CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models
Fall 2018



Admin

* Course webpage: www.ugrad.cs.ubc.ca/~cs340

* Assignment 2 is out.
— Due Friday of next week. It’s long so start early.

* Add/drop deadline is tomorrow.

* Auditing: message me on Piazza if you want to audit.

— Bring your form to me after class.


http://www.ugrad.cs.ubc.ca/~cs340

Last Time: E-mail Spam Filtering

 Want a build a system that filters spam e-mails:

 We formulated as supervised learning:
— (y, = 1) if e-mail V" is spam, (y, = 0) if e-mail is not spam.

Jannie Keenan You wed $24,718.11
Abby  uabera USB Drives with y
Rosemarie Pag Re: New request created with 1D: ##62
Shawna Bulg RE: New request created with 1D: ##63
Gary  ualbera Cooperation

— (x; = 1) if word/phrase ‘j’ is in e-mail ¥, (x; = 0) if it is not.
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Last Time: Nalve Bayes

* We considered spam filtering methods based on naive Bayes:
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* Makes conditional independence assumption to make learning practical:
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* Predict “spam” if p(y, = “spam” | x.) > p(y, = “not spam” | x.).
— We don’t need p(x;) to test this.




Laplace Smoothing

* Our estimate of p(‘lactase’ = 1| ‘spam’) is:
H: SPC«M mes5gges wiﬂ‘ /c(cfa;g
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— But there is a problem if you have no spam messages with lactase:

e p(‘lactase’ | ‘spam’) =0, so spam messages with lactase automatically get through.

— Common fix is Laplace smoothing: (&Sf“w‘ messa ges with \O@Q_’U

e Add 1 to numerator, g -I-)\
and 2 to denominator (binary features). (#'sram w\esso\jeﬁ

— Acts like a “fake” spam example that has lactase,
and a “fake” spam example that doesn’t.




Laplace Smoothing
* Laplace smoothing:
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— Typically you do this for all features.

* Helps against overfitting by biasing towards the uniform distribution.

* A common variation is to use a real number B rather than 1.
— Add Bk’ to denominator if feature has ‘k’ possible values (so sums to 1).
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Decision Theory

* Are we equally concerned about “spam” vs. “not spam”?
* True positives, false positives, false negatives, true negatives:

Predict ‘spam’ True Positive False Positive
Predict ‘not spam’ False Negative True Negative

* The costs mistakes might be different:

— Letting a spam message through (false negative) is not a big deal.
— Filtering a not spam (false positive) message will make users mad.



Decision Theory

* We can give a cost to each scenario, such as:

Predict / True
Predict ‘spam’

* Instead of most probable label, take yhat minimizing expectated cost:
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 Even if “spam” has a higher probability,
predicting “spam” might have a higher cost.
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Decision Theory Example

Predict ‘not spam’ 10 0

* If for a test example we have p(y. = “spam” | X,) = 0.6, then:
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* Even though “spam” is more likely, we should predict “not spam”.



Decision Theory Discussion

* In other applications, the costs could be different.

— In cancer screening, maybe false positives are ok,
but don’t want to miss false negatives.

e Decision theory and “darts”:
— http://www.datagenetics.com/blog/january12012/index.html

e Decision theory can help with “unbalanced” class labels:
— 1f 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.
— Decision theory approach avoids this.
— See also precision/recall curves and ROC curves in the bonus material.


http://www.datagenetics.com/blog/january12012/index.html

e Decision trees:
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Decision Trees vs. Nalve Bayes

Sequence of rules based on 1 feature.
Training: 1 pass over data per depth.
Greedy splitting as approximation.
Testing: just look at features in rules.
New data: might need to change tree.

Accuracy: good if simple rules based on
individual features work (“symptoms”).

* Nalve Bayes:
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Simultaneously combine all features.
Training: 1 pass over data to count.
Conditional independence assumption.
Testing: look at all features.

New data: just update counts.

Accuracy: good if features almost
independent given label (text).



Parametric vs. Non-Parametric

* Decision trees and naive Bayes are often not very accurate.
— Greedy rules or conditional independence might be bad assumptions.
— They are also parametric models.



Parametric vs. Non-Parametric

e Parametric models:

III

— Have aixed number of parameters: trained “model” size is O(1) in terms ‘n’.

* E.g., fixed-depth decision tree just stores rules.
* E.g., naive Bayes just stores counts.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data doesn’t help: model is too simple.

* Non-parametric models:
— Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

— Model gets more complicated as you get more data.
— E.g., decision tree whose depth grows with the number of examples.



K-Nearest Neighbours (KNN)

e Classical non-parametric classifier is k-nearest neighbours (KNN).
* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.
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K-Nearest Neighbours (KNN)

* Classical non-parametric classifier is k-nearest neighbours (KNN).
* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.
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K-Nearest Neighbours (KNN)

* Classical non-parametric classifier is k-nearest neighbours (KNN).

* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..

2. Classify using the most common label of “nearest” examples.
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K-Nearest Neighbours (KNN)

* Classical non-parametric classifier is k-nearest neighbours (KNN).
* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.
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K-Nearest Neighbours (KNN)

* Classical non-parametric classifier is k-nearest neighbours (KNN).
* To classify an example X::

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.

FZI 1' NEw exam le +
o o\t ot
3 ;
3
2
1
1

0 + @ e example
@@@ n @/ n
@ @@Qf)é—/‘g r\f’mfs‘f r\arﬂhéows

1
2
3

O

2.5

O T
3.5

5 "newrad neig hboars *

v
0
o

L —

(o 1 2 3 H




K-Nearest Neighbours (KNN)

Assumption:
— Examples with similar features are likely to have similar labels.

Most common distance function is Euclidean distance:
N — ' =
i =%ell = £ () - %5 )7

— X, is features of training example ‘', and X; is features of test example 7.

With a small ‘n’, KNN model will be very simple.

Model gets more complicated as ‘n’ increases.
— Starts to detect subtle differences between examples.



Consistency of KNN

* KNN has appealing consistency properties:

— As ‘n’ goes to oo, KNN test error is less than twice best possible error.

* For fixed ‘k’ and binary labels (under mild assumptions).

e Stone’s Theorem: KNN is “universally consistent”.

— If k/n goes to zero and ‘k’ goes to oo, converges to the best possible error.

* First algorithm shown to have this property.

 Does Stone’s Theorem violate the no free lunch theorem?
— No: it requires a continuity assumption on the labels.
— Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).



https://www.naftaliharris.com/blog/asymptotics/

Parametric vs. Non-Parametric Models
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Parametric vs. Non-Parametric Models




Curse of Dimensionality

* “Curse of dimensionality”: problems with high-dimensional spaces.

— Volume of space grows exponentially with dimension.

* Circle has area O(r?), sphere has area O(r3), 4d hyper-sphere has area O(r?),...

— Need exponentially more points to “fill’ a high-dimensional volume.

* “Nearest” neighbours might be really far even with large ‘n’.

* KNN is also problematic if features have very different scales.

* Nevertheless, KNN is really easy to use and often hard to beat!



KNN Implementation

* There is no training phase in KNN (“lazy” learning).
— You just store the training data.
— Non-parametric because the size of the model is O(nd), the size of ‘X.

e But predictions are expensive: O(nd) to classify 1 test example.
— Tons of work on reducing this cost (we’ll discuss this later).

* There are also alternatives to Euclidean distance...



Defining “Distance” with “Norms”

A common way to define the “distance” between examples:
— Take the “norm” of the difference between feature vectors.

“ Xi ‘X’“” E(XU
J A

EXq W('e f’x'm,/e

* Norms are a way to measure the “length” of a vector.

= oem

— The most common norm is the “L2-norm” (or “Euclidean norm”):

”" %2 r;

— Here, the “norm” of the difference is the standard Euclidean distance.




L2-norm, L1-norm, and Le=-Norm:s.

* The three most common norms: L2-norm, L1-norm, and Lee-norm.

— Definitions of these norms with two-dimensions:
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2 o * el = max Ir]
”f“z \) r 62 ”F”, |f|| ,fl, Ao | ?’f,/) Q}
| Al 12 Lleds 7%\

T e ) ST T T T Tl T

| e ll, L.el\(jﬂ\ ol 177 t,( Ls h\K 2 'Lock
| X " A\ 2 . , "’

l%r* The veclor }G 5 fetel blecks U ‘S;’relcﬂlon.
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Norms in d-Dimensions

 We can generalize these common norms to d-dimensional vectors:

—_— _ d ,
L;: “r’/.l :{Z; rji L,: ”r”' . é‘,rj’ L,,o‘ "hj‘x{ ,rJ ,)Z

_ 2
E gy in Bodmensiers: Nolation el = (l1rfl;) ,
”r“az\s,rpl —Wf*r,’? :(\)ir".z ‘>
in U= dimensionst AJ:’ :
[, :\)r,l 4"27\‘”31 +y! -z
. . \_ | \)
* These norms place different “weights” on large values: °-

— L,: all values are equal. "\\/\/\)
— L,: bigger values are more important (because of squaring). . >

— L_.: only biggest value is important. \s wril® a2 0



Norms as Measures of Distance

* By taking norm of difference, we get a “distance” between vectors:
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https://www.youtube.com/watch?v=ineO1tIyPfM

3 Defining Properties of Norms

* A “norm” is any function satisfying the following 3 properties:
1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘a” multiplies length by | a
“If be will twice as long if you multiply by 2”: | [ar|]| = |a|e]|]|r]].
* Implication is that norms cannot be negative.
3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:

*  “You can’t get there faster by a detour”.
“Triangle inequality”: | |r+s|| < |]|r]] + |]|s]|].
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KNN Distance Functions

Most common KNN distance functions: norm(x; — x;).

— L1-, L2-, and Linf-norm.

— Weighted norms (if some features are more important): f v, l)(\) [
“Mahalanobis” distance (takes into account correlatlons)
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But we can consider other distance/similarity functions:
— Jaccard similarity (if x, are sets).

— Edit distance (if x. are strings).

— Metric learning (learn the best distance function).



Summary

Decision theory allows us to consider costs of predictions.
Non-parametric models grow with number of training examples.

K-Nearest Neighbours: simple non-parametric classifier.
 Appealing “consistency” properties.
e Suffers from high prediction cost and curse of dimensionality.

Next Time:
* Fighting the fundamental trade-off and Microsoft Kinect.



Other Performance Measures

e Classification error might be wrong measure:
— Use weighted classification error if have different costs.
— Might want to use things like Jaccard measure: TP/(TP + FP + FN).

e Often, we report precision and recall (want both to be high):

— Precision: “if | classify as spam, what is the probability it actually is spam?”
* Precision = TP/(TP + FP).
* High precision means the filtered messages are likely to really be spam.
— Recall: “if a message is spam, what is probability it is classified as spam?”
e Recall =TP/(TP + FN)
* High recall means that most spam messages are filtered.



Precision-Recall Curve

* Consider the rule p(y, = ‘spam’ | x;) > t, for threshold ‘t’.
e Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.
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ROC Curve

* Receiver operating characteristic (ROC) curve:

— Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

True Positive Rate

Algorithm 1
Rlgorithm 2 -

0 0.2 0.4 0.6 0.8 1

False Positive Rate

— Diagonal is random, perfect classifier would be in upper left.

— Sometimes papers report area under curve (AUC).
» Reflects performance for different possible thresholds on the probability.



More on Unbalanced Classes

 With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

— Two common ones are the Jaccard coefficient and the F-score.

 Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

— Under-sample the majority class (only take 5% of the spam messages).
e https://www.jair.org/media/953/live-953-2037-jair.pdf

— Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

— Some notes on this issue are here.



https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf

More on Weirdness of High Dimensions

* In high dimensions:

— Distances become less meaningful:

* All vectors may have similar distances.

— Emergence of “hubs” (even with random data):

* Some datapoints are neighbours to many more points than average.

— Visualizing high dimensions and sphere-packing



https://www.youtube.com/watch?v=zwAD6dRSVyI

Vectorized Distance Calculation

* To classify ‘t’ test examples based on KNN, cost is O(ndt).

— Need to compare ‘n’ training examples to ‘t’ test examples,
and computing a distance between two examples costs O(d).

* You can do this slightly faster using fast matrix multiplication:
— Let D be a matrix such that D; contains:

[, = v 12 = 0 17 = 257+ g l1°

where ‘i’ is a training example and ‘j’ is a test example.

— We can compute D in Julia using:
D = X. 2%ones(d,t) + ones(n,d)*(Xtest’)."2 - 2xX*xXtest’;

— And you get an extra boost because Julia uses multiple cores.



Squared/Euclidean-Norm Notation

We're using the following conventions:

The subscript after the norm is used to denote the p-norm, as in these examples:

d
|zl = Ej:] wf
)l = 355 |wj]-

If the subscript is omitted, we mean the 2-norm:
]| = ll]l2-

It we want to talk about the sguared value of the norm we use a superscript of "2"
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It we omit the subscript and have a superscript of "2, we're taking about the squared L2-norm:

2 = 325, w}



Lp-norms

* The L,-, L,-, and L.,-norms are special cases of Lp-norms:
d o
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* This gives a norm for any (real-valued) p > 1.
— The L_.-norm is limit as ‘p’ goes to e-.

* For p <1, notanorm because triangle inequality not satisfied.



