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Admin

• Course webpage: www.ugrad.cs.ubc.ca/~cs340

• Assignment 1 is due tonight.

– You can use 1 of your 2 late days to submit it up to 48 hours late.

• Waiting list people: you are registered.

– The other section of 340 has space.

• Graduate students who don’t need 500-level credit:

– You should now be able to sign up for 340 (no project)?

• Auditing: message me on Piazza if you want to audit.

– Bring your forms to me in class Friday/Monday.

http://www.ugrad.cs.ubc.ca/~cs340


Last Time: Training, Testing, and Validation

• Training step:

• Prediction step:

• What we are interested in is the test error:
– Error made by prediction step on new data.



Last Time: Fundamental Trade-Off

• We decomposed test error to get a fundamental trade-off:

– Where Eapprox = (Etest – Etrain).

• Etrain goes down as model gets complicated:

– Training error goes down as a decision tree gets deeper.

• But Eapprox goes up as model gets complicated:

– Training error becomes a worse approximation of test error.



Last Time: Validation Errorr

• Golden rule: we can’t look at test data during training.

• But we can approximate Etest with a validation error:
– Error on a set of training examples we “hid” during training.

– Find the decision tree based on the “train” rows.

– Validation error is the error of the decision tree on the “validation” rows.
• We typically choose “hyper-parameters” like depth to minimize the validation error.



Overfitting to the Validation Set?

• Validation error usually has lower optimization bias than training error.
– Might optimize over 20 values of “depth”, instead of millions+ of possible trees.

• But we can still overfit to the validation error (common in practice):
– Validation error is only an unbiased approximation if you use it once.

– Once you start optimizing it, you start to overfit to the validation set.

• This is most important when the validation set is “small”:
– The optimization bias decreases as the number of validation examples increases.

• Remember, our goal is still to do well on the test set (new data),
not the validation set (where we already know the labels).



Should you trust them?

• Scenario 1:
– “I built a model based on the data you gave me.”

– “It classified your data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They are reporting training error.

– This might have nothing to do with test error.

– E.g., they could have fit a very deep decision tree.

• Why ‘probably’?
– If they only tried a few very simple models, the 98% might be reliable.

– E.g., they only considered decision stumps with simple 1-variable rules.



Should you trust them?

• Scenario 2:

– “I built a model based on half of the data you gave me.”

– “It classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:

– They computed the validation error once.

– This is an unbiased approximation of the test error.

– Trust them if you believe they didn’t violate the golden rule.



Should you trust them?

• Scenario 3:

– “I built 10 models based on half of the data you gave me.”

– “One of them classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:

– They computed the validation error a small number of times.

– Maximizing over these errors is a biased approximation of test error.

– But they only maximized it over 10 models, so bias is probably small.

– They probably know about the golden rule.



Should you trust them?

• Scenario 4:
– “I built 1 billion models based on half of the data you gave me.”

– “One of them classified the other half of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably not:
– They computed the validation error a huge number of times.

– Maximizing over these errors is a biased approximation of test error.

– They tried so many models, one of them is likely to work by chance.

• Why ‘probably’?
– If the 1 billion models were all extremely-simple, 98% might be reliable.



Should you trust them?

• Scenario 5:
– “I built 1 billion models based on the first third of the data you gave me.”

– “One of them classified the second third of the data with 98% accuracy.”

– “It also classified the last third of the data with 98% accuracy.”

– “It should get 98% accuracy on the rest of your data.”

• Probably:
– They computed the first validation error a huge number of times.

– But they had a second validation set that they only looked at once.

– The second validation set gives unbiased test error approximation.

– This is ideal, as long as they didn’t violate golden rule on the last third.

– And assuming you are using IID data in the first place.



Validation Error and Optimization Bias

• Optimization bias is small if you only compare a few models:
– Best decision tree on the training set among depths, 1, 2, 3,…, 10.

– Risk of overfitting to validation set is low if we try 10 things.

• Optimization bias is large if you compare a lot of models:
– All possible decision trees of depth 10 or less.

– Here we’re using the validation set to pick between a billion+ models:
• Risk of overfitting to validation set is high: could have low validation error by chance.

– If you did this, you might want a second validation set to detect overfitting.

• And optimization bias shrinks as you grow size of validation set.



Cross-Validation (CV)

• Isn’t it wasteful to only use part of your data?

• 5-fold cross-validation:

– Train on 80% of the data, validate on the other 20%.

– Repeat this 5 more times with different splits, and average the score.



Cross-Validation (CV)

• You can take this idea further:

– 10-fold cross-validation: train on 90% of data and validate on 10%.

• Repeat 10 times and average (test on fold 1, then fold 2,…, then fold 10),

– Leave-one-out cross-validation: train on all but one training example.

• Repeat n times and average.

• Gets more accurate but more expensive with more folds.

– To choose depth we compute the cross-validation score for each depth.

• As before, if data is ordered then folds should be random splits.

– Randomize first, then split into fixed folds.



Cross-Validation Pseudo-Code



(pause)



The “Best” Machine Learning Model

• Decision trees are not always most accurate on test error.

• What is the “best” machine learning model?

• An alternative measure of performance is the generalization error:
– Average error over all xi vectos that are not seen in the training set.

– “How well we expect to do for a completely unseen feature vector”.

• No free lunch theorem (proof in bonus slides):
– There is no “best” model achieving the best generalization error for every 

problem.

– If model A generalizes better to new data than model B on one dataset, 
there is another dataset where model B works better.

• This question is like asking which is “best” among “rock”, “paper”, and 
“scissors”.



The “Best” Machine Learning Model

• Implications of the lack of a “best” model:
– We need to learn about and try out multiple models.

• So which ones to study in CPSC 340?
– We’ll usually motivate each method by a specific application.

– But we’re focusing on models that have been effective in many applications.

• Caveat of no free lunch (NFL) theorem:
– The world is very structured.

– Some datasets are more likely than others.

– Model A really could be better than model B on every real dataset in practice. 

• Machine learning research:
– Large focus on models that are useful across many applications.



Application: E-mail Spam Filtering

• Want a build a system that detects spam e-mails.

– Context: spam used to be a big problem.

• Can we formulate as supervised learning?



Spam Filtering as Supervised Learning

• Collect a large number of e-mails,  gets users to label them.

• We can use (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.

• Extract features of each e-mail (like bag of words).

– (xij = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xij = 0) if it is not.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…



Feature Representation for Spam

• Are there better features than bag of words?

– We add bigrams (sets of two words):

• “CPSC 340”, “wait list”, “special deal”.

– Or trigrams (sets of three words):

• “Limited time offer”, “course registration deadline”, “you’re a winner”.

– We might include the sender domain:

• <sender domain == “mail.com”>.

– We might include regular expressions:

• <your first and last name>.

• Also, note that we only need list of non-zero features for each xi.



Review of Supervised Learning Notation

• We have been using the notation ‘X’ and ‘y’ for supervised learning:

• X is matrix of all features, y is vector of all labels.

– We use yi for the label of example ‘i’ (element ‘i’ of ‘y’).

– We use xij for feature ‘j’ of example ‘i‘.

– We use xi as the list of features of example ‘i’ (row ‘i’ of ‘X’).

• So in the above x3 = [0 1 1 1 0 0 …].

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…



Probabilistic Classifiers

• For years, best spam filtering methods used naïve Bayes.
– A probabilistic classifier based on Bayes rule.

– It tends to work well with bag of words.

– Last year shown to improve on state of the art for CRISPR “gene editing” (link).

• Probabilistic classifiers model the conditional probability, p(yi | xi).
– “If a message has words xi, what is probability that message is spam?”

• Classify it has spam if probability of spam is higher than not spam:
– If p(yi = “spam” | xi) > p(yi = “not spam” | xi)

• return “spam”.

– Else 
• return “not spam”.

http://www.biorxiv.org/content/biorxiv/early/2016/12/02/078253.full.pdf


Spam Filtering with Bayes Rule

• To model conditional probability, naïve Bayes uses Bayes rule:

• So we need to figure out three types of terms:

– Marginal probabilities p(yi) that an e-mail is spam.

– Marginal probability p(xi) that an e-mail has the set of words xi.

– Conditional probability P(xi | yi) that a spam e-mail has the words xi.

• And the same for non-spam e-mails.



Spam Filtering with Bayes Rule

• What do these terms mean?

ALL E-MAILS
(including duplicates)



Spam Filtering with Bayes Rule

• p(yi = “spam”) is probability that a random e-mail is spam.

– This is easy to approximate from data: use the proportion in your data.

ALL E-MAILS
(including duplicates)

SPAM 
NOT 

SPAM
This is a “maximum likelihood estimate”, a 
concept we’ll discuss in detail later. If you’re 
interested in a proof, see here.

http://www.cs.ubc.ca/~schmidtm/Courses/540-F14/naiveBayes.pdf


Spam Filtering with Bayes Rule

• p(xi) is probability that a random e-mail has features xi:

– Hard to approximate: with ‘d’ words we need to collect 2d “coupons”,
and that’s just to see each word combination once.

ALL E-MAILS
(including duplicates)



Spam Filtering with Bayes Rule

• p(xi) is probability that a random e-mail has features xi:

– Hard to approximate: with ‘d’ words we need to collect 2d “coupons”,
but it turns out we can ignore it:



Spam Filtering with Bayes Rule

• p(xi | yi = “spam”) is probability that spam has features xi.

ALL E-MAILS
(including duplicates)

NOT 
SPAM SPAM 

• Also hard to approximate.
• And we need it.



Naïve Bayes

• Naïve Bayes makes a big assumption to make things easier:

• We assume all features xi are conditionally independent give label yi.

– Once you know it’s spam, probability of “vicodin” doesn’t depend on “340”.

– Definitely not true, but sometimes a good approximation.

• And now we only need easy quantities like p(“vicodin” = 0| yi = “spam”).



Naïve Bayes

• p(“vicodin” = 1 | “spam” = 1) is probability of seeing “vicodin” in spam.

ALL POSSIBLE E-MAILS
(including duplicates)

SPAM 
NOT 

SPAM

• Easy to estimate:
Vicodin



Naïve Bayes

• Naïve Bayes more formally: 

• Post-lecture slides: how to train/test by hand on a simple example.



Summary

• Optimization bias: using a validation set too much overfits.

• Cross-validation: allows better use of data to estimate test error.

• No free lunch theorem: there is no “best” ML model.

• Probabilistic classifiers: try to estimate p(yi | xi).

• Naïve Bayes: simple probabilistic classifier based on counting.

– Uses conditional independence assumptions to make training practical.

• Next time:

– A “best” machine learning model as ‘n’ goes to ∞.



Naïve Bayes Training Phase

• Training a naïve Bayes model:



Naïve Bayes Training Phase

• Training a naïve Bayes model:



Naïve Bayes Training Phase

• Training a naïve Bayes model:



Naïve Bayes Training Phase

• Training a naïve Bayes model:



Naïve Bayes Training Phase

• Training a naïve Bayes model:



Naïve Bayes Training Phase

• Training a naïve Bayes model:



Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model: 



Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model: 



Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model: 



Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model: 



Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model: 



Probability of Paying Back a Loan and Ethics

• Article discussing predicting “whether someone will pay back a loan”: 
– https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-

application-reveal.html

• Words that increase probability of paying back the most:
– debt-free, lower interest rate, after-tax, minimum payment, graduate.

• Words that decrease probability of paying back the most:
– God, promise, will pay, thank you, hospital.

• Article also discusses an important issue: are all these features ethical?
– Should you deny a loan because of religion or a family member in the hospital?
– ICBC is limited in the features it is allowed to use for prediction.

https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html


Avoiding Underflow

• During the prediction, the probability can underflow:

• Standard fix is to (equivalently) maximize the logarithm of the probability:



Back to Decision Trees

• Instead of validation set, you can use CV to select tree depth.

• But you can also use these to decide whether to split:

– Don’t split if validation/CV error doesn’t improve.

– Different parts of the tree will have different depths.

• Or fit deep decision tree and use CV to prune:

– Remove leaf nodes that don’t improve CV error.

• Popular implementations that have these tricks and others.



Cross-Validation Theory

• Does CV give unbiased estimate of test error?

– Yes!

• Since each data point is only used once in validation, expected validation error on 
each data point is test error.

– But again, using CV to select among models then it is no longer unbiased.

• What about variance of CV?

– Hard to characterize.

– CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.

• But we believe it is close.



Handling Data Sparsity

• Do we need to store the full bag of words 0/1 variables?

– No: only need list of non-zero features for each e-mail.

– Math/model doesn’t change, but more efficient storage.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

1 1 0 0 0 1 …

Non-Zeroes

{1,2,5,…}

{5,6,…}

{2,3,4,…}

{1,2,6,…}



Less-Naïve Bayes

• Given features {x1,x2,x3,…,xd}, naïve Bayes approximates p(y|x) as:

• The assumption is very strong, and there are “less naïve” versions:

– Assume independence of all variables except up to ‘k’ largest ‘j’ where j < i.

• E.g., naïve Bayes has k=0 and with k=2 we would have:

• Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’. 

– Another practical variation is “tree-augmented” naïve Bayes.



Gaussian Discriminant Analysis

• Classifiers based on Bayes rule are called generative classifier:
– They often work well when you have tons of features.

– But they need to know p(xi | yi), probability of features given the class.
• How to “generate” features, based on the class label.

• To fit generative models, usually make BIG assumptions:
– Naïve Bayes (NB) for discrete xi:

• Assume that each variables in xi is independent of the others in xi given yi.

– Gaussian discriminant analysis (GDA) for continuous xi.
• Assume that p(xi | yi) follows a multivariate normal distribution.

• If all classes have same covariance, it’s called “linear discriminant analysis”.



Computing p(xi) under naïve Bayes

• Generative models don’t need p(xi) to make decisions.

• However, it’s easy to calculate under the naïve Bayes assumption:



Proof of No Free Lunch Theorem

• Let’s show the “no free lunch” theorem in a simple setting:
– The xi and yi are binary, and yi being a deterministic function of xi.

• With ‘d’ features, each “learning problem” is a map from each of 
the 2d feature combinations to 0 or 1: {0,1}d -> {0,1}

• Let’s pick one of these maps (“learning problems”) and:
– Generate a set training set of ‘n’ IID samples.

– Fit model A (convolutional neural network) and model B (naïve Bayes).

Feature 1 Feature 2 Feature 3

0 0 0

0 0 1

0 1 0

… … …

Map 1 Map 2 Map 3 …

0 1 0 …

0 0 1 …

0 0 0 …

… … … …



Proof of No Free Lunch Theorem

• Define the “unseen” examples as the (2d – n) not seen in training.
– Assuming no repetitions of xi values, and n < 2d.

– Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
– We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
– The labels yi agree on all training examples.

– The labels yi disagree on all “unseen” examples.

• On this other “learning problem”:
– Model A gets 99% error and model B gets 40% error.



Proof of No Free Lunch Theorem

• Further, across all “learning problems” with these ‘n’ examples:
– Average generalization error of every model is 50% on unseen examples.

• It’s right on each unseen example in exactly half the learning problems.

– With ‘k’ classes, the average error is (k-1)/k (random guessing).

• This is kind of depressing: 
– For general problems, no “machine learning” is better than “predict 0”.

• But the proof also reveals the problem with the NFL theorem:
– Assumes every “learning problem” is equally likely.

– World encourages patterns like “similar features implies similar labels”.


