UBC MLRG (Summer 2017): Online, Active, and Causal Learning
Topic 1: Online Learning

• Usual **supervised learning** setup:
 – **Training** phase:
 • Build a model ‘w’ based on IID training examples \((x_t, y_t)\).
 – **Testing** phase:
 • Use the model to make predictions \(\hat{y}_t\) on new IID testing examples \(\hat{x}_t\).
 • Our “score” is the total difference between predictions \(\hat{y}_t\) and true test labels \(y_t\).

• In **online learning** there is **no separate training/testing** phase:
 – We receive a sequence of features \(x_t\).
 – You make prediction \(\hat{y}_t\) on each example \(x_t\) as it arrives.
 • You only get to see \(y_t\) after you’ve made prediction \(\hat{y}_t\).
 – Our “score” is the total difference between predictions \(\hat{y}_t\) and true labels \(y_t\).
 • We need to **predict well as we go** (not just at the end).
 • You pay a **penalty for having a bad model as you are learning**.
Topic 1: Online Learning

• In online learning, we typically don’t assume data is IID.
 – Often analyze a weaker notion of performance called “regret”.

• Main applications: online ads and spam filtering.

• A common variation is with bandit feedback:
 – There may be multiple possible y_t, we only observe loss for action we choose.
 • You only observe whether they clicked on your ad, not which ads they would have clicked on.
 – Here we have an exploration vs. exploitation trade-off:
 • Should we explore by picking a y_t we don’t know much about?
 • Should we exploit by picking a y_t that is likely to be clicked?
Topic 2: Active Learning

• **Supervised learning** trains on labeled examples \((X,y)\).
 – The doctor has labeled thousands of images for you.

• **Semi-supervised learning** trains on \((X,y)\) and unlabeled examples \(\tilde{X}\).
 – The doctor has labeled 20 images for you.
 – You have a database of thousands of images.

• **Active learning** trains only on unlabeled examples \(\tilde{X}\).
 – But you can ask the doctor to label 20 images for you.
Topic 2: Active Learning

- Which x^t should we label to learn the most?

- Closely-related to optimal experimental design in statistics.

Topic 3: Causal Learning

• The difference between observational and interventional data:
 – If I see that my watch says 10:55, class is almost over (observational).
 – If I set my watch to say 10:55, it doesn’t help (interventional).

• In 340 and 540, we only considered observational data.
 – If our model performs actions, we need to learn effects of actions.
 – Otherwise, it may make stupid predictions.

• We may want to discover direction of causality.
 – “Watch” only predicts “time” in observational setting (so it’s not causal).
 – We can design experiments or make assumptions that find directions.
 • Randomized controlled trials used in medicine.
Topic 3: Causal Learning

- Levels of causal inference:
 - **Observational** prediction:
 - Do people who take Cold-FX have shorter colds?
 - **Causal** prediction:
 - Does taking Cold-FX cause you to have shorter colds?
 - **Counter-factual** prediction:
 - You didn’t take Cold-FX and had long cold, would taking it have made it shorter?

- Counter-factuals **condition on imaginary pasts**.
(pause)
Online Classification with Perceptron

• **Perceptron for online linear binary classification** [Rosenblatt, 1952]
 — Start with $w_0 = 0$.
 — At time ‘t’ we receive features x_t.
 — We predict $\hat{y}_t = \text{sign}(w_t^T x_t)$.
 — If $\hat{y}_t \neq y_t$, then set $w_{t+1} = w_t + y_t x_t$.
 • Otherwise, set $w_{t+1} = w_t$.

• **Perceptron mistake bound** [Novikoff, 1962]:
 — Assume data is linearly-separable with a “margin”:
 • There exists w^* with $||w^*|| = 1$ such that $\text{sign}(x_t^T w^*) = \text{sign}(y_t)$ for all ‘t’ and $|x^T w^*| \geq \gamma$.
 — Then the number of total mistakes is bounded.
 • No requirement that data is IID.
Let’s normalize each x_t so that $||x_t|| = 1$.

- Length doesn’t change label.

Whenever we make a mistake, we have $\text{sign}(y_t) \neq \text{sign}(w_t^T x_t)$ and

\[
||w_{t+1}||^2 = ||w_t + y_t x_t||^2
= ||w_t||^2 + 2 y_t w_t^T x_t + 1
\leq ||w_t||^2 + 1
\leq ||w_{t-1}||^2 + 2
\leq ||w_{t-2}||^2 + 3.
\]

So after ‘k’ errors we have $||w_t||^2 \leq k$.

Perceptron Mistake Bound
Perceptron Mistake Bound

• Let’s consider a solution w^*, so $\text{sign}(y_t) = \text{sign}(x_t^Tw^*)$.
• Whenever we make a mistake, we have:

$$
\|w_{t+1}\| = \|w_{t+1}\| \|w_*\| \\
\geq w_{i+1}^T w_* \\
= (w_t + y_t x_t)^T w_* \\
= w_t^T w_* + y_t x_t^T w_* \\
= w_t^T w_* + |x_t^T w_*| \\
\geq w_i^T w_* + \gamma.
$$

• So after ‘k’ mistakes we have $\|w_t\| \geq \gamma k$.
Perceptron Mistake Bound

• So our two bounds are $||w_t|| \leq \sqrt{k}$ and $||w_t|| \geq \gamma k$.

• This gives $\gamma k \leq \sqrt{k}$, or a maximum of $1/\gamma^2$ mistakes.

• Note that γ is upper-bounded by one due to $||x|| \leq 1$.
Beyond Separable Problems: Follow the Leader

• Perceptron can find perfect classifier for separable data.

• What should we do for non-separable data?
 – And assuming we’re not using kernels...

• An obvious strategy is called follow the leader (FTL):
 – At time ‘t’, find the best model from the previous (t-1) examples.
 – Use this model to predict y_t.

• Problems:
 – It might be expensive to find the best model.
 • NP-hard to find best linear classifier for non-separable.
 – It can perform very poorly.
Follow the Leader Counter-Example

• Consider this online convex optimization scenario:
 – At iteration ‘t’, we make a prediction w_t.
 – We then receive a convex function f_t and pay the penalty $f_t(w_t)$.
 • f_t could be the logistic loss on example ‘t’.

• In this setting, follow the leader (FTL) would choose:
 $$w_t \in \arg\min_w \sum_{i=1}^{t-1} f_i(w).$$

• The problem is convex but the performance can be arbitrarily bad...
Follow the Leader Counter Example

• Assume $x \in [-1,1]$ and:
 – $f_1(x_1) = (1/2)x^2$.
 – $f_2(x_2) = -x$.
 – $f_3(x_3) = x$.
 – $f_4(x_4) = -x$.
 – $f_5(x_5) = x$.
 – $f_6(x_6) = -x$.
 – $f_7(x_7) = x$.
 – ...

• FTL objective:
 – $F_1(x_1) = (1/2)x^2$.
 – $F_2(x_2) = -(1/2)x^2$.
 – $F_3(x_3) = (1/2)x^2$.
 – $F_4(x_4) = -(1/2)x^2$.
 – $F_5(x_5) = (1/2)x^2$.
 – $F_6(x_6) = -(1/2)x^2$.
 – $F_7(x_7) = (1/2)x^2$.
 – ...

• FTL predictions:
 – $x_1 = (\text{initial guess})$
 – $x_2 = 0$
 – $x_3 = 1$ (worst possible)
 – $x_4 = -1$ (worst possible)
 – $x_5 = 1$ (worst possible)
 – $x_6 = -1$ (worst possible)
 – $x_7 = 1$ (worst possible)
 – ...

Regularized FTL and Regret

• Worst possible sequence:
 – \{+1,-1,+1,-1,+1,-1,+1,-1,...\}

• FTL produces the sequence:
 – \{x0,0,+1,-1,+1,-1,+1,-1,...\}, which is close to the worst possible.

• Best possible sequence:
 – \{0,+1,-1,+1,-1,+1,-1,...\}

• Best sequence with a fixed prediction:
 – \{0,0,0,0,0,0,0,0,...\}

• We have no way to bound error compared to best sequence: could have adversary.

• We instead consider a weaker notion of “success” called \textbf{regret}:
 – How much worse is our total error than optimal fixed prediction at time ‘t’.
 – Note that fixed prediction might change with ‘t’.

• Next week we’ll see algorithms with optimal regret.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 6</td>
<td>Motivation/overview, perceptron, follow the leader.</td>
<td>Mark</td>
</tr>
<tr>
<td>Jun 13</td>
<td>Online convex optimization, mirror descent</td>
<td>Julie</td>
</tr>
<tr>
<td>Jun 20</td>
<td>Multi-armed bandits, contextual bandits</td>
<td>Alireza</td>
</tr>
<tr>
<td>Jun 27</td>
<td>Heavy hitters</td>
<td>Michael</td>
</tr>
<tr>
<td>Jul 4</td>
<td>Regularized FTL, AdaGrad, Adam, online-to-batch</td>
<td>Raunak</td>
</tr>
<tr>
<td>Jul 11</td>
<td>Best-arm identification, dueling bandits</td>
<td>Glen</td>
</tr>
<tr>
<td>Jul 18</td>
<td>Uncertainty sampling, variance/error reduction, QBC</td>
<td>Nasim</td>
</tr>
<tr>
<td>Jul 25</td>
<td>A/B testing, Optimal experimental design</td>
<td>Mohamed</td>
</tr>
<tr>
<td>Aug 1</td>
<td>Randomized controlled trials, do-calculus</td>
<td>Sanna</td>
</tr>
<tr>
<td>Aug 8</td>
<td>Granger causality, independent component analysis</td>
<td>Issam</td>
</tr>
<tr>
<td>Aug 15</td>
<td>Counterfactuals</td>
<td>Eric</td>
</tr>
<tr>
<td>Aug 22</td>
<td>MPI causality</td>
<td>Julieta</td>
</tr>
<tr>
<td>Aug 29</td>
<td>Instrumental variables</td>
<td>Jimmy</td>
</tr>
</tbody>
</table>