O(n^2d^2) + O(n^3)$ is in $O(n^3 + n^2d^3 + d^3n^2)$.
 - $O(n\sqrt{m}) + O(n^2) + O(\sqrt{m}) + O(n^*\log(m))$ is in $O(n^2 + n\sqrt{m})$.

Standard Linear Algebra Time Costs

- Some well-known linear algebra costs:
 - Multiplying 'd' by 1 vector 'w' by scalar α , α w costs O(d).
 - For loop over elements of 'w'.
 - Adding two 'd' by 1 vectors 'w' and 'v', w+v costs O(d).
 - For loop over elements of 'w'.
 - Dot products between vectors, $w^T v$, and norms of vector ||w|| cost O(d).
 - Scalar multiplication and addition of 'n' times 'd' matrices is O(nd).
 - Double for loop over elements of matrix.

Standard Linear Algebra Time Costs

- Some well-known linear algebra costs:
 - Matrix-vector product with 'n' times 'd' matrix 'X', Xw costs O(nd).
 - Double loop over all elements of 'X'.
 - Same cost for matrix-vector product with transpose, X[⊤]y.
 - Matrix-matrix product of 'n' times 'd' matrix X with 'd' times 'k' matrix W, XW costs O(ndk).
 - Double loop over all elements of the 'n' times 'k' resulting matrix.
 - Each element of the matrix requires computing an O(d) dot product.
 - There exist faster ways to implement this, but we will use the O(ndk) cost for this course.
 - Inverting an 'n' times 'n' matrix or solving an 'n' times 'n' linear system costs O(n³).
 - Perform up to 'n' stages of Gaussian elimination, each costing O(n²).
 - Faster methods exist, but this course will use O(n³) cost of basic implementation.

Example: Least Squares with Normal Equations

- Cost to solve normal equations for least squares: $X^T X w = X^T y$.
 - Cost of O(nd) for matrix-vector product $b=X^{T}y$.
 - Cost of O(n^2d) for matrix-matrix product A=X^TX.
 - Cost of O(n³) to solve 'n' times 'n' linear system Aw=b.
 - Total cost of $O(nd + n^2d + n^3) = O(n^2d + n^3)$.

Decision Trees and Stumps

Decision Stumps

- O(n²d) decision stump pseudocode:
- Number of outer loop iterations is 'd'.
 - Number of inner loop iterations is 'n'.
 - Cost of operations in the inner loop is O(n)

 - Assigning labels and computing error also costs O(n).

- But runtime can be reduced to O(nd log n).
 - At start of each outer loop, sort the X[:,j] values for cost of O(n log n).

Input: feature matrix X and label vector y (n,d) = size(X) minError = sum(y != mode(y)) compute error if you don't split (user-defined function mode, minRule = [] for j = 1:dfor each feature 'j' for each example 'i' for j=lin set threshold to feature 'j' in example 'i'. f = X[i,j]y-above = mode(y[X[:,j],7t]) find mode of label vector when feature 'j' is above threshold y-below = mode(y[X[:,j], = t]) find mode of label vector when feature 'j' is below throshold. yhot = fill(y-above, n) <u>classify</u> all examples based on threshold yhat [X[:,j] <= t] = y_below error = sum(yhat != y) if error < min Error minError = error min Rule = Li t] count the number of errors. store this rule if it has the lowest error so far.

• Finding mode among 'n' objects is O(n) (may need to use dictionary if very sparse).

• Each inner loop updates mode/assignments/error for example 'i', for cost of O(1).

Decision Trees - Naive Analysis

- Using greedy decision tree learning:
 - With depth of 1, we need to fit 1 decision stump.
 - With depth of 2, we need to fit up to 3 decision stumps.
 - With depth of 3, we need to fit up to 7 decisions stumps.
 - With depth of 4, we need to fit up to 15 decision stumps.
 - With depth of 'm', we need to fit up 2^{m-1} decision stumps.

- Since fitting one stump costs O(nd log n), cost of fitting tree is O(2^mnd log n)? • But this is too pessimistic: it can be improved to $O(nd(m + \log n))$.

Decision Trees - O(nd(m + log n)) implementation

- Instead of having each stump sort, you could sort all features once.
 - One-time sorting cost of O(nd log n).
 - But with sorted features fitting stumps only costs O(nd).
- Now use the fact that each example is only assigned to one stump per depth:
 - If all training examples are in one leaf node to be split:
 - We fit one decision stump, at a cost O(nd).
 - If we have n_1 examples in one leaf and n_2 examples in another $(n_1+n_2=n)$:
 - Fit one decision stump at cost $O(n_1d)$ and the other with cost $O(n_2d)$.
 - So total cost is $O((n_1 + n_2)d)$ which is in O(nd).
 - No matter how examples are distributed, total cost for one depth is O(nd).
- Get result by combining one time sort cost of O(nd log n), and depth cost of O(nd) for each depth 'm'.
 - In practice, most implementations do not pre-sort which is similar in practice but slower theoretically.