
Mark Schmidt, 2024

Overview of Big-O Notation

Motivation - Will it fit in memory and finish running?
• Suppose you have written code that takes in data.

• We want to get an idea of how the code will perform on large inputs.

• Is it likely to run out of memory?

• Is it likely to take a very long time?

• We use big-O notation to approximately answer these questions.

• A crude measure of how memory or time scale with the data size.

Motivation - Will it fit in memory and finish running?
• Informally:

• Big-O time complexity is the product of the loop indices for the deepest loops.

• Big-O memory complexity: product of loop indices to go through all stored data at worst
time.

• How can this measure be useful?

• If the time/memory is O(2n) for inputs of size n, we can only use it for tiny datasets.

• We can apply O(n2) algorithms to medium-sized datasets.

• We can apply O(n) algorithms to huge datasets.

• Algorithms that take O(log n) are extremely fast (barely gets slower as data size increases).

• Some algorithms are even O(1), meaning they do not depend on dataset size.

Big-O: Formal Definition

• Formally, the notation “g(n) is in O(f(n))” means:

• “for all sufficiently large “n”, g(n) c*f(n) for some constant c > 0.”

• I find this concept easiest to learn by examples….

≤

Big-O Arithmetic (Single Variable)
• Some examples for you to work through (assume ’n’ is a positive integer):

• Any constant number is in O(1), so 10 is in O(1) .

• Because 10 10*1 for any “n”.

• Here, 10 is a constant that makes the right “O” side bigger for any ’n’.

• Any constant multiplied by ’n’ is in O(n), so 5n is in O(n).

• Because 5n 5*n for any “n”.

• Here, 5 is a constant that makes the right “O” side bigger for any ’n’.

• Slower-growing terms can be ignored, so 20n + 50 = O(n).

• Because 20n + 50 70n for any “n”.

• Here, 70 is a constant that makes the right “O” side bigger for any ’n’.

≤

≤

≤

Big-O Arithmetic (Single Variable)
• Only large values of “n” matter, and only largest-exponent polynomial matters.

• So 4n3 + 50n2 + 100n + 10000 is in O(n3).

• Because (4n3 + 50n2 + 100n + 10000) 5n3 for n > 100.

• Slower-growing terms are trivially in the class of faster-growing terms.

• O(n2) is in O(n3), as cubic will be larger for sufficiently large “n".

• But usually we try to find smallest O() value, so we would use O(n2) and not O(n3) if we can.

• Exponentials grow faster than polynomials which grow faster than logarithms.

• And n10 + 2n is in O(2n).

• So 50n3 + 5*log(n) is in O(n3).

• Basically, you drop multiplicative constants and remove terms that do not dominate for large “n”.

• 40*log(n) + 100 is in O(log(n)).

• 3n*log(n) + 20n is in O(n*log(n)).

• 3n*log(n) + 20n2 is in O(n2).

• 4n2n + 8n3 + 10n*log(n) is in O(n2n).

≤

Example: Finding Maximum of a Vector (Memory)

• The input in this example is a list of “n” numbers.

• The size of this input is thus “n” times the cost to store one number.

• We assume that the cost to store one number is O(1).

• So the cost of storing the input is O(n).

• The algorithm itself only stores the extra variables “maxVal” and “i”.

• Plus maybe some bookkeeping.

• So the additional storage required by the algorithm is O(1).

• Combining the input storage and algorithm storage gives O(n) + O(1) or O(n) memory complexity.

Example: Finding Maximum of a Vector (Time)

• First two lines do not depend on “n”, so we say it costs O(1).

• We assume that “y” knows its own length.

• Runtime of lines inside “for” loop do not depend “n”, so they also cost O(1).

• We will assume that comparing and assigning numbers takes O(1).

• But the number of times we go through the “for” loop is “n”.

• So the cost is O(1) for the first lines, and then n*O(1) for the “for” loop.

• So time complexity is O(1) + n*O(1) or O(n) time complexity.

Watch out for sub-functions!
• An alternative way to compute the maximum is with this line:

• Does this cost O(1) because there is no “for” loop?

• No! The “maximum” function still needs to loop through all elements of “y”.

• The “for” loop is just hidden inside the function.

• The time complexity of the above line of code is O(n).

• What does having O(n) time complexity mean?

• If it takes ~1 seconds with n=10,000, it takes ~10 seconds with n=100,000.

• For large inputs, time will grow linearly with input size.

• You would expect this code to finish in a reasonable amount of time even if “n” is 1 billion.

Example: Finding Maximum and Minimum
• Consider finding the maximum and the minimum:

• There are 2 “for” loops, but they are not nested.

• Each one costs O(n).

• So total cost of this code is in O(n)+O(n) which is O(n).

Example: Showing all Pairs of Products

• Consider showing all products between numbers:

• In this case the “for” loops are nested.

• Inner “for” loops costs O(n).

• But outer “for” loop makes us call the “inner” loop “n” times.

• So the time complexity of this code is in O(n)*O(n) which is in O(n2).

• Though the memory complexity is still O(n).

• This code will get slower at a faster than linear rate as “n” gets big.

• You would not expect this code to finish in a reasonable amount of time if “n” is 1 billion.

Example: Returning all Pairs of Products
• Consider returning all products between numbers:

• The time complexity is still O(n2).

• But the memory complexity is now O(n2) too.

• You would need nested “for” loops that go through all “n2” elements of “yy”.

• This code’s memory grows at a faster than linear rate as “n” gets big.

• You would expect this code to run out of memory if “n” is 1 billion.

• An alternate way to implement this would be with an outer product:

• Note that this 1 line would also cost O(n2) time and require O(n2) memory.

Standard Sorting and Searching Time Costs
• Some well-known big-O results:

• Given a list of “n” numbers, sorting costs O(n*log(n)) time.

• Sometimes just written as O(n log n).

• Given a list of “n” numbers, finding kth largest costs O(n).

• Faster than sorting: you can avoid sorting using a “select” algorithm.

• Given a sorted list of “n” numbers, finding kth largest costs O(1).

• You can just return the kth element.

• Given a list of “n” numbers, finding smallest greater than “ ” costs O(n).

• Given a sorted list of “n” numbers, finding smallest greater than “ ” costs O(log n).

• Using a binary search where each step throws away half the remaining possible answers.

• Standard operations on hash data structures cost O(1).

• Looking up key, inserting new element, deleting element.

α

α

Big-O with Multiple Variables

Motivation for Multiple Variables
• Our input size often depends on more than one variable.

• Our data matrix ‘X’ typically has ’n’ rows and ‘d’ columns.

• We can still use big-O in this setting.

• To consider time/memory in terms of both variables.

• Example:

• It costs O(nd) memory to store ‘X’.

• It takes O(nd) time to find the maximum element of ‘X’.

• This is ok for large values of ’n’ and ‘d’.

• Although if both ’n’ and ‘d’ are large, this may be prohibitive.

Example: Computing Sum of Matrix
• Consider code for computing sum of all elements of a matrix:

• The “sm +=“ line costs O(1).

• The O(1) cost of the inner loop is repeated ‘d’ times, giving O(d).

• The O(d) cost of the outer loop is repeated ’n’ times, giving O(nd).

Big-O Arithmetic (Multiple Variables)
• Additional rule for multiple variables:

• Include terms that could be dominant for any combination of variables.

• Examples:

• O(n) + O(d) is in O(n + d).

• O(n3) + O(log(d)) + O(n) is in O(n3 + log(d)).

• O(n2) + O(nd) + O(d) + O(d3) is in O(n2 + nd + d3).

• O(n2d3) + O(d3n2) + O(n2d2) + O(n3) is in O(n3 + n2d3 + d3n2).

• O(n) + O(n2) + O() + O(n*log(m)) is in O(n2 + n).m m m

Standard Linear Algebra Time Costs
• Some well-known linear algebra costs:

• Multiplying ‘d’ by 1 vector ‘w’ by scalar , w costs O(d).

• For loop over elements of ‘w’.

• Adding two ‘d’ by 1 vectors ‘w’ and ‘v’, w+v costs O(d).

• For loop over elements of ‘w’.

• Dot products between vectors, wTv, and norms of vector ||w|| cost O(d).

• Scalar multiplication and addition of ’n’ times ‘d’ matrices is O(nd).

• Double for loop over elements of matrix.

α α

Standard Linear Algebra Time Costs
• Some well-known linear algebra costs:

• Matrix-vector product with ’n’ times ‘d’ matrix ‘X’, Xw costs O(nd).

• Double loop over all elements of ‘X’.

• Same cost for matrix-vector product with transpose, XTy.

• Matrix-matrix product of ’n’ times ‘d’ matrix X with ‘d’ times ‘k’ matrix W, XW costs O(ndk).

• Double loop over all elements of the ’n’ times ‘k’ resulting matrix.

• Each element of the matrix requires computing an O(d) dot product.

• There exist faster ways to implement this, but we will use the O(ndk) cost for this course.

• Inverting an ’n’ times ’n’ matrix or solving an ’n’ times ’n’ linear system costs O(n3).

• Perform up to ’n’ stages of Gaussian elimination, each costing O(n2).

• Faster methods exist, but this course will use O(n3) cost of basic implementation.

Example: Least Squares with Normal Equations
• Cost to solve normal equations for least squares: XTXw = XTy.

• Cost of O(nd) for matrix-vector product b=XTy.

• Cost of O(n2d) for matrix-matrix product A=XTX.

• Cost of O(n3) to solve ’n’ times ’n’ linear system Aw=b.

• Total cost of O(nd + n2d + n3) = O(n2d + n3).

Decision Trees and Stumps

Decision Stumps
• O(n2d) decision stump pseudocode:

• Number of outer loop iterations is ‘d’.

• Number of inner loop iterations is ‘n’.

• Cost of operations in the inner loop is O(n)

• Finding mode among ’n’ objects is O(n) (may need to use dictionary if very sparse).

• Assigning labels and computing error also costs O(n).

• But runtime can be reduced to O(nd log n).

• At start of each outer loop, sort the X[:,j] values for cost of O(n log n).

• Each inner loop updates mode/assignments/error for example ‘i’, for cost of O(1).

Decision Trees - Naive Analysis
• Using greedy decision tree learning:

• With depth of 1, we need to fit 1 decision stump.

• With depth of 2, we need to fit up to 3 decision stumps.

• With depth of 3, we need to fit up to 7 decisions stumps.

• With depth of 4, we need to fit up to 15 decision stumps.

• With depth of ‘m’, we need to fit up 2m-1 decision stumps.

• Since fitting one stump costs O(nd log n), cost of fitting tree is O(2mnd log n)?

• But this is too pessimistic: it can be improved to O(nd(m + log n)).

Decision Trees - O(nd(m + log n)) implementation
• Instead of having each stump sort, you could sort all features once.

• One-time sorting cost of O(nd log n).

• But with sorted features fitting stumps only costs O(nd).

• Now use the fact that each example is only assigned to one stump per depth:

• If all training examples are in one leaf node to be split:

• We fit one decision stump, at a cost O(nd).

• If we have n1 examples in one leaf and n2 examples in another (n1+n2=n):

• Fit one decision stump at cost O(n1d) and the other with cost O(n2d).

• So total cost is O((n1 + n2)d) which is in O(nd).

• No matter how examples are distributed, total cost for one depth is O(nd).

• Get result by combining one time sort cost of O(nd log n), and depth cost of O(nd) for each depth ‘m’.

• In practice, most implementations do not pre-sort which is similar in practice but slower theoretically.

