Today: Semi-Supervised Learning

- Our usual **supervised learning** framework:

<table>
<thead>
<tr>
<th>Egg</th>
<th>Milk</th>
<th>Fish</th>
<th>Wheat</th>
<th>Shellfish</th>
<th>Peanuts</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>1.2</td>
<td>0</td>
<td>0.10</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sick?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

- In **semi-supervised learning**, we also have **unlabeled examples**:

<table>
<thead>
<tr>
<th>Egg</th>
<th>Milk</th>
<th>Fish</th>
<th>Wheat</th>
<th>Shellfish</th>
<th>Peanuts</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>1.2</td>
<td>0.3</td>
<td>0.10</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
Semi-Supervised Learning

• The semi-supervised learning (SSL) framework:

\[\begin{bmatrix}
X & y & \bar{X}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{n} \sum_{i=1}^{n} x_i & \frac{1}{n} \sum_{i=1}^{n} y_i & \frac{1}{t} \sum_{i=1}^{t} x_i
\end{bmatrix} \]

• This arises a lot:
 – Usually getting unlabeled data is easy but getting labeled data is hard.
 – Why build a classifier if getting labels is easy?

• Common situation:
 – A small number of labeled examples.
 – A huge number of unlabeled examples: \(t \gg n \).
Transductive vs. Inductive SSL

- **Transductive SSL:**
 - Only interested in labels of the given unlabeled examples.
Transductive vs. Inductive SSL

- **Transductive SSL:**
 - Only interested in labels of the **given** unlabeled examples.

- **Inductive SSL:**
 - Interested in the **test set** performance on new examples.

\[
\begin{align*}
\mathbf{X} &= \begin{bmatrix}
\vdots \\
\mathbf{x}_1 \\
\vdots \\
\mathbf{x}_n
\end{bmatrix}_{n \times d}, \\
\mathbf{y} &= \begin{bmatrix}
\vdots \\
\mathbf{y}_1 \\
\vdots \\
\mathbf{y}_n
\end{bmatrix}_{n \times 1}, \\
\bar{\mathbf{X}} &= \begin{bmatrix}
\vdots \\
\bar{\mathbf{x}}_1 \\
\vdots \\
\bar{\mathbf{x}}_t
\end{bmatrix}_{t \times d}, \\
\bar{\mathbf{y}} &= \begin{bmatrix}
\vdots \\
\bar{\mathbf{y}}_1 \\
\vdots \\
\bar{\mathbf{y}}_t
\end{bmatrix}_{t \times 1}, \\
\tilde{\mathbf{X}} &= \begin{bmatrix}
\vdots \\
\tilde{\mathbf{x}}_1 \\
\vdots \\
\tilde{\mathbf{x}}_c
\end{bmatrix}_{c \times d}, \\
\tilde{\mathbf{y}} &= \begin{bmatrix}
\vdots \\
\tilde{\mathbf{y}}_1 \\
\vdots \\
\tilde{\mathbf{y}}_c
\end{bmatrix}_{c \times 1}, \\
\mathbf{\tilde{X}} &= \begin{bmatrix}
\tilde{\mathbf{x}}_1 \\
\tilde{\mathbf{x}}_2 \\
\vdots \\
\tilde{\mathbf{x}}_n
\end{bmatrix}_{n \times d}, \\
\mathbf{\tilde{y}} &= \begin{bmatrix}
\tilde{\mathbf{y}}_1 \\
\tilde{\mathbf{y}}_2 \\
\vdots \\
\tilde{\mathbf{y}}_n
\end{bmatrix}_{n \times c}
\end{align*}
\]
Semi-Supervised Learning

• Why should unlabeled data tell us anything about the labels?
 – Usually, we assume that: (similar features \iff similar labels).
Semi-Supervised Learning

• Why should unlabeled data tell us anything about the labels?
 – Usually, we assume that: (similar features \leftrightarrow similar labels).
Semi-Supervised Learning

• Why should unlabeled data tell us anything about the labels?
 – Usually, we assume that: (similar features \Leftrightarrow similar labels).

"Transductive" SSL: label the given unlabeled examples

With these four labeled examples and unlabeled examples, we can label all examples.
Semi-Supervised Learning

• Why should unlabeled data tell us anything about the labels?
 – Usually, we assume that: (similar features \iff similar labels).

"Inductive" SSL: build a model that can label new examples.
Philosophical Digression: Can we do SSL?

• Will unlabeled examples help in general?
 – No!

• Consider choosing random ‘x_i’ values, then computing ‘y_i’.
 – Unlabeled examples collected in this way will not help.
 – By construction, distribution of ‘x_i’ says nothing about ‘y_i’.
Philosophical Digression: Can we do SSL?

• Example where SSL is not possible:
 – Try to detect food allergy by trying ‘random’ combinations of food.
 • The actual ‘random’ process isn’t important, as long it doesn’t depend on ‘\(y_i\).

 – Unlabeled data would be more random combinations:

 \[
 X = \begin{bmatrix}
 \text{"random" values} \\
 \end{bmatrix}
 \quad y = \begin{bmatrix}
 \text{labels of random features} \\
 \end{bmatrix}
 \quad X = \begin{bmatrix}
 \text{more "random" values} \\
 \end{bmatrix}
 \]

• You can generate all possible unlabeled data, but it says nothing about labels.
Philosophical Digression: Can we do SSL?

• Example where SSL is possible:
 – Trying to classify images as ‘cat’ vs. ‘dog’:

 – Unlabeled data would be images of cats or dogs: not random images.
 • Unlabeled data contains information about what images of cats and dogs look like.
 • E.g., clusters or manifolds in unlabeled images.

• Contrast this with ‘cat’ vs. ‘not cat’:
 – If we generate random images then label them, unlabeled data won’t help.
 – If we know that half our unlabeled images are cats, unlabeled could help.

https://en.wikipedia.org/wiki/Cat
Philosophical Digression: Can we do SSL?

• When can unlabeled examples help?

• Consider \(y_i \) somehow influencing data we collect:
 – Now there is information about labels contained in unlabeled examples.
 – Example 1: we try to have an even number of \(y_i = +1 \) and \(y_i = -1 \).
 – Example 2: we need to choose non-random \(x_i \) to correspond to a valid \(y_i \)
 – We are almost always in this case.
SSL Approach 1: Self-Taught Learning

• **Self-taught** learning is similar to k-means:
 1. Fit a model based on the labeled data.
 2. Use the model to label the unlabeled data.
 3. Use estimated labels to fit model based on labeled and unlabeled data.
 4. Go back to 2.

• Obvious problem: it can **reinforce errors** and even diverge.

• Possible fixes:
 – Only use labels are you very confident about.
 – Regularize the loss from the unlabeled examples:

\[
\hat{f}(w) = \frac{1}{2} \| Xw - y \|^2 + \frac{1}{2} \| \tilde{X}w - \tilde{y} \|^2
\]
SSL Approach 1: Self-Taught Learning

Input:
- Labeled examples \(\{X,y\} \)
- Unlabeled examples \(\bar{X} \)

1. Train on \(\{X,y\} \):
 \[
 \text{model} = \text{fit}(X,y)
 \]

2. Guess labels:
 \[
 \hat{y} = \text{model}.\text{predict}(\bar{X})
 \]

3. Train on bigger data set:
 \[
 \text{model} = \text{fit}([\hat{X}],[\hat{y}],\gamma)
 \]

Popular variants:
1. "Expectation maximization"
2. "Yarowsky" algorithm (language)
SSL Approach 2: Co-Training

• Assumes that we have 2 sets of features:
 – Both sets are sufficient to give high accuracy.
 – The sets are conditionally independent given the label.
 – E.g., image features (set 1) and caption features (set 2).

• Co-training:
 1. Using labeled set, fit model 1 based on set 1, fit model 2 based on set 2.
 2. Label a random subset of unlabeled examples based on both models.
 3. Move examples where each classifier is most confident to labeled set.
 4. Go back to 1.

• Hope is that models “teach” each other to achieve consensus.
 – Theoretically works if assumptions above are satisfied.
SSL Approach 2: Co-Training

0. Split features into X_1 and X_2

$$X = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$$

1. Train models on X_1 and X_2:
 - model 1 = fit(X_1, y)
 - model 2 = fit(X_2, y)

2. Choose random subset of unlabeled examples and predict label:
 - $\hat{y}_1 = \text{model predict} (\tilde{X}_1)$
 - $\hat{y}_2 = \text{model predict} (\tilde{X}_2)$

3. For each model find the \tilde{X}_i values in the sample that model is most confident in for each class

4. Add these examples to labeled set.
SSL Approach 3: Entropy Regularization

- Self-taught and co-training predictions may propagate errors.
- Instead of making predictions, encourage “predictability”:
 - Entropy regularization: penalize “randomness” of labels on unlabeled.
 - Transductive SVMs: avoid decision boundaries in dense regions.

![SVM classifier vs. Transductive SVM (TSVM) classifier](http://journal.frontiersin.org/article/10.3389/fmicb.2015.00036/full)
Graph-Based Methods (Label Propagation)

• We can only do SSL because (similar features \Leftrightarrow similar labels).
• **Graph-based SSL** uses this directly.
 – Define weighted graph on training examples:
 • For example, use KNN graph or points within radius ε.
 • Weight is how ‘important’ it is for nodes to share label.

Label Propagation in Action

Partially Labelled Data
Graph-Based SSL (Label Propagation)

• Treat unknown labels as variables, minimize cost of disagreement:
\[f(\vec{y}) = \sum_{i=1}^{n} \sum_{j=1}^{t} w_{ij}(y_i - \bar{y}_j)^2 + \frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} \bar{w}_{ij}(\vec{y}_i - \bar{y}_j)^2 \]

• Common variations:
 – Treat labels \(y_i \) as variables (they might be wrong).
 • Weight how much you trust original labels.
 – Regularize the unlabeled \(\vec{y}_i \) towards a default value.
 • Can reflect that example is really far from any labeled example.

\[\text{Do gradient descent on labels of unlabeled examples.} \]
\[\text{Graph weight between labeled and unlabeled.} \]
\[\text{Make } \vec{y}_j \text{ similar to labeled neighbour.} \]
\[\text{Make unlabeled neighbours similar to each other.} \]

\[\text{Leads to “label propagation” through graph.} \]
Example: Tagging YouTube Videos

• Example:
 – Consider assigning ‘tags’ to YouTube videos (e.g., ‘cat’).
 – Construct a graph based on sequences of videos that people watch.
 • Give high weight if video A is often followed/preceded by video B.
 – Use label propagation to tag all videos.

• Becoming popular in bioinformatics:
 – Label a subset of genes using manual experiments.
 – Find out which genes interact using more manual experiments.
 – Predict function/location/etc of genes using label propagation.

• Comments on graph-based SSL:
 – Transductive method: only estimates the unknown labels.
 – Often surprisingly effective even if you only have a few labels.
 – Does not need features if you have the weighted graph.
Summary

• **Semi-supervised learning** uses unlabeled data in supervised task.
 – **Transductive learning** only focuses on labeling this data.
 – **SSL** may or may not help, depending on structure of data.
• **Self-taught/co-training** alternate labeling/fitting.
• **Graph-based SSL** propagates labels in graph (no features needed).