Overview of Big-O Notation

Mark Schmidt, 2024

Motivation - Will it fit in memory and finish running?

* Suppose you have written code that takes in data.

function findMax(y)
n = length(y)
maxValue = -Inf
for 1 in 1:n
if y[i] > maxValue
maxValue = y[il
end
end
end

 We want to get an idea of how the code will perform on large inputs.
e |s it likely to run out of memory?
* |s it likely to take a very long time?

* We use big-O notation to approximately answer these questions.

* A crude measure of how memory or time scale with the data size.

Motivation - Will it fit in memory and finish running?

e |Informally:
* Big-O time complexity is the product of the loop indices for the deepest loops.

* Big-O memory complexity: product of loop indices to go through all stored data at worst
time.

 How can this measure be useful?
e |f the time/memory is O(2") for inputs of size n, we can only use it for tiny datasets.
 We can apply O(n2) algorithms to medium-sized datasets.
 We can apply O(n) algorithms to huge datasets.
e Algorithms that take are extremely fast ().

 Some algorithms are even O(1), meaning they do not depend on dataset size.

Big-O: Formal Definition

 Formally, the notation “g(n) is in O(f(n))” means:

o “for all sufficiently large “n”, g(n) < c*f(n) for some constant c > 0.”

* | find this concept easiest to learn by examples....

Big-O Arithmetic (Single Variable)

« Some examples for you to work through (assume ’n’ is a positive integer):

* Any constant numberisin O(1), so 10 isin O(1) .

 Because 10 < 10*1 for any “n”.
* Here, 10 is a constant that makes the right “O” side bigger for any ’n’.

* Any constant multiplied by ’n’ is in O(n), so 5n is in O(n).
 Because 5n < 5*n for any “n”.

 Here, 5 is a constant that makes the right “O” side bigger for any ’n’.

* Slower-growing terms can be ignored, so 20n + 50 = O(n).

 Because 20n + 50 < 70n for any “n”.

* Here, 70 is a constant that makes the right “O” side bigger for any ’n’.

Big-O Arithmetic (Single Variable)

* Only large values of “n” matter, and only largest-exponent polynomial matters.

* S0 4n3 + 50n2 + 100n + 10000 is in O(n3).

 Because (4n3 + 50n2 + 100n + 10000) < 5n3 for n > 100.

* Slower-growing terms are trivially in the class of faster-growing terms.

* O(n?) is in O(n3), as cubic will be larger for sufficiently large “n".

 But usually we try to find smallest O() value, so we would use O(n2) and not O(n3) if we can.
 Exponentials grow faster than polynomials which grow faster than logarithms.

 And n10 + 2njs in O(2n).

* S0 50n3 + 5*log(n) is in O(n3).
» Basically, you drop multiplicative constants and remove terms that do not dominate for large “n”.

* 40%log(n) + 100 is in O(log(n)).

* 3n*log(n) + 20n is in O(n*log(n)).

* 3n*log(n) + 20n2 is in O(n2).

e 4n2n + 8n3 + 10n*log(n) is in O(n2n).

Example: Finding Maximum of a Vector (Memory)

function findMax(y)

n = length(y)

maxValue = -Inf

for 1 1in 1:n
if y[i] > maxValue

maxValue = y[i]

end

end

 The input in this example is a list of “n” numbers. €nd
* The size of this input is thus “n” times the cost to store one number.
 We assume that the cost to store one number is O(1).
* So the cost of storing the input is O(n).
* The algorithm itself only stores the extra variables “maxVal” and “|”
* Plus maybe some bookkeeping.

* So the additional storage required by the algorithm is O(1).

 Combining the input storage and algorithm storage gives O(n) + O(1) or O(n) memory complexity.

Example: Finding Maximum of a Vector (Time)

function findMax(y)
n = length(y)
maxValue = -Inf
for 1 in 1:n
if y[i] > maxValue
maxValue = y[i]
end
end
end

* First two lines do not depend on “n”, so we say it costs O(1).
* We assume that “y” knows its own length.

* Runtime of lines inside “for” loop do not depend “n”, so they also cost O(1).
 We will assume that comparing and assigning numbers takes O(1).

* But the number of times we go through the “for” loop is “n”.

 So the cost is O(1) for the first lines, and then n*O(1) for the “for” loop.

* So time complexity is O(1) + n*O(1) or O(n) time complexity.

Watch out for sub-functions!

* An alternative way to compute the maximum is with this line:
maximum(y)
* Does this cost O(1) because there is no “for” loop?
* No! The "maximum” function still needs to loop through all elements of “y”.
* The “for” loop is just hidden inside the function.

* The time complexity of the above line of code is O(n).

 What does having O(n) time complexity mean?
e |fit takes ~1 seconds with n=10,000, it takes ~10 seconds with n=100,000.
* For large inputs, time will grow linearly with input size.

* You would expect this code to finish in a reasonable amount of time even if “n” is 1 billion.

Example: Finding Maximum and Minimum

» Consider finding the maximum and the minimum: ~ function findtax(y) |

maxValue = -Inf
for 1 in 1:n
if y[i] > maxValue
maxValue = y[i]
1 3 end
 There are 2 “for” loops, but they are not nested. end
minValue = Inf
for 1 in 1:n
* Each one costs O(n). if y[i] < minValue
minValue = y[il
end
end
return (minValue,maxValue)
end

e So total cost of this code is in O(n)+O(n) which is O(n).

Example: Showing all Pairs of Products

function showAllPairs(y)

, , n = length(y)
* Consider showing all products between numbers: for i iﬂ 1:?1'

for j in 1:n
@show yl[ilxy[j]

end
* |n this case the “for” loops are nested. end

end
* |nner “for” loops costs O(n).

 But outer “for” loop makes us call the “inner” loop “n” times.
* So the time complexity of this code is in O(n)*O(n) which is in O(n2).

* Though the memory complexity is still O(n).

* This code will get slower at a faster than linear rate as “n” gets big.

* You would not expect this code to finish in a reasonable amount of time if “n” is 1 billion.

Example: Returning all Pairs of Products

function allParis(y)
n = length(y)
* Consider returning all products between numbers: yy = zeros(n,2)
for 1 in 1:n
for j in 1l:n
yyli,il = ylilxyl[j]

* The time complexity is still O(n2). o end

O return yy
 But the memory complexity is now O(n2?) too. end

* You would need nested “for” loops that go through all “n2” elements of “yy”.

* This code’s memory grows at a faster than linear rate as “n” gets big.

* You would expect this code to run out of memory if “n” is 1 billion.

* An alternate way to implement this would be with an outer product: Yy¥ = y*y’

* Note that this 1 line would also cost O(n2) time and require O(n2) memory.

Standard Sorting and Searching Time Costs

 Some well-known big-O results:

* Given a list of “n” numbers, sorting costs O(n*log(n)) time.
 Sometimes just written as O(n log n).
e Given a list of “n” numbers, finding kth largest costs O(n).
e Faster than sorting: you can avoid sorting using a “select” algorithm.
* Given a sorted list of “n” numbers, finding kth largest costs O(1).

* You can just return the kth element.
e Given a list of “n” numbers, finding smallest greater than “a” costs O(n).

e Given a sorted list of “n” numbers, finding smallest greater than “a” costs O(log n).
* Using a binary search where each step throws away half the remaining possible answers.
e Standard operations on hash data structures cost O(1).

* Looking up key, inserting new element, deleting element.

Big-O with Multiple Variables

Motivation for Multiple Variables

* Our input size often depends on more than one variable.

* Our data matrix ‘X’ typically has 'n’ rows and ‘d’ columns.
* We can still use big-0 in this setting.

* Jo consider time/memory in terms of both variables.
 Example:

e |t costs O(nd) memory to store ‘X.

e |t takes O(nd) time to find the maximum element of ‘X’.

* This is ok for large values of 'n’ and ‘d’.

* Although if both 'n’” and ‘d’ are large, this may be prohibitive.

Example: Computing Sum of Matrix

» Consider code for computing sum of all elements of a matrix:

function matrixSum(X)
(n,d) = size(X)

sm = 0
for 1 in 1:n
for 3 in 1:nd
sm += X[i,j]
end
end
return sm
end

 The “sm +=" line costs O(1).
 The O(1) cost of the inner loop is repeated ‘d’ times, giving O(d).

 The O(d) cost of the outer loop is repeated 'n’ times, giving O(nd).

Big-O Arithmetic (Multiple Variables)

* Additional rule for multiple variables:

* |nclude terms that could be dominant for any combination of variables.

 Examples:
 O(n) + O(d) is in O(n + d).
* O(nd) + O(log(d)) + O(n) is in O(n3 + log(d)).
e O(n?) + O(nd) + O(d) + O(d3) is in O(nN2 + nd + d3).
e O(n2d3) + O(d3n2) + O(n2d2) + O(n3) is in O(N3 + N2d3 + d3n2).

O(m/m) + O(n2) + O(/m) + O(*log(m)) is in O(N2 + ny/m).

Standard Linear Algebra Time Costs

 Some well-known linear algebra costs:

 Multiplying ‘d’ by 1 vector ‘w’ by scalar a, aw costs O(d).
 For loop over elements of ‘w’.
 Adding two ‘d’ by 1 vectors ‘w’ and ‘v’, w+v costs O(d).
 For loop over elements of ‘w’.
« Dot products between vectors, wTv, and norms of vector ||w|| cost O(d).
o Scalar multiplication and addition of 'n’ times ‘d’ matrices is O(nd).

 Double for loop over elements of matrix.

Standard Linear Algebra Time Costs

 Some well-known linear algebra costs:
* Matrix-vector product with 'n’ times ‘d’ matrix ‘X’, Xw costs O(nd).
* Double loop over all elements of ‘X’.
 Same cost for matrix-vector product with transpose, XTy.
* Matrix-matrix product of 'n’ times ‘d’ matrix X with ‘d’ times ‘k’ matrix W, XW costs O(ndk).
* Double loop over all elements of the 'n’ times ‘k’ resulting matrix.
* Each element of the matrix requires computing an O(d) dot product.
* There exist faster ways to implement this, but we will use the O(ndk) cost for this course.
* Inverting an ’n’ times 'n’ matrix or solving an 'n’ times ’n’ linear system costs O(n3).
* Perform up to 'n’ stages of Gaussian elimination, each costing O(n2).

e Faster methods exist, but this course will use O(n3) cost of basic implementation.

Example: Least Squares with Normal Equations

* Cost to solve normal equations for least squares: XTXw = Xy,
e Cost of O(nd) for matrix-vector product b=XTy.
e Cost of O(n2d) for matrix-matrix product A=XTX.
e Cost of O(n3) to solve 'n’ times ’n’ linear system Aw=Db.

e Total cost of O(nd + n2d + n3) = O(n2d + n3).

Decision Trees and Stumps

—_[n()ud'-' feature matrix X and |abel vector y
(n)c\) = gize (X)

MmmnError = Sum(}/ !: MOJC(\/)) C’OMf”}f error {f yon J_O_f‘\\'f S,olif (V\Se/‘c(("rime(/ £onetion ’/MaJc“)

.. MinRale = L)
Decision Stumps « - e cun Fnboe
‘For | ~ l:f\] {or eath ?kamr/j /i oy) |
I . 1’: X['.\ Set ;I_QS_LA' 1’0 ealure /‘)‘ n QXQm,oe i
* O(n2d) decision stump pseudocode: Yodeore = mo e GK[)7) Fnd made of Nabdl vecke whon featwe ' i ahwe oot
)’»LJN:T‘JE (y[X[:)j)S: t]) F’,,\A "".E’if of labe vector when feature ’J‘ (5 below Hhroshsll
* Number of outer loop iterations is ‘d’. y*h:[)f[%Zflfﬂel“; . classly el ernpls bud on fhreshold
. . .] C)érf()f put ;Jul;‘(y)\qf !: y) Cownt tThe number of errors.
* Number of inner loop iterations is 'n’. i error < min error Store tis cule 17 has The Jowest error so fu.

minRale = [} €

* Cost of operations in the inner loop is O(n)
* Finding mode among 'n’ objects is O(n) (may need to use dictionary if very sparse).

* Assigning labels and computing error also costs O(n).

* But runtime can be reduced to O(nd log n).
* At start of each outer loop, sort the X]:,j] values for cost of O(n log n).

 Each inner loop updates mode/assignments/error for example ‘’, for cost of O(1).

Decision Trees - Naive Analysis

* Using greedy decision tree learning:

* With depth of 1, we need to fit 1 decision stump.

* With depth of 2, we need to fit up to 3 decision stumps.
* With depth of 3, we need to fit up to 7 decisions stumps.
 With depth of 4, we need to fit up to 15 decision stumps.

 With depth of ‘m’, we need to fit up 2m-1 decision stumps.

» Since fitting one stump costs O(nd log n), cost of fitting tree is O(2mnd log n)?

* But this is too pessimistic: it can be improved to O(nd(m + log n)).

Decision Trees - O(nd(m + log n)) implementation

* |nstead of having each stump sort, you could sort all features once.
* One-time sorting cost of O(nd log n).
* But with sorted features fitting stumps only costs O(nd).
 Now use the fact that each example is only assigned to one stump per depth:
 |f all training examples are in one leaf node to be split:
* We fit one decision stump, at a cost O(nd).
* |f we have n1 examples in one leaf and n2 examples in another (n1+n2=n):
* Fit one decision stump at cost O(n1d) and the other with cost O(n2d).
» So total cost is O((n1 + n2)d) which is in O(nd).
 No matter how examples are distributed, total cost for one depth is O(nd).
* (Get result by combining one time sort cost of O(nd log n), and depth cost of O(nd) for each depth ‘m’.

* |n practice, most implementations do not pre-sort which is similar in practice but slower theoretically.

