
CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models

Fall 2018

Admin

• Course webpage: www.ugrad.cs.ubc.ca/~cs340

• Assignment 2 is out.

– Due Friday of next week. It’s long so start early.

• Add/drop deadline is tomorrow.

• Auditing: message me on Piazza if you want to audit.

– Bring your form to me after class.

http://www.ugrad.cs.ubc.ca/~cs340

Last Time: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

• We formulated as supervised learning:

– (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.

– (xij = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xij = 0) if it is not.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Last Time: Naïve Bayes

• We considered spam filtering methods based on naïve Bayes:

• Makes conditional independence assumption to make learning practical:

• Predict “spam” if p(yi = “spam” | xi) > p(yi = “not spam” | xi).

– We don’t need p(xi) to test this.

Laplace Smoothing

• Our estimate of p(‘lactase’ = 1| ‘spam’) is:

– But there is a problem if you have no spam messages with lactase:

• p(‘lactase’ | ‘spam’) = 0, so spam messages with lactase automatically get through.

– Common fix is Laplace smoothing:

• Add 1 to numerator,
and 2 to denominator (binary features).
– Acts like a “fake” spam example that has lactase,

and a “fake” spam example that doesn’t.

Laplace Smoothing

• Laplace smoothing:

– Typically you do this for all features.

• Helps against overfitting by biasing towards the uniform distribution.

• A common variation is to use a real number β rather than 1.

– Add ‘βk’ to denominator if feature has ‘k’ possible values (so sums to 1).

Decision Theory

• Are we equally concerned about “spam” vs. “not spam”?

• True positives, false positives, false negatives, true negatives:

• The costs mistakes might be different:

– Letting a spam message through (false negative) is not a big deal.

– Filtering a not spam (false positive) message will make users mad.

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ True Positive False Positive

Predict ‘not spam’ False Negative True Negative

Decision Theory

• We can give a cost to each scenario, such as:

• Instead of most probable label, take yhat minimizing expectated cost:

• Even if “spam” has a higher probability,
predicting “spam” might have a higher cost.

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ 0 100

Predict ‘not spam’ 10 0

Decision Theory Example

• If for a test example we have p(𝑦i = “spam” | 𝑥i) = 0.6, then:

• Even though “spam” is more likely, we should predict “not spam”.

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ 0 100

Predict ‘not spam’ 10 0

Decision Theory Discussion

• In other applications, the costs could be different.

– In cancer screening, maybe false positives are ok,
but don’t want to miss false negatives.

• Decision theory and “darts”:

– http://www.datagenetics.com/blog/january12012/index.html

• Decision theory can help with “unbalanced” class labels:

– If 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.

– Decision theory approach avoids this.

– See also precision/recall curves and ROC curves in the bonus material.

http://www.datagenetics.com/blog/january12012/index.html

Decision Trees vs. Naïve Bayes

• Decision trees:

1. Sequence of rules based on 1 feature.

2. Training: 1 pass over data per depth.

3. Greedy splitting as approximation.

4. Testing: just look at features in rules.

5. New data: might need to change tree.

6. Accuracy: good if simple rules based on
individual features work (“symptoms”).

• Naïve Bayes:

1. Simultaneously combine all features.

2. Training: 1 pass over data to count.

3. Conditional independence assumption.

4. Testing: look at all features.

5. New data: just update counts.

6. Accuracy: good if features almost
independent given label (text).

Parametric vs. Non-Parametric

• Decision trees and naïve Bayes are often not very accurate.

– Greedy rules or conditional independence might be bad assumptions.

– They are also parametric models.

Parametric vs. Non-Parametric

• Parametric models:

– Have aixed number of parameters: trained “model” size is O(1) in terms ‘n’.

• E.g., fixed-depth decision tree just stores rules.

• E.g., naïve Bayes just stores counts.

– You can estimate the fixed parameters more accurately with more data.

– But eventually more data doesn’t help: model is too simple.

• Non-parametric models:

– Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

– Model gets more complicated as you get more data.

– E.g., decision tree whose depth grows with the number of examples.

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• To classify an example 𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to 𝑥i.

2. Classify using the most common label of “nearest” examples.

Egg Milk Fish

0 0.7 0

0.4 0.6 0

0 0 0

0.3 0.5 1.2

0.4 0 1.2

Sick?

1

1

0

1

1

Egg Milk Fish

0.3 0.6 0.8

Sick?

?

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• To classify an example 𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to 𝑥i.

2. Classify using the most common label of “nearest” examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• To classify an example 𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to 𝑥i.

2. Classify using the most common label of “nearest” examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• To classify an example 𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to 𝑥i.

2. Classify using the most common label of “nearest” examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• To classify an example 𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to 𝑥i.

2. Classify using the most common label of “nearest” examples.

F1 F2

1 3

2 3

3 2

2.5 1

3.5 1

… …

Label

O

+

+

O

+

…

K-Nearest Neighbours (KNN)

• Assumption:
– Examples with similar features are likely to have similar labels.

• Most common distance function is Euclidean distance:

– xi is features of training example ‘i’, and 𝑥 𝑖 is features of test example ‘ 𝑖’.

• With a small ‘n’, KNN model will be very simple.

• Model gets more complicated as ‘n’ increases.
– Starts to detect subtle differences between examples.

Consistency of KNN

• KNN has appealing consistency properties:

– As ‘n’ goes to ∞, KNN test error is less than twice best possible error.

• For fixed ‘k’ and binary labels (under mild assumptions).

• Stone’s Theorem: KNN is “universally consistent”.

– If k/n goes to zero and ‘k’ goes to ∞, converges to the best possible error.

• First algorithm shown to have this property.

• Does Stone’s Theorem violate the no free lunch theorem?

– No: it requires a continuity assumption on the labels.

– Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).

https://www.naftaliharris.com/blog/asymptotics/

Parametric vs. Non-Parametric Models

Parametric vs. Non-Parametric Models

Curse of Dimensionality

• “Curse of dimensionality”: problems with high-dimensional spaces.

– Volume of space grows exponentially with dimension.

• Circle has area O(r2), sphere has area O(r3), 4d hyper-sphere has area O(r4),…

– Need exponentially more points to ‘fill’ a high-dimensional volume.

• “Nearest” neighbours might be really far even with large ‘n’.

• KNN is also problematic if features have very different scales.

• Nevertheless, KNN is really easy to use and often hard to beat!

KNN Implementation

• There is no training phase in KNN (“lazy” learning).

– You just store the training data.

– Non-parametric because the size of the model is O(nd), the size of ‘X’.

• But predictions are expensive: O(nd) to classify 1 test example.

– Tons of work on reducing this cost (we’ll discuss this later).

• There are also alternatives to Euclidean distance…

Defining “Distance” with “Norms”

• A common way to define the “distance” between examples:

– Take the “norm” of the difference between feature vectors.

• Norms are a way to measure the “length” of a vector.

– The most common norm is the “L2-norm” (or “Euclidean norm”):

– Here, the “norm” of the difference is the standard Euclidean distance.

L2-norm, L1-norm, and L∞-Norms.

• The three most common norms: L2-norm, L1-norm, and L∞-norm.

– Definitions of these norms with two-dimensions:

– Notation: we often leave out the “2” for the L2-norm:

Norms in d-Dimensions

• We can generalize these common norms to d-dimensional vectors:

• These norms place different “weights” on large values:
– L1: all values are equal.

– L2: bigger values are more important (because of squaring).

– L∞: only biggest value is important.

Norms as Measures of Distance

• By taking norm of difference, we get a “distance” between vectors:

Infinite Series Video

https://www.youtube.com/watch?v=ineO1tIyPfM

3 Defining Properties of Norms

• A “norm” is any function satisfying the following 3 properties:

1. Only ‘0’ has a ‘length’ of zero.

2. Multiplying ‘r’ by constant ‘α’ multiplies length by |α|

• “If be will twice as long if you multiply by 2”: ||αr|| = |α|•||r||.

• Implication is that norms cannot be negative.

3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:

• “You can’t get there faster by a detour”.

• “Triangle inequality”: ||r + s|| ≤ ||r|| + ||s||.

KNN Distance Functions

• Most common KNN distance functions: norm(xi – xj).

– L1-, L2-, and Linf-norm.

– Weighted norms (if some features are more important):

– “Mahalanobis” distance (takes into account correlations).

• But we can consider other distance/similarity functions:

– Jaccard similarity (if xi are sets).

– Edit distance (if xi are strings).

– Metric learning (learn the best distance function).

Summary

• Decision theory allows us to consider costs of predictions.

• Non-parametric models grow with number of training examples.

• K-Nearest Neighbours: simple non-parametric classifier.

• Appealing “consistency” properties.

• Suffers from high prediction cost and curse of dimensionality.

• Next Time:

• Fighting the fundamental trade-off and Microsoft Kinect.

Other Performance Measures

• Classification error might be wrong measure:

– Use weighted classification error if have different costs.

– Might want to use things like Jaccard measure: TP/(TP + FP + FN).

• Often, we report precision and recall (want both to be high):

– Precision: “if I classify as spam, what is the probability it actually is spam?”

• Precision = TP/(TP + FP).

• High precision means the filtered messages are likely to really be spam.

– Recall: “if a message is spam, what is probability it is classified as spam?”

• Recall = TP/(TP + FN)

• High recall means that most spam messages are filtered.

Precision-Recall Curve

• Consider the rule p(yi = ‘spam’ | xi) > t, for threshold ‘t’.

• Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

ROC Curve

• Receiver operating characteristic (ROC) curve:
– Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).

(negative examples classified as positive)

– Diagonal is random, perfect classifier would be in upper left.

– Sometimes papers report area under curve (AUC).
• Reflects performance for different possible thresholds on the probability.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

More on Unbalanced Classes

• With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

– Two common ones are the Jaccard coefficient and the F-score.

• Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

– Under-sample the majority class (only take 5% of the spam messages).

• https://www.jair.org/media/953/live-953-2037-jair.pdf

– Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

– Some notes on this issue are here.

https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf

More on Weirdness of High Dimensions

• In high dimensions:

– Distances become less meaningful:

• All vectors may have similar distances.

– Emergence of “hubs” (even with random data):

• Some datapoints are neighbours to many more points than average.

– Visualizing high dimensions and sphere-packing

https://www.youtube.com/watch?v=zwAD6dRSVyI

Vectorized Distance Calculation

• To classify ‘t’ test examples based on KNN, cost is O(ndt).
– Need to compare ‘n’ training examples to ‘t’ test examples,

and computing a distance between two examples costs O(d).

• You can do this slightly faster using fast matrix multiplication:
– Let D be a matrix such that Dij contains:

where ‘i’ is a training example and ‘j’ is a test example.

– We can compute D in Julia using:

– And you get an extra boost because Julia uses multiple cores.

Squared/Euclidean-Norm Notation

Lp-norms

• The L1-, L2-, and L∞-norms are special cases of Lp-norms:

• This gives a norm for any (real-valued) p ≥ 1.

– The L∞-norm is limit as ‘p’ goes to ∞.

• For p < 1, not a norm because triangle inequality not satisfied.

