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Example: Vancouver Rain Data

* Consider modeling the “Vancouver rain” dataset.

Doy [Day2 | Day3 | Day4 | Day | DayG |Day7 Doy |Dayd ..
0 0 1 1 0 0 1 1

Mar\’h'\( 0

Mesdh 2 1 0 0 0 0 0 1 0 0
Mol 3 1 1 1 1 1 1 1 1 1
MoahY 1 1 1 1 0 0 1 1 1
MonthS 0 0 0 0 1 1 0 0 0
/l/\,,,.‘lc.é 0 1 1 0 0 0 0 1 1

* Atime-series dataset where x,= 1 if it rained on day ‘t".

* The strongest signal in the data is the simple relationship:
— If it rained yesterday, it’s likely to rain today (> 50% chance that x, ; = x,).



Example: Vancouver Rain Data

If we assume x, are independent, we get p(x, = 1) = 0.41 (sadly).
— Real data vs. samples from independent Bernoulli model:
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— Making days independent misses correlation.



Markov Chain Model of Rain Data

A better model for the rain data is a Markov chain:

— Captures dependency of x, on x, ;.

— We model p(x, | x,,): probability of rain today given yesterday’s value.



Markov Chain Ingredients (MEMORIZE)

 Markov chain ingredients:
— State space:
» Set of possible states (indexed by ‘s’) we can be in at time ‘t” (“rain” or “not rain”).
— Initial probabilities:
* p(x; = s) that we start in state ‘s’ at time 1.

— Transition probabilities:

* p(x,=s | x,; =5") that we move to state s from state s’ at time ‘t".
— Probability that it rains today, given what happened yesterday.

* For PageRank: each webpage is a state ‘s’.
— Initial probability is random.
— Go to random page with probability a, otherwise go to random neighbour.



Markov Chain Probability and Markov Property
* Markov chain probability for a sequence Xy, X,,...,Xy4:
F( )5 xﬂ f[x7'o(xz|x7 (x;1x,) - /J(xﬂxl )
* This assumes the Markov property:
F(Xt |x,)x2)x5) X, )= Ig(),f | yf_’>

— That x, is independent of the past given x, ;.

* To predict “rain”, we only need to know whether it rained yesterday.



Markov Chain Applications

9 Applications
9.1 Physics
9.2 Chemistry
8.3 Testing
9.4 Speech Recognition
8.5 Information sciences
8.6 Queueing theory
8.7 Internet applications
8.8 Statistics
9.9 Economics and finance
8.10 Social sciences
9.11 Mathematical biology
8.12 Genetics
8.13 Games
9.14 Music
8.15 Baseball
9.16 Markov text generators



Homogeneous Markov Chains

 We usually assume that the Markov chain is homogeneous:

— Transition probabilities p(x, = s| x,,=5") are same for all ‘t".

* Given ‘n’ samples, MLE for homogeneous Markov chain is:

Thital F(X, =5) = MLW bfﬂqfsr\we ol Dable s

n(AMéfr‘ o'F 'hmt") we WQNL me S fo S
numL~er of Time we weat fom &' $ an/fl./m/

—

ransi]ion : ()(f | Xy =5 )=

* So given one or more sequences, learning is just counting.
— Like in naive Bayes.



Computation with Markov Chains

* Common things we do with Markov chains:

— Sampling: generate sequences that follow the probability.
* This is what our “random walk” algorithms are doing.

— Inference: compute probability of being in state ‘s’ at time ‘t’.
— Decoding: compute most likely sequence of states.

— Conditioning: do any of the above, assuming x, = s for some ‘t" and ‘s’
* For example, “filling in” missing parts of a sequence.

— Stationary distribution: probability of being ‘s’ at ‘t’ goes to o-.
e PageRank.



Fun with Markov Chains

Markov chains “explained visually”:
— http://setosa.io/ev/markov-chains

Snakes and ladders:
— http://datagenetics.com/blog/november12011/index.html

Candyland:
— http://www.datagenetics.com/blog/december12011/index.html

Yahtzee:
— http://www.datagenetics.com/blog/january42012

Chess pieces returning home and K-pop vs. ska:
— https://www.youtube.com/watch?v=63HHm{lh794



http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/index.html
http://www.datagenetics.com/blog/january42012
https://www.youtube.com/watch?v=63HHmjlh794

(pause)



Fundamental Problem: Sampling from a Density

* A fundamental problem in data science is sampling from a density.

— Generating examples x; that are distributed according to given density p(x).
— Basically, the “opposite” of learning: going from a model to data.

| wp. 05 f%j
PUI= 42 wp 025 =7 X[
2
 Sometimes we use samples to “tell us what t

ne model learning”.
— If the samples look like real data, then we have a good model.

e Samples can also be used in Monte Carlo estimation (later):

— Replace complicated p(x) with samples to solve hard problems at test time.



Simplest Case: Sampling from a Bernoulli

Consider sampling from a Bernoulli, for example:
f(x:”‘iacf {)(Y:[)):O-I

Sampling methods assume we sample uniformly over [0,1].
— Usually, a “pseudo-random” number is good enough (Python/R).

How to use a uniform sample to sample from the Bernoulli above:
1. Generate a uniform sample u ~ U(0,1). /"’ o )

2. Setx=11fu<0.9.
\\——\/-\/07 |

r@ wrn "

With good uniform sampler, then we have x=1 with probability 0.9.




Sampling from a Categorical Distribution

* Consider a more general categorical density like:
‘o(X:l):U,V r.(,(:Z):O// f[)(;g): 02 F(XL/>:0'3

 We can divide the [0,1] interval based on probability values:
0

1
1 1 1 1 1 1 | | ] |
rFr 1 1r 1 T T 1 I
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| |
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* Ifu~U(0,1), 40% of the time it lands in the x, region.
— And 10% in x,, 20% in x5, and 30% in x,.




Sampling from a Categorical Distribution

* Consider a more general categorical density like:
‘o(X:l):U,V IP(K:Q);O'/ f[)(;3>: 02 F(XL/>:0’3

 To sample from this categorical density we can use:
1. Generateu ~ U(0,1).

If u<0.4, output 1.

Ifu<0.4+0.1, output 2.

fu<0.4+0.1+0.2, output 3.

Otherwise, output 4.

A S



Sampling from a Categorical Distribution

* General case for sampling from categorical:
Generate u ~ U(0,1).

If u<p(x<1), output 1.

If u<p(x< 2), output 2.

If u<p(x< 3), output 3.

Al S

* Thevaluep(x<c)=p(x=1)+p(x=2)+..+p(x=c)isthe CDF.
— “Cumulative distribution function”.

* The CDF can use be used to sample from continuous densities...



Inverse Transform Method (Exact 1D Sampling)

We often use F(c) = p(x < c) to denote the CDF:

— F(c) is between 0 and 1, gives proportion of times ‘x“ is below ‘c’.
— F can be used for discrete and continuous variables:

1 ° 1
o o /{ — W
e—O
0—o 0 =
The inverse CDF (“quantile”) function F1 is its inverse:
— Give u between 0 and 1, F(u) is the c such that p(x < c) = u.

Inverse transform method for exact sampling in 1D (how you sample normal):
— Sample u ~ U(0,1).
— Return Fi(u).

Video on pseudo-random numbers and inverse-transform sampling from PBS.


https://www.youtube.com/watch?v=C82JyCmtKWg

Sampling from a Product Distribution

* Consider a model where the variables are independent:
( <
P9 %2y %37 %y) P(Y,)/)(xz)/;/@)/)[yq)

* Because of independence, we can sample independently:
— Sample x, from p(x,).
— Sample x, from p(x,).
— Sample x5 from p(x;).
— Sample x, from p(x,).

* But we can’t use this for Markov chains due to dependence.



Ancestral Sampling

* To sample dependent random variables we can use chain rule:

()(X’)X“)@)Xq): F(X,>F(X1,Y;>,o()‘3 /XMX,),O(*A//X;)&)/,)

* The chain rule suggests the following sampling strategy:
— Sample x, from p(x,).
— Sample x, from p(x, | x,) for the sampled x;.
— Sample x5 from p(x; | x,, X;) for the sampled x, and x,.
— Sample x, from p(x, | X3, X,, X;) for the sampled {x,, x,, X5}

* This called ancestral sampling.
— It’s easy if conditional probabilities are simple.
— But may not be simple, binary conditional ‘t” has 2t values of {x, X,, ..., X}



Example: Ancestral Sampling for Markov Chains

* For Markov chains the chain rule simplifies to:
F()/,)X,(;XS))/:{) = F(Y;>F()Q IX,)'D(XS [X<7’D()’ql)(3>

e So ancestral sampling simplifies (only depends on last time):
— Sample x, from p(x,).
— Sample x, from p(x, | x,) for the sampled x;.
— Sample x5 from p(x; | x,) for the sampled x,.

— Sample x, from p(x, | x;) for the sampled x.

* In PageRank and label propagation, this is the random walk.



Markov Chain Toy Example: CS Grad Career

 “Computer science grad career” Markov chain:

— Initial probabilities:

State Probability||Description
Industry 0.60||They work for a company or own their own company.
Grad School 0.30|[They are trying to get a Masters or PhD degree.
Video Games 0.10||They mostly play video games.
— Transition probabilities: to
[Fromito |Video Games||Industry||Grad School|Video Games (with PhD)|Industry (with PhD)/|Academia|[Deceased|
g |Video Games I 0.08| 0.90| 0.01|| o 0| 0| 0.01|
[Industry | 0.03| 0.95 00T o 0| 0| 0.01|
Q |Grad School | 0.06] 0.08| 0.75 0.05|| 0.05|| 0.02|| 0.01|
_ [Video Games (with PhD)| 0| 0| 0| 0.30|| 0.60|| 0.09)|| 0.01|
L [Industry (with PhD) | 0| 0| 0| 0.02|| 0.95|| 0.02|| 0.01|
[Academia I o 0| 0| 0.01] 001 097] 001
[Deceased | of 0 0| 0 0| 0f 1]

— So p(x, = “Grad School” | x, ; = “Industry”) = 0.01.



Example of Sampling x,

* Initial probabilities are: * Soinitial CDF is:
— 0.1 (Video Games) — 0.1 (Video Games)
— 0.6 (Industry) — 0.7 (Industry)
— 0.3 (Grad School) — 1 (Grad School)
— 0 (Video Games with PhD) — 1 (Video Games with PhD)
— 0 (Industry with PhD) — 1 (Industry with PhD)
— 0 (Acadmia) — 1 (Academia)
— 0 (Deceased) — 1 (Deceased)

* To sample the initial state x;:
— First generate u, which we’ll assume is u=0.724.
— Now find first CDF value bigger than u, which in this case is “Grad School”.



Example of Sampling x,, Given x,

* So we sampled x,

“Grad School”.

“Grad School”

— To sample x2, we’ll use the “Grad School” row in transition probabilities:

g~

Fromhto Video Games||Industry||Grad School||Video Games (with PhD)|/Industry (with PhD)||Academia||Deceased
Video Games 0.08 0.90 0.01 0 0 0 0.01
Industry 0.03 0.95 0.01 0 0 0 0.01
jGraE School ﬂ.t:rﬁtﬂ.ﬂﬁ 0.75 0.05 0.05 0.02 m
Video Games (with PhD) of 0O 0 0.30 0.60 0.09 0.01
Industry (with PhD) 0 0 0 0.02 0.95 0.02 0.01
Academia 0 0 0 0.01 0.01 0.97 0.01
Deceased 0 0 0 0 0 0 1




Example of Sampling x,, Given x, = “Grad School”

* Transition probabilities: * So transition CDF is:
— 0.06 (Video Games) — 0.06 (Video Games)
— 0.06 (Industry) — 0.12 (Industry)
— 0.75 (Grad School) — 0.87 (Grad School)
— 0.05 (Video Games with PhD) — 0.92 (Video Games with PhD)
— 0.05 (Industry with PhD) — 0.97 (Industry with PhD)
— 0.02 (Acadmia) — 0.99 (Academia)
— 0.01 (Deceased) — 1 (Deceased)

* To sample the second state x,:
— First generate u, which we’ll assume is u=0.113.
— Now find first CDF value bigger than u, which in this case is “Industry”.



Sampling from a Markov Chain

100 Samples from “computer science grad career” Markov chain:
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 Samples often give you an idea of what model knows. > fajes.
— And what should be fixed.




(pause)



Computing Marginals and Conditionals

* Given a joint probability ‘p’, we often want to do “inferences”:

— Marginals: what p(x;, = “industry”)?
* What is the probability we’re in industry 10 years after graduation?

— Conditionals: what p(x,, = “industry” | x, = “academia”).
* What is the probability of industry after 10 years, if we go to grad school?

* Where are we going with this?
— Faster calculation of PageRank: p(x., = “www.nba.com”).
— Bayesian machine learning requires doing calculation like this.



Monte Carlo: Inference by Sampling

* A basic Monte Carlo method for estimating probabilities of events:
1. Generate a large number of samples from the model.

ffloo;o“’
_ ) 1 0
X“’o,l)
5

2. Compute the frequency that the event Eappened in the samples.

Fho=0D %% ply=0) =0/

* Monte Carlo is second most important class of ML algorithms.

— Originally developed to build better atomic bombs ®
* Run physics simulator to “sample”, then see if it lead to a chain reaction.



Monte Carlo Method for Rolling Di

* Probability of event:
— (number of samples where event happened) / (humber of samples)

e Computing probability of a pair of dice rolling a sum of 7:
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.

* Monte Carlo estimate: fraction of samples where sum is 7.



Monte Carlo Method for Inequalities

 Monte Carlo estimate of probability that variable is threshold:
— Compute fraction of examples where sample is above threshold.



Monte Carlo Method for Mean

A Monte Carlo approximation of the mean:
— Approximate the mean by average of samples.

* Visual demo of Monte Carlo approximation of mean and variance:



http://students.brown.edu/seeing-theory/basic-probability/index.html

Monte Carlo for Markov Chains (not MCMC yet)

* Our samples from the CS grad student Markov chain:

60

Year after graduation

* You can estimate probabilities by looking at frequencies in samples.
— In how many out of 100 chains did we have x;, = “Industry”?

 This works for continuous states too.



Monte Carlo Methods

Monte Carlo methods approximate expectations:

E[S(XU = g 6’(’()9()() or E[c)()()] - § p(X)g(x)Jx
\/\/\J, ‘ "

discrete ContTnnous x’
Computing mean is the special case of g(x) =

Computing probability of any event ‘A’ is also a special case:
— Set g(x) = 1 if ‘A" happens and O if it does not happen.

Monte Carlo method: generate ‘n IID samples x. from p(x) and use:

EL 9(x>] ~ cJ(x)



Monte Carlo Methods

 Monte Carlo estimate is unbiased approximation of expectation:
n N
L4240} =1 2 Eg) =1 S e0q00] = ECg00)
' j=1 i<l

 The law of large numbers says that:
— Unbiased approximators “converge” to expectation (in probabilistic sense).
— So the more samples you get, the closer to the true value you start to get.

* Challenge with Monte Carlo methods:

— |t may be hard to generate IID samples.
— This is where MCMC will fit in later.



Monte Carlo Methods for Markov Chain Inference
* Monte Carlo methods can approximate Markov chain expectations:
— Marginal p(x,, = “industry”) is number samples with “industry” at time 10.
— Average value at time 10, E[x,,], is approximate by average x,, in samples.
— p(X,o < 2) is approximated by frequency of x,, being less than 2.

— P(x £ 2, X4, 2 2) is approximated by frequency of both happening.



Monte Carlo for Conditional Probabilities

* We often want to compute conditional probabilities.
— We can ask “what leads to x,, = 4?” with queries like p(x, | x;q = 4).
— We can ask “where does x,, = 4 lead?” with queries like p(x,5, | X1 = 4).

* Monte Carlo approach for estimating p(x, = s| x, = 5'):
— Generate a large number of samples from the Markov chain.
— Use Monte Carlo estimates of p(x, = s, X, = s’) and p(x, = §’) to give:

F(X{:S ’ Yt\ :5‘) - &357 Xtv: y') ,/'V/ (ﬂV\M/')e/ o’F .Sam,;Ao) wt’l'\ Yf:S a,\c]éi‘sn)
P(X6| - Sl) (humla"f O'P Sqm’o/of \’V.' H,\ yt\:sl)




(pause)



Last Time: Markov Chains and Monte Carlo

 Markov chains are a way to define a joint probability.
P( )(2 )(J> f(x)f)(le)(, Xg')(2> /J(XJ’XJ I>

— You’ve seen other ways to define joint probabilities, like mixture models.

 Monte Carlo is an algorithm for approximating expectations:

ELS(X)] /"" CJ()()

— You can use Monte Carlo to compute expectations in a Markov chain.
— But Monte Carlo can be used with other probabilities, like mixture models.



Quick “Joint Probability Equations” Review

* Independence: if variables are {a,, a,, ..., a,,} are independent then

P00, ) = p(adplar) pla,) =T pla)

 Marginalization rule: ;umming/integrating out over one variable

(= Z plol) p ()= Cplob)db

e Product rule: relates joint to conditional P(G)La) = F(q,é')f“’)

* Bayes’ rule: reverse conditionals

/)(qu) = pla Di(/’)o( P(q/4>f(é)

fQ)



Exact Marginal Calculation

 Monte Carlo tends to converge very slowly.
— You may need a huge number of samples.

* For discrete-state Markov chains, we can compute marginals directly.
— We’re given initial probabilities p(x, = s) for all ‘s’ as part of the definition.
— We can use these and transition probabilities to compute p(x, = s) for all ’s’:

i ok )
P(xzv S) Z r()rzr )%= s'?“‘ 2 F()Q:s 'X,=§'>,o()/,:s'>
S B -

h . . . \
margina "ZJ'\M ru,le

PfOOI\ACf r w If

— We can repeat this calculation to obtain p(x; = s) and subsequent marginals.



Exact Marginal Calculation

e Recursive formula for marginals at time ‘t’:

P(Yt:5> = ? F(yt :S)Xt_,—:S’): %/D()/f :5/yt~l:5')f()(t-/:s>

— Called Chapman-Kolmogorov (CK) equations.
* There are similar equations if all probabilities are Gaussian.

* Cost:
— Given previous time, CK equations for time ‘t’ and state ‘s’ cost O(k).
— Given previous time, to compute p(x, = s) for all ‘s’ costs O(k?).
— So cost to compute marginals up to time ‘t’ is O(tk?).
* | think this is fast: there are k' paths of length ‘t’ that this sums over.



Marginals in CS Grad Career

* CK equations can give marginals p(x, = s) from CS grad chain:
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Stationary Distribution and PageRank

A stationary distribution of a homogeneous Markov chain is a vector 1t satisfying:
7
[ = z = = i
ls = F(Xt S 1 Xf"’l ;‘) NSI

“The probabilities don’t change across time” (also called “invariant distribution”).

Under weak conditions, Markov chain marginals converge to stationary distribution.
— p(x, =s) converges to i, as ‘t’ goes to o~.

— |If we fit a Markov chain to the rain example, we have .. = 0.41.

rain

— In the CS grad student example, we have mt = 1.

The PageRank is the stationary distribution of the “random surfer” Markov chain.
— The “power method” used by Google repeatedly applies CK equations.
— Faster than SVD which takes O(k3): iterations cost O(z) where ‘z’ is number of links.



Uniqueness of Stationary Distribution

e Does a stationary distribution m exist and is it unique?

 Sufficient condition for existence/uniqueness is positive transitions:
F(Xt:S ‘ YC*I: §'> 7 O
— “Damped” PageRank adds probability a of jumping to random page.
* Weaker sufficient conditions for existence/uniqueness (“ergodic”):

— “Irreducible” (doesn’t get stuck in part of the graph)
— “Aperiodic” (probability of returning to state isn’t on fixed intervals).



(pause)



Decoding in Markov Chains

* Decoding: finding the sequence with highest probability.

— For fixed ‘t’, find {x,X,,...,X,} that maximizes p(x;,X,,..,X,).

* For CS grad student (t = 60) the decoding is “industry” for all years.
— Decoding often doesn’t look like a typical sample.
— |t can also change if you increase ‘t’.

* Viterbi decoding is a dynamic programming algorithm.
— Computes optimal decoding of Markov chain in O(tk?).
— Has various applications like decoding digital TV.



Application: Voice Photoshop

* Application: Adobe VoCo uses Viterbi as part of synthesizing voices:

Query . .

T es I S1.G IGR G_R_AH
sp.SJ1 F-1 SIK IY G_R GRAH
sp> 1l -1 S_LF « IYGR G R EY
spS. g-1 ST I G_N \\» G_R_EY

\ 5.1V G 1GO |\ GRAY
sp. 1. G |
[ Initial candidate table
PI1G including all Triphones
and Diphones
Triphone match .'f.::"p::::‘g:;::ﬁ Diphone match ‘ E‘I:;:f:;l“:;fh

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.


https://www.youtube.com/watch?v=I3l4XLZ59iw

Summary

Markov chains model dependency between states x, across time.
— Based on Markov assumption: “independence of past given last time”.

Inverse transform can generate 1d samples.

Ancestral sampling can generate d-dimensional samples.
Monte Carlo methods approximate expectation using samples.
CK equations compute exact marginals of Markov chain.
Stationary distribution of homogeneous Markov chain (PageRank).



