CPSC 340: Machine Learning and Data Mining

Ensemble Methods Fall 2018

Admin

• Welcome to the course!

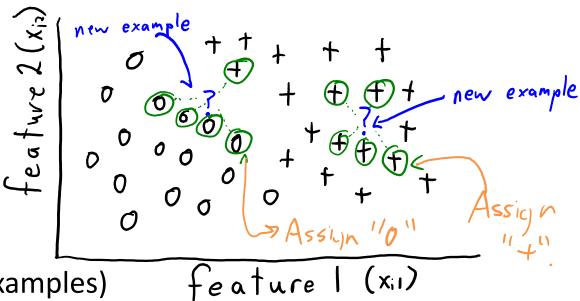
• Course webpage: <u>www.ugrad.cs.ubc.ca/~cs340</u>

- Assignment 2 is out.
 - Due Friday of next week. It's long so start early.

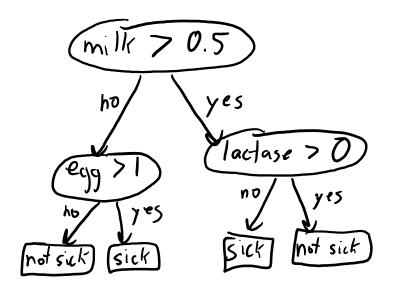
Last Time: K-Nearest Neighbours (KNN)

- K-nearest neighbours algorithm for classifying \tilde{x}_i :
 - Find 'k' values of x_i that are most similar to \tilde{x}_i .
 - Use mode of corresponding y_i.
- Lazy learning:
 - To "train" you just store X and y.

- Size of model grows with 'n' (number of examples)
- Nearly-optimal test error with infinite data.
- But high prediction cost and may need large 'n' if 'd' is large.



Decision Trees vs. Naïve Bayes vs. KNN

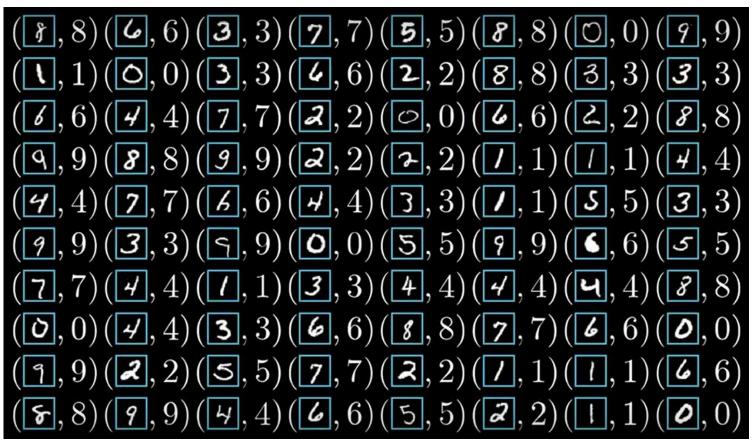


p(sick | milk, egg, lactase) ~ p(milk lsick) plegg lsick) p(lactase lsick) p(sick)

$$(milk = 0.6, egg = 2, lactase = 0, ?)$$
 is close to
 $(milk = 0.7, egg = 2, lactase = 0, sick)$ so predict sick.

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

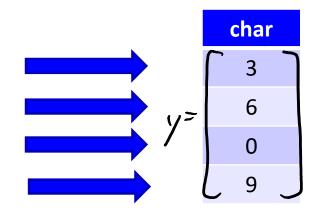


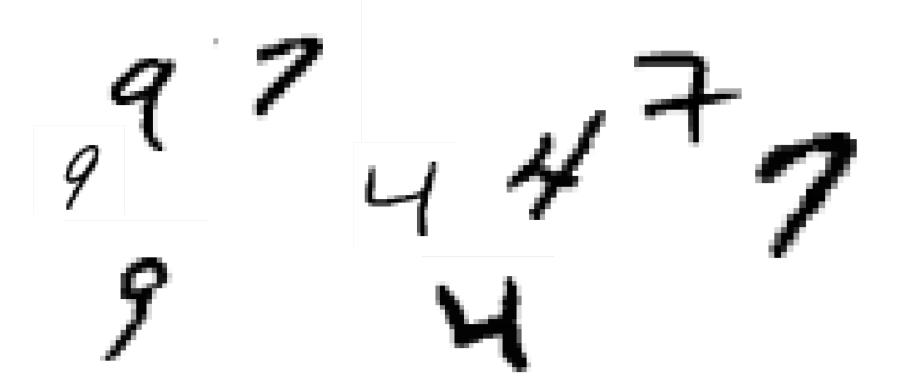
Application: Optical Character Recognition

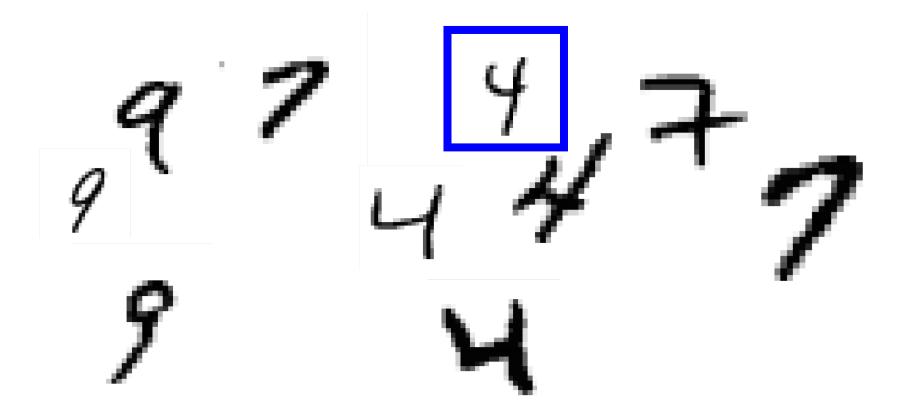
- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

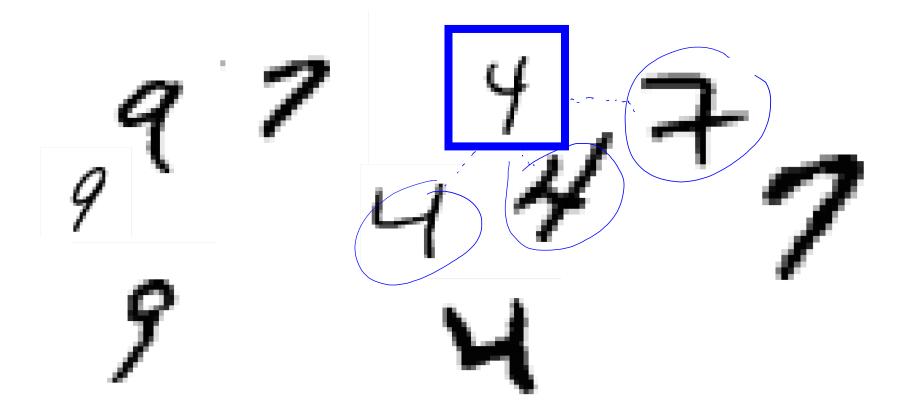
- Turning this into a supervised learning problem (with 28 by 28 images):

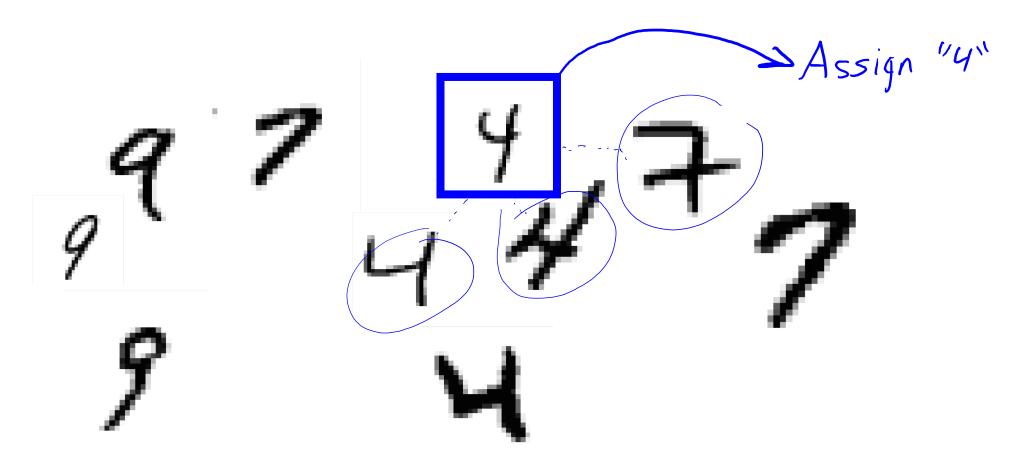
	(1,1)	(2,1)	(3,1)		(28,1)	(1,2)	(2,2)	•••	(14,14)	•••	(28,28)	
	0	0	0		0	0	0		1		0	
	0	0	0		0	0	0		1		0	
-	0	0	0		0	0	0		0		0	
	-0	0	0		0	0			1		0	
	Each feature is grayscale intensity of one of the 784 pixel											





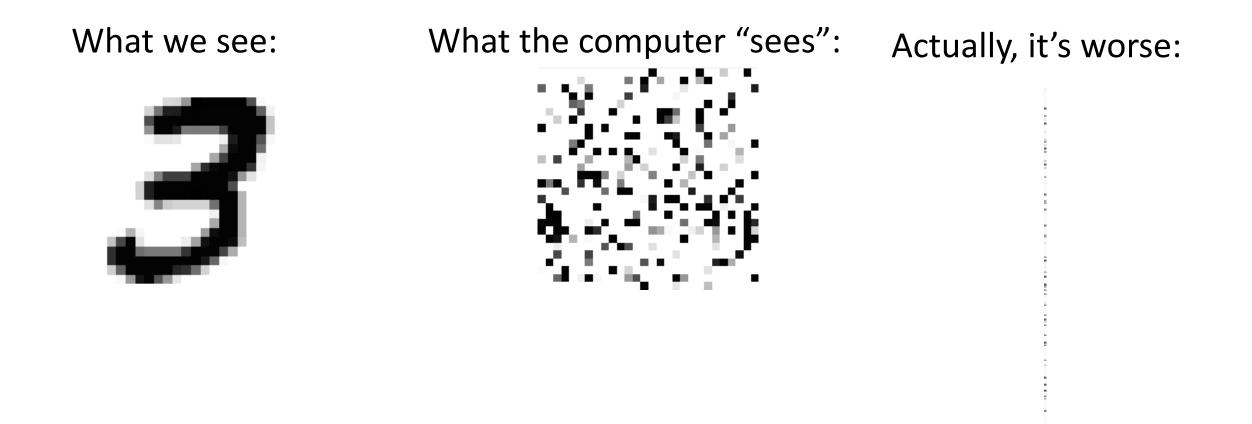






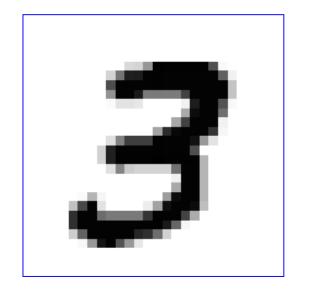
Human vs. Machine Perception

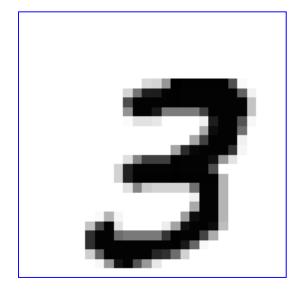
• There is huge difference between what we see and what KNN sees:



What the Computer Sees

• Are these two images "similar"?

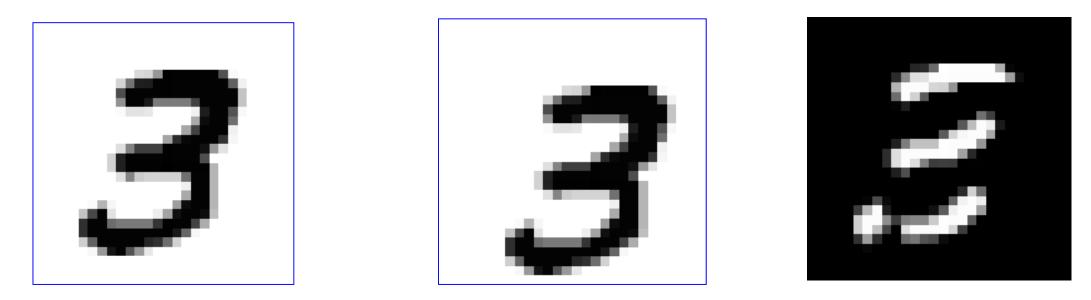




What the Computer Sees

• Are these two images "similar"?

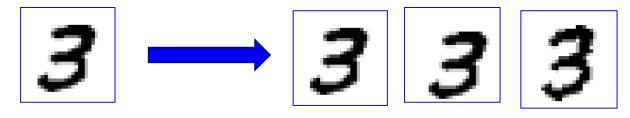
Difference:



• KNN does not know that labels should be translation invariant.

Encouraging Invariance

- May want classifier to be invariant to certain feature transforms.
 Images: translations, small rotations, changes in size, mild warping,...
- The hard/slow way is to modify your distance function:
 - Find neighbours that require the 'smallest' transformation of image.
- The easy/fast way is to just add transformed data during training:
 - Add translated/rotate/resized/warped versions of training images.



- Crucial part of many successful vision systems.
- Also really important for sound (translate, change volume, and so on).

Application: Body-Part Recognition

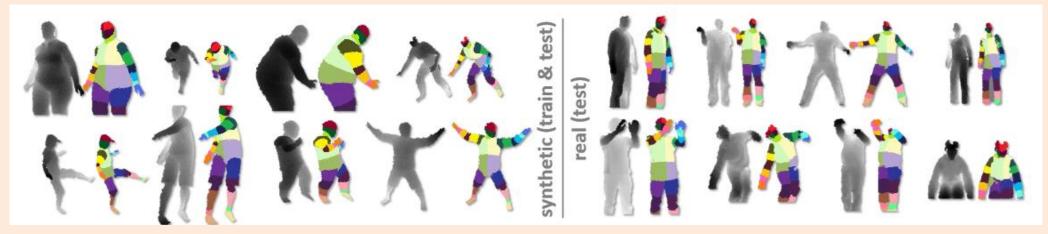
- Microsoft Kinect:
 - Real-time recognition of 31 body parts from laser depth data.



• How could we write a program to do this?

Some Ingredients of Kinect

- 1. Collect hundreds of thousands of labeled images (motion capture).
 - Variety of pose, age, shape, clothing, and crop.
- 2. Build a simulator that fills space of images by making even more images.



- 3. Extract features of each location, that are cheap enough for real-time calculation (depth differences between pixel and pixels nearby.)
- 4. Treat classifying body part of a pixel as a supervised learning problem.
- 5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

Supervised Learning Step

- ALL steps are important, but we'll focus on the learning step.
- Do we have any classifiers that are accurate and run in real time?
 - Decision trees and naïve Bayes are fast, but often not very accurate.
 - KNN is often accurate, but not very fast.

• Deployed system uses an ensemble method called random forests.

Ensemble Methods

- Ensemble methods are classifiers that have classifiers as input.
 - Also called "meta-learning".
- They have the best names:
 - Averaging.
 - Boosting.
 - Bootstrapping.
 - Bagging.
 - Cascading.
 - Random Forests.
 - Stacking.
- Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

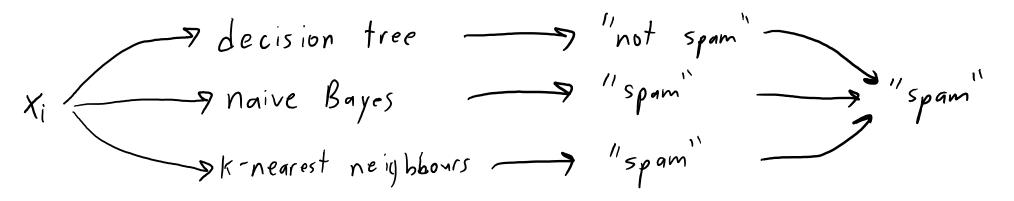
- Remember the fundamental trade-off:
 - 1. E_{train}: How small you can make the training error.

VS.

- 2. E_{approx}: How well training error approximates the test error.
- Goal of ensemble methods is that meta-classifier:
 - Does much better on one of these than individual classifiers.
 - Doesn't do too much worse on the other.
- This suggests two types of ensemble methods:
 - 1. Boosting: improves training error of classifiers with high E_{train}.
 - 2. Averaging: improves approximation error of classifiers with high E_{approx}.

Averaging

- Input to averaging is the predictions of a set of models:
 - Decision trees make one prediction.
 - Naïve Bayes makes another prediction.
 - KNN makes another prediction.
- Simple model averaging:
 - Take the mode of the predictions (or average probabilities if probabilistic).



Why can Averaging Work?

- Why can averaging lead to better results?
- Consider classifiers that overfit (like deep decision trees):
 - If they all overfit in exactly the same way, averaging does nothing.
- But if they make independent errors:
 - Probability of error of average can be lower than individual classifiers.
 - Less attention to specific overfitting of each classifier.

Why can Averaging Work?

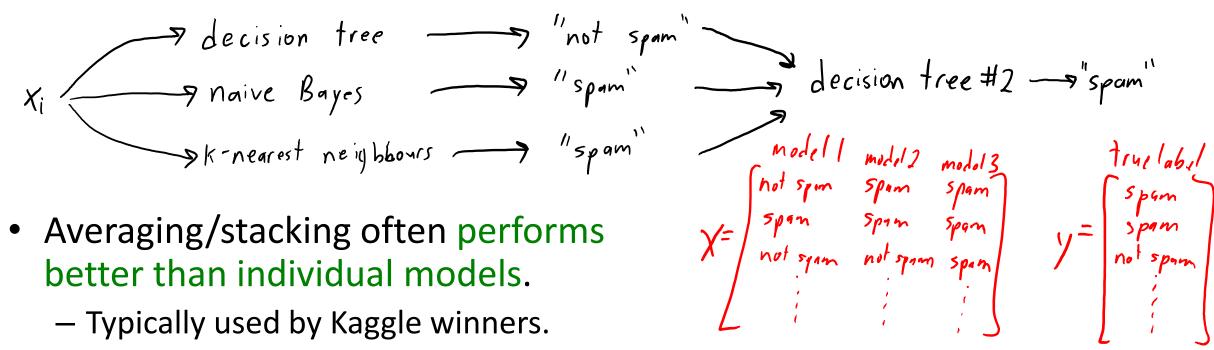
- Consider 3 binary classifiers, each independently correct with probability 0.80:
- The ensemble will be correct if the of the 3 mode is right ("3 right" or "2 right").
 - P(all 3 right) = $0.8^3 = 0.512$.
 - $P(2 rights, 1 wrong) = 3*0.8^{2}(1-0.8) = 0.384.$
 - P(1 right, 2 wrongs) = $3^*(1-0.8)^2 0.8 = 0.096$.
 - P(all 3 wrong) = $(1-0.8)^3 = 0.008$.
 - So ensemble is right with probability 0.896 (which is 0.512+0.384).
- Notes:
 - For averaging to work, classifiers need to be at least somewhat independent.
 - You also want the probability of being right to be > 0.5, otherwise it will do much worse.
 - Probabilities also shouldn't be to different (otherwise, it might be better to take most accurate).

Averaging

- Consider a set of classifiers that make these predictions:
 - Classifier 1: "spam".
 - Classifier 2: "spam".
 - Classifier 3: "spam".
 - Classifier 4: "not spam".
 - Classifier 5: "spam".
 - Classifier 6: "not spam".
 - Classifier 7: "spam".
 - Classifier 8: "spam".
 - Classifier 9: "spam".
 - Classifier 10: "spam".
- If these independently get 80% accuracy, mode will be close to 100%.
 - In practice errors won't be completely independent (due to noise in labels).

Stacking

- Stacking:
 - Fit another classifier that uses the predictions as features.



– E.g., Netflix \$1M user-rating competition winner was stacked classifier.

Random Forests

- Random forests average a set of deep decision trees.
 - Tend to be one of the best "out of the box" classifiers.
 - Often close to the best performance of any method on the first run.
 - And predictions are very fast.
- Do deep decision trees make independent errors?
 - No: with the same training data you'll get the same decision tree.
- Two key ingredients in random forests:
 - Bootstrapping.
 - Random trees.

Boostrap Sampling

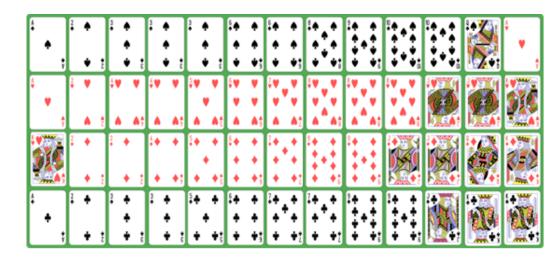
- Start with a standard deck of 52 cards:
 - Sample a random card: (put it back in the deck)
 - 2. Sample a random card:(put it back in the deck)
 - Sample a random card: (put it back in the deck)

•

52. Sample a random card: (which may be a repeat)

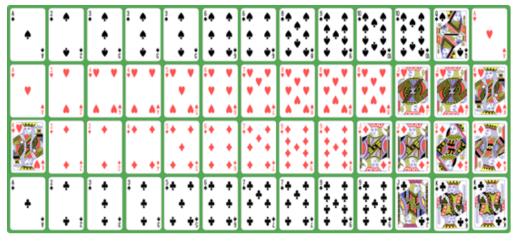
• We now have a new deck of 52 cards:

A ♠	2 ◆	۰	•	4 4 4	•	4 : ت	↑ ↓:	\$* 4 *		* * * * * *:	} ♠ ↓	* *		9. ↑ ↓ ↓	* * *	[₽] ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓		
↓	¢	•	2 4	v		\$ V	¥	5 ₩	5	• • • • •	2 V V							
A ◆	₹ •	+	3	+	5	:+	+	₹ ♦ •		* *] .	*	₿ 	9. • •	*			8 -2
^ + +	¥ 2 +	•	2	+	3	\$ +	+	\$ + 4	5 6	+ + + +	* *	+	*+ + + + + +	9 + + +	+ + + +	°+++ +++ +++		



Bootstrap Sampling

 New 52-card deck is "bootstrap sample":



- Some cards will be missing, and some cards will be duplicated.
 - So calculations on the bootstrap sample will give different results than original data.
- However, the bootstrap sample roughly maintains trends:
 - Roughly 25% of the cards will be diamonds.
 - Roughly 3/13 of the cards will be "face" cards.
 - There will be roughly four "10" cards.
- Common use: compute a statistic based on several bootstrap samples.
 - Gives you an idea of how the statistic varies as you vary the data.

Random Forest Ingredient 1: Bootstrap

- Bootstrap sample of a list of 'n' examples:
 - A new set of size 'n' chosen independently with replacement.

- Gives new dataset of 'n' examples, with some duplicated and some missing.
 - Approximately 63% of original examples will be included for large 'n'.
- **Bagging**: using bootstrap samples for ensemble learning. - Generate several bootstrap samples of the examples (x_i, y_i) . Decision trees will make - Fit a classifier to each bootstrap sample.

 - At test time, average the predictions.

Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features (typically \sqrt{d}).
 - Only consider these random features when searching for the optimal rule.

Random tree 2: -sample (egg, lactase) (egg > 0)

Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features (typically \sqrt{d}).
 - Only consider these random features when searching for the optimal rule.

Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features (typically \sqrt{d}).
 - Only consider these random features when searching for the optimal rule.
- Splits will tend to use different features in different trees.
 - They will still overfit, but hopefully errors will be more independent.
- So the average tends to have a much lower test error.
- Empirically, random forests are one of the "best" classifiers.
- Fernandez-Delgado et al. [2014]:
 - Compared 179 classifiers on 121 datasets.
 - Random forests are most likely to be the best classifier.

Summary

- Encouraging invariance:
 - Add transformed data to be insensitive to the transformation.
- Ensemble methods take classifiers as inputs.
 - Try to reduce either E_{train} or E_{approx} without increasing the other much.
 - "Boosting" reduces E_{train} and "averaging" reduces E_{approx}.
- Averaging:
 - Improves predictions of multiple classifiers if errors are independent.
- Random forests:
 - Averaging of deep randomized decision trees.
 - One of the best "out of the box" classifiers.
- Next time:
 - We start unsupervised learning.

Extremely-Randomized Trees

- Extremely-randomized trees add an extra level of randomization:
 - 1. Each tree is fit to a bootstrap sample.
 - 2. Each split only considers a random subset of the features.
 - 3. Each split only considers a random subset of the possible thresholds.
- So instead of considering up to 'n' thresholds, only consider 10 or something small.
 - Leads to different partitions so potentially more independence.

Text Example 1: Language Identification

• Consider data that doesn't look like this:

$$X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix},$$

• But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} + \\ - \\ - \\ + \end{bmatrix}$$

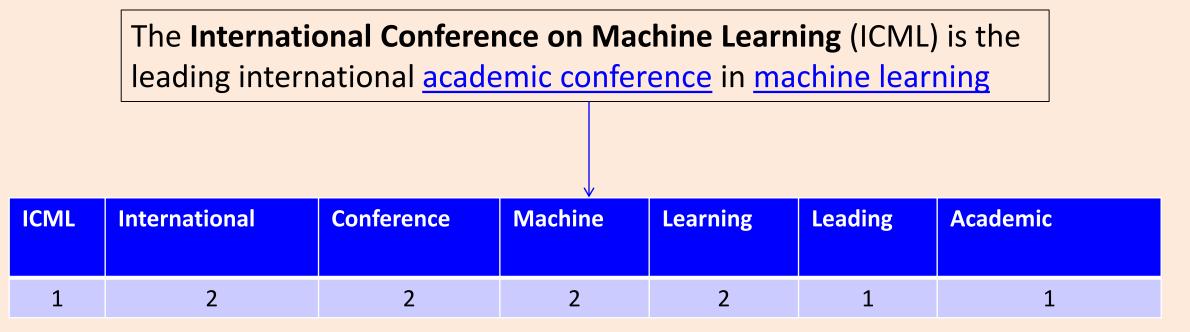
How should we represent sentences using features?

A (Bad) Universal Representation

- Treat character in position 'j' of the sentence as a categorical feature.
 - "fais ce que tu veux" => x_i = [f a i s " c e " q u e " t u " v e u x .]
- "Pad" end of the sentence up to maximum #characters:
 - "fais ce que tu veux" => $x_i = [fais "ce" que "tu" veux. \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \dots]$
- Advantage:
 - No information is lost, KNN can eventually solve the problem.
- Disadvantage: throws out everything we know about language.
 - Needs to learn that "veux" starting from any position indicates "French".
 - Doesn't even use that sentences are made of words (this must be learned).
 - High overfitting risk, you will need a lot of examples for this easy task.

Bag of Words Representation

• Bag of words represents sentences/documents by word counts:



- Bag of words loses a ton of information/meaning:
 - But it easily solves language identification problem

Universal Representation vs. Bag of Words

- Why is bag of words better than "string of characters" here?
 - It needs less data because it captures invariances for the task:
 - Most features give strong indication of one language or the other.
 - It doesn't matter *where* the French words appear.
 - It overfits less because it throws away irrelevant information.
 - Exact sequence of words isn't particularly relevant here.

Text Example 2: Word Sense Disambiguation

- Consider the following two sentences:
 - "The cat ran after the mouse."
 - "Move the mouse cursor to the File menu."
- Word sense disambiguation (WSD): classify "meaning" of a word:
 A surprisingly difficult task.
- You can do ok with bag of words, but it will have problems:
 - "Her mouse clicked on one cat video after another."
 - "We saw the mouse run out from behind the computer."
 - "The mouse was gray." (ambiguous without more context)

Bigrams and Trigrams

- A bigram is an ordered set of two words:
 Like "computer mouse" or "mouse ran".
- A trigram is an ordered set of three words:
 - Like "cat and mouse" or "clicked mouse on".
- These give more context/meaning than bag of words:
 - Includes neighbouring words as well as order of words.
 - Trigrams are widely-used for various language tasks.
- General case is called n-gram.

– Unfortunately, coupon collecting becomes a problem with larger 'n'.

Why does Bootstrapping select approximately 63%?

• Probability of an arbitrary x_i being selected in a bootstrap sample:

$$\begin{array}{l} 0(\text{selected at least once in 'n' trials}) \\ = | - p(\text{not selected in any of 'n' trials}) \\ = | - (p(\text{not selected in one trial}))^n & (\text{trials are independent}) \\ = | - (1 - 1/n)^n & (\text{prob} = \frac{n-1}{n} \text{ for choosing} \\ any of the n-1 other sample \\ \approx 0.63 & (1 - 1/n)^n & (1 - 1/n)^n \end{array}$$

Why Random Forests Work

- Consider 'k' independent classifiers, whose errors have a variance of σ^2 .
- If the errors are IID, the variance of the average is σ^2/k .
 - So the more classifiers you average, the more you decrease error variance.
 (And the more the training error approximates the test error.)
- Generalization to case where classifiers are not independent is:

$$c o^2 + \frac{(1-c)}{k} o^2$$

– Where 'c' is the correlation.

- So the less correlation you have the closer you get to independent case.
- Randomization in random forests decreases correlation between trees.
 - See also "<u>Sensitivity of Independence Assumptions</u>".

Boosting: Key Ideas

- Input to boosting is classifier that:
 - Is simple enough that it doesn't overfit much.
 - Can obtain >50% weighted training accuracy
- Example: decision stumps or low-depth decision trees.

Boosting: Key Ideas

- Basic steps:
 - 1. Fit a classifier on the training data.
 - 2. Give a higher weight to examples that the classifier got wrong.
 - 3. Fit a classifier on the weighted training data.
 - 4. Go back to 2.
- Final prediction: weighted vote of individual classifier predictions.
- Boosted decision trees are very fast/accurate classifiers.
 - "AdaBoost": classic boosting method.
 - "XGBoost": recent method that has been winning Kaggle competitions.

How these concepts often show up in practice

- Here is a recent e-mail related to many ideas we've recently covered:
 - "However, the performance did not improve while the model goes deeper and with augmentation. The best result I got on validation set was 80% with LeNet-5 and NO augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract numerical information for me, so I trained the same dataset with nearly 100 features on random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of hidden layers increases, in addition to that I have changed from VGG to ResNet, which are theoretically trained differently. Moreover, why deep learning algorithm cannot surpass machine learning algorithm?"

• Above there is data augmentation, validation error, effect of the fundamental trade-off, the no free lunch theorem, and the effectiveness of random forests.

Bayesian Model Averaging

- Recall the key observation regarding ensemble methods:
 - If models overfit in "different" ways, averaging gives better performance.
- But should all models get equal weight?
 - E.g., decision trees of different depths, when lower depths have low training error.
 - E.g., a random forest where one tree does very well (on validation error) and others do horribly.
 - In science, research may be fraudulent or not based on evidence.
- In these cases, naïve averaging may do worse.

Bayesian Model Averaging

- Suppose we have a set of 'm' probabilistic binary classifiers w_i.
- If each one gets equal weight, then we predict using:

$$p(y_{i}|x_{i}) = \frac{1}{m}p(y_{i}|w_{i},x_{i}) + \frac{1}{m}p(y_{i}|w_{i},x_{i}) + \cdots + (\frac{1}{m}p(y_{i}|w_{m},x_{i}))$$

• Bayesian model averaging treats model 'w_j' as a random variable: w_j $\perp \times i$

$$p(y_{i}|x_{j}) = \sum_{j=1}^{m} p(y_{i}, w_{j}|x_{i}) = \sum_{j=1}^{m} p(y_{i}|w_{j}, x_{j}) p(w_{j}|x_{j}) = \sum_{j=1}^{m} p(y_{j}|w_{j}, x_{j}) p(w_{j}|x_{j}) = \sum_{j=1}^{m} p(y_{j}|w_{j}) p(w_{j}|x_{j}) = \sum_{j=1}$$

- So we should weight by probability that w_j is the correct model:
 - Equal weights assume all models are equally probable.

Bayesian Model Averaging

• Can get better weights by conditioning on training set:

$$p(w_j | X, y) \propto p(y | w_j, X) p(w_j | X) = p(y | w_j, X) p(w_j)$$

Again, assuning wil X

- The 'likelihood' p(y | w_i, X) makes sense:
 - We should give more weight to models that predict 'y' well.
 - Note that hidden denominator penalizes complex models.
- The 'prior' p(w_i) is our 'belief' that w_i is the correct model.
- This is how rules of probability say we should weigh models.
 - The 'correct' way to predict given what we know.
 - But it makes some people unhappy because it is subjective.