CPSC 340: Machine Learning and Data Mining

Probabilistic Classification
Fall 2018
Admin

• Course webpage: www.ugrad.cs.ubc.ca/~cs340
• Assignment 1 is due tonight.
 – You can use 1 of your 2 late days to submit it up to 48 hours late.

• Waiting list people: you are registered.
 – The other section of 340 has space.
• Graduate students who don’t need 500-level credit:
 – You should now be able to sign up for 340 (no project)?
• Auditing: message me on Piazza if you want to audit.
 – Bring your forms to me in class Friday/Monday.
Last Time: Training, Testing, and Validation

• Training step:

 Input: set of \(n \) training examples \(x_i \) with labels \(y_i \)
 Output: a model that maps from arbitrary \(x_i \) to \(y_i \)

• Prediction step:

 Input: set of \(l \) testing examples \(\tilde{x}_i \) and a model
 Output: predictions \(\hat{y}_i \) for the testing examples.

• What we are interested in is the test error:
 – Error made by prediction step on new data.
Last Time: Fundamental Trade-Off

• We decomposed test error to get a fundamental trade-off:

\[E_{\text{test}} = E_{\text{approx}} + E_{\text{train}} \]

 – Where \(E_{\text{approx}} = (E_{\text{test}} - E_{\text{train}}) \).

• \(E_{\text{train}} \) goes down as model gets complicated:
 – Training error goes down as a decision tree gets deeper.

• But \(E_{\text{approx}} \) goes up as model gets complicated:
 – Training error becomes a worse approximation of test error.
Last Time: Validation Error

• **Golden rule**: we can’t look at test data during training.
• But we can approximate E_{test} with a validation error:
 – Error on a set of training examples we “hid” during training.

\[
X = \begin{bmatrix}
\vdots & \vdots & \vdots & \vdots \\
\end{bmatrix} \\
\]

\[
y = \begin{bmatrix}
\vdots \\
\end{bmatrix}
\]

 – Find the decision tree based on the “train” rows.
 – Validation error is the error of the decision tree on the “validation” rows.

• We typically choose “hyper-parameters” like depth to minimize the validation error.
Overfitting to the Validation Set?

• Validation error usually has lower optimization bias than training error.
 – Might optimize over 20 values of “depth”, instead of millions+ of possible trees.

• But we can still overfit to the validation error (common in practice):
 – Validation error is only an unbiased approximation if you use it once.
 – Once you start optimizing it, you start to overfit to the validation set.

• This is most important when the validation set is “small”:
 – The optimization bias decreases as the number of validation examples increases.

• Remember, our goal is still to do well on the test set (new data), not the validation set (where we already know the labels).
Should you trust them?

• Scenario 1:
 – “I built a model based on the data you gave me.”
 – “It classified your data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably not:
 – They are reporting training error.
 – This might have nothing to do with test error.
 – E.g., they could have fit a very deep decision tree.

• Why ‘probably’?
 – If they only tried a few very simple models, the 98% might be reliable.
 – E.g., they only considered decision stumps with simple 1-variable rules.
Should you trust them?

• Scenario 2:
 – “I built a model based on half of the data you gave me.”
 – “It classified the other half of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably:
 – They computed the validation error once.
 – This is an unbiased approximation of the test error.
 – Trust them if you believe they didn’t violate the golden rule.
Should you trust them?

• Scenario 3:
 – “I built 10 models based on half of the data you gave me.”
 – “One of them classified the other half of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably:
 – They computed the validation error a small number of times.
 – Maximizing over these errors is a biased approximation of test error.
 – But they only maximized it over 10 models, so bias is probably small.
 – They probably know about the golden rule.
Should you trust them?

• Scenario 4:
 – “I built 1 billion models based on half of the data you gave me.”
 – “One of them classified the other half of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably not:
 – They computed the validation error a huge number of times.
 – Maximizing over these errors is a biased approximation of test error.
 – They tried so many models, one of them is likely to work by chance.

• Why ‘probably’?
 – If the 1 billion models were all extremely-simple, 98% might be reliable.
Should you trust them?

• Scenario 5:
 – “I built 1 billion models based on the first third of the data you gave me.”
 – “One of them classified the second third of the data with 98% accuracy.”
 – “It also classified the last third of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably:
 – They computed the first validation error a huge number of times.
 – But they had a second validation set that they only looked at once.
 – The second validation set gives unbiased test error approximation.
 – This is ideal, as long as they didn’t violate golden rule on the last third.
 – And assuming you are using IID data in the first place.
Validation Error and Optimization Bias

• Optimization bias is small if you only compare a few models:
 – Best decision tree on the training set among depths, 1, 2, 3,..., 10.
 – Risk of overfitting to validation set is low if we try 10 things.

• Optimization bias is large if you compare a lot of models:
 – All possible decision trees of depth 10 or less.
 – Here we’re using the validation set to pick between a billion+ models:
 • Risk of overfitting to validation set is high: could have low validation error by chance.
 – If you did this, you might want a second validation set to detect overfitting.

• And optimization bias shrinks as you grow size of validation set.
Cross-Validation (CV)

• Isn’t it wasteful to only use part of your data?
• 5-fold cross-validation:
 – Train on 80% of the data, validate on the other 20%.
 – Repeat this 5 more times with different splits, and average the score.

\[
X = \begin{bmatrix}
 \vdots \\
 \vdots \\
 \vdots \\
\end{bmatrix} \\
Y = \begin{bmatrix}
 \text{"fold" 1} \\
 \text{"fold" 2} \\
 \text{"fold" 3} \\
 \text{"fold" 4} \\
 \text{"fold" 5} \\
\end{bmatrix}
\]

1. Train on folds \{1, 2, 3, 4\}, compute error on fold 5.
2. Train on folds \{1, 2, 3, 5\}, compute error on fold 4.
3. Train on folds \{1, 2, 4, 5\}, compute error on fold 3.
4. Take average of the 5 errors as approximation of test error.
Cross-Validation (CV)

• You can take this idea further:
 – 10-fold cross-validation: train on 90% of data and validate on 10%.
 • Repeat 10 times and average (test on fold 1, then fold 2,..., then fold 10),
 – Leave-one-out cross-validation: train on all but one training example.
 • Repeat n times and average.

• Gets more accurate but more expensive with more folds.
 – To choose depth we compute the cross-validation score for each depth.

• As before, if data is ordered then folds should be random splits.
 – Randomize first, then split into fixed folds.
Cross-Validation Pseudo-Code

To choose depth

for depth in 1:20
 Compute cross-validation score
 return depth with highest score

To compute 5-fold cross-validation score:
for fold in 1:5
 train 80% that doesn't include fold
 test on fold
 return average test error

Notes:
- This fits 100 models! (20 depths times 5 folds)
- We get one (average) score for each of the 20 depths.
- Use this score to pick depth
(pause)
The “Best” Machine Learning Model

• Decision trees are not always most accurate on test error.
• What is the “best” machine learning model?
• An alternative measure of performance is the generalization error:
 – Average error over all x_i vectos that are not seen in the training set.
 – “How well we expect to do for a completely unseen feature vector”.
• No free lunch theorem (proof in bonus slides):
 – There is no “best” model achieving the best generalization error for every problem.
 – If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.
• This question is like asking which is “best” among “rock”, “paper”, and “scissors”.
The “Best” Machine Learning Model

• Implications of the lack of a “best” model:
 – We need to learn about and try out multiple models.
• So which ones to study in CPSC 340?
 – We’ll usually motivate each method by a specific application.
 – But we’re focusing on models that have been effective in many applications.

• Caveat of no free lunch (NFL) theorem:
 – The world is very structured.
 – Some datasets are more likely than others.
 – Model A really could be better than model B on every real dataset in practice.
• Machine learning research:
 – Large focus on models that are useful across many applications.
Application: E-mail Spam Filtering

• Want to build a system that detects spam e-mails.
 – Context: spam used to be a big problem.

• Can we formulate as supervised learning?
Spam Filtering as Supervised Learning

• Collect a large number of e-mails, gets users to label them.

<table>
<thead>
<tr>
<th>$</th>
<th>Hi</th>
<th>CPSC</th>
<th>340</th>
<th>Vicodin</th>
<th>Offer</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

• We can use \((y_i = 1)\) if e-mail ‘i’ is spam, \((y_i = 0)\) if e-mail is not spam.

• Extract features of each e-mail (like bag of words).
 – \((x_{ij} = 1)\) if word/phrase ‘j’ is in e-mail ‘i’, \((x_{ij} = 0)\) if it is not.
Feature Representation for Spam

• Are there better features than bag of words?
 – We add **bigrams** (sets of two words):
 • “CPSC 340”, “wait list”, “special deal”.
 – Or **trigrams** (sets of three words):
 • “Limited time offer”, “course registration deadline”, “you’re a winner”.
 – We might include the sender domain:
 • `<sender domain == “mail.com”>`.
 – We might include **regular expressions**:
 • `<your first and last name>`.

• Also, note that we **only need list of non-zero features** for each x_i.
Review of Supervised Learning Notation

• We have been using the notation ‘X’ and ‘y’ for supervised learning:
 - X is matrix of all features, y is vector of all labels.
 - We use y_i for the label of example ‘i’ (element ‘i’ of ‘y’).
 - We use x_{ij} for feature ‘j’ of example ‘i’.
 - We use x_i as the list of features of example ‘i’ (row ‘i’ of ‘X’).
 - So in the above $x_3 = [0 \ 1 \ 1 \ 1 \ 0 \ 0 \ ...]$.

- We use x_{26} for example 26.
- We use y_3 for label 3.
Probabilistic Classifiers

• For years, best spam filtering methods used naïve Bayes.
 – A probabilistic classifier based on Bayes rule.
 – It tends to work well with bag of words.
 – Last year shown to improve on state of the art for CRISPR “gene editing” (link).

• Probabilistic classifiers model the conditional probability, $p(y_i \mid x_i)$.
 – “If a message has words x_i, what is probability that message is spam?”

• Classify it has spam if probability of spam is higher than not spam:
 – If $p(y_i = \text{“spam”} \mid x_i) > p(y_i = \text{“not spam”} \mid x_i)$
 • return “spam”.
 – Else
 • return “not spam”.

Spam Filtering with Bayes Rule

• To model conditional probability, naïve Bayes uses Bayes rule:

\[
p(y_i = "\text{spam}" \mid x_i) = \frac{p(x_i \mid y_i = "\text{spam}" \cdot p(y_i = "\text{spam}")}{p(x_i)}
\]

• So we need to figure out three types of terms:
 – Marginal probabilities \(p(y_i) \) that an e-mail is spam.
 – Marginal probability \(p(x_i) \) that an e-mail has the set of words \(x_i \).
 – Conditional probability \(P(x_i \mid y_i) \) that a spam e-mail has the words \(x_i \).
 • And the same for non-spam e-mails.
Spam Filtering with Bayes Rule

\[p(y_i = \text{"spam"} \mid x_i) = \frac{p(x_i \mid y_i = \text{"spam"}) p(y_i = \text{"spam"})}{p(x_i)} \]

• What do these terms mean?

ALL E-MAILS
(including duplicates)
Spam Filtering with Bayes Rule

\[p(y_i = "\text{spam}" \mid x_i) = \frac{p(x_i \mid y_i = "\text{spam}" \cdot p(y_i = "\text{spam}")}{\rho(x_i)} \]

• \(p(y_i = "\text{spam}" \) is probability that a random e-mail is spam.
 – This is easy to approximate from data: use the proportion in your data.

\[p(y_i = "\text{spam}" \) = \frac{\# \text{spam messages}}{\# \text{total messages}} \]

This is a “maximum likelihood estimate”, a concept we’ll discuss in detail later. If you’re interested in a proof, see here.
Spam Filtering with Bayes Rule

\[p(y_i = "\text{spam}" \mid x_i) = \frac{p(x_i \mid y_i = "\text{spam}") p(y_i = "\text{spam}")}{p(x_i)} \]

- \(p(x_i) \) is probability that a random e-mail has features \(x_i \):
 - Hard to approximate: with ‘d’ words we need to collect \(2^d \) “coupons”, and that’s just to see each word combination once.
Spam Filtering with Bayes Rule

\[p(y_i = \text{"spam"} \mid x_i) = \frac{p(x_i \mid y_i = \text{"spam"})p(y_i = \text{"spam"})}{p(x_i)} \]

- \(p(x_i) \) is probability that a random e-mail has features \(x_i \):
 - Hard to approximate: with ‘d’ words we need to collect \(2^d \) “coupons”, but it turns out we can ignore it:

Naive Bayes returns "spam" if \(p(y_i = \text{"spam"} \mid x_i) > p(y_i = \text{"not spam"} \mid x_i) \).

By Bayes rule this means

\[\frac{p(x_i \mid y_i = \text{"spam"})p(y_i = \text{"spam"})}{p(x_i)} > \frac{p(x_i \mid y_i = \text{"not spam"})p(y_i = \text{"not spam"})}{p(x_i)} \]

Multiply both sides by \(p(x_i) \):

\[p(x_i \mid y_i = \text{"spam"})p(y_i = \text{"spam"}) > p(x_i \mid y_i = \text{"not spam"})p(y_i = \text{"not spam"}) \]
Spam Filtering with Bayes Rule

\[p(y_i = "spam" \mid x_i) = \frac{\frac{p(x_i \mid y_i = "spam")}{\rho(x_i)}}{\rho(y_i = "spam")} \]

- \(p(x_i \mid y_i = "spam") \) is probability that spam has features \(x_i \).

- Also hard to approximate.
- And we need it.
Naïve Bayes

• Naïve Bayes makes a **big assumption** to make things easier:

\[
p(hello = 1, \text{vicodin} = 0, 340 = 1 | \text{spam}) \approx p(hello = 1 | \text{spam}) p(\text{vicodin} = 0 | \text{spam}) p(340 = 1 | \text{spam})
\]

• We assume *all* features \(x_i\) are **conditionally independent** given label \(y_i\).
 – Once you know it’s spam, probability of “vicodin” doesn’t depend on “340”.
 – Definitely not true, but sometimes a good approximation.

• And now we only need easy quantities like \(p(“\text{vicodin”} = 0 | y_i = “\text{spam”})\).
Naïve Bayes

• $p(\text{"vicodin"} = 1 \mid \text{"spam"} = 1)$ is probability of seeing “vicodin” in spam.

• Easy to estimate:

$$p(\text{vicodin}=1 \mid \text{spam}=1) = \frac{\# \text{spam messages w/ vicodin}}{\# \text{spam messages}}$$
Naïve Bayes

• Naïve Bayes more formally:

\[
p(y_i | x_i) = \frac{p(x_i | y_i) p(y_i)}{p(x_i)} \propto p(x_i | y_i) p(y_i) \quad \text{("denominator doesn't matter")(conditional independence assumption)}
\]

\[
\approx \frac{d}{H} \left[p(x_{ij} | y_i) \right] p(y_i) \quad \text{(Only needs easy probabilities)}
\]

• Post-lecture slides: how to train/test by hand on a simple example.
Summary

• **Optimization bias**: using a validation set too much overfits.
• **Cross-validation**: allows better use of data to estimate test error.
• **No free lunch theorem**: there is no “best” ML model.
• **Probabilistic classifiers**: try to estimate $p(y_i | x_i)$.
• **Naïve Bayes**: simple probabilistic classifier based on counting.
 – Uses conditional independence assumptions to make training practical.

• Next time:
 – A “best” machine learning model as ‘n’ goes to ∞.
Naïve Bayes Training Phase

• Training a naïve Bayes model:

\[X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]
Naïve Bayes Training Phase

- Training a naïve Bayes model:

1. Set n_c to the number of times ($y_i = c$).

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times ($y_i = c$).
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.

<table>
<thead>
<tr>
<th>X</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>0 0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>0 0</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
</tr>
</tbody>
</table>

$\hat{p}(y_i = 1) = \frac{6}{10} \quad n_1 = 6$

$\hat{p}(y_i = 0) = \frac{4}{10} \quad n_0 = 4$
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times $(y_i = c)$.
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.
3. Set n_{cjk} as the number of times $(y_i = c, x_j = k)$.
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times $(y_i = c)$.
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.
3. Set n_{cjk} as the number of times $(y_i = c, x_{ij} = k)$.
4. Estimate $p(x_{ij} = k | y_i = c)$ as $\frac{n_{cjk}}{n}$.

\[X = \begin{bmatrix}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{bmatrix} \]

\[p(y_i=1) = \frac{6}{10} \leftarrow n_1 = 6 \]

\[p(x_{i1} = 1, y_i = 1) = \frac{4}{10} \leftarrow n_{11} = 4 \]

\[p(y_i = 0) = \frac{4}{10} \leftarrow n_0 = 4 \]
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times $(y_i = c)$.
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.
3. Set n_{cjk} as the number of times $(y_i = c, x_{ij} = k)$.
4. Estimate $p(x_{ij} = k | y_i = c)$ as $\frac{n_{cjk}}{n}$.
5. Use that $p(x_{ij} = k | y_i = c) = \frac{p(x_{ij} = k, y_i = c)}{p(y_i = c)} = \frac{\frac{n_{cjk}}{n}}{\frac{n_c}{n}} = \frac{n_{cjk}}{n_c}$.
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Given a test example \hat{x}_i, we set prediction \hat{y}_i to the 'c' maximizing $p(\hat{x}_i | \hat{y}_i = c)$

Under the naïve Bayes assumption we can maximize:

$$p(\hat{y}_i = c | \hat{x}_i) \propto \prod_{j=1}^{d} \left[p(\hat{x}_{ij} | \hat{y}_i = c) \right] p(\hat{y}_i = c)$$
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider $\hat{x}_i = [1 \ 1]$ in this data set —

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider $\tilde{x}_i = [1, 1]$ in this data set:

$$p(\tilde{y}_i = 0 | \tilde{x}_i) \propto p(\tilde{x}_{i1} = 1 | \tilde{y}_i = 0) p(\tilde{x}_{i2} = 1 | \tilde{y}_i = 0) p(\tilde{y}_i = 0)$$

$$= (1)(0.25)(0.4) = 0.$$
Naïve Bayes Prediction Phase

- Prediction in a naïve Bayes model:

\[
\begin{align*}
p(\tilde{y}_i = 0 | \tilde{x}_i) &\propto p(\tilde{x}_{i1} = 1 | \tilde{y}_i = 0) p(\tilde{x}_{i2} = 1 | \tilde{y}_i = 0) p(\tilde{y}_i = 0) \\
&= (0.5)^1 (0.25)^1 (0.4)^1 = 0.1
\end{align*}
\]

\[
\begin{align*}
p(\tilde{y}_i = 1 | \tilde{x}_i) &\propto p(\tilde{x}_{i1} = 1 | \tilde{y}_i = 1) p(\tilde{x}_{i2} = 1 | \tilde{y}_i = 1) p(\tilde{y}_i = 1) \\
&= (0.5)^1 (0.666...) (0.6)^1 = 0.2
\end{align*}
\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider \(\tilde{x}_i = [1 1] \) in this data set →

\[
p(\tilde{y}_i = 0 | \tilde{x}_i) \propto p(\tilde{x}_1 = 1 | \tilde{y}_i = 0) p(\tilde{x}_2 = 1 | \tilde{y}_i = 0) p(\tilde{y}_i = 0)
\]

\[
= (1)(0.25)(0.4) = 0.1
\]

\[
p(\tilde{y}_i = 1 | \tilde{x}_i) \propto p(\tilde{x}_1 = 1 | \tilde{y}_i = 1) p(\tilde{x}_2 = 1 | \tilde{y}_i = 1) p(\tilde{y}_i = 1)
\]

\[
= (0.5)(0.666...) (0.6) = 0.2
\]

Since \(p(\tilde{y}_i = 1 | \tilde{x}_i) \) is bigger than \(p(\tilde{y}_i = 0 | \tilde{x}_i) \), naïve Bayes predicts \(\tilde{y}_i = 1 \).

(Don’t sum to 1 because we’re ignoring \(p(\tilde{x}_i) \))
Probability of Paying Back a Loan and Ethics

• Article discussing predicting “whether someone will pay back a loan”:

• Words that increase probability of paying back the most:
 – debt-free, lower interest rate, after-tax, minimum payment, graduate.

• Words that decrease probability of paying back the most:
 – God, promise, will pay, thank you, hospital.

• Article also discusses an important issue: are all these features ethical?
 – Should you deny a loan because of religion or a family member in the hospital?
 – ICBC is limited in the features it is allowed to use for prediction.
Avoiding Underflow

• During the prediction, the probability can underflow:

\[p(y_i = c | x_i) \propto \prod_{j=1}^{d} \left[p(x_{ij} | y_i = c) \right] p(y_i = c) \]

All these are < 1 so the product gets very small.

• Standard fix is to (equivalently) maximize the logarithm of the probability:

Remember that \(\log(ab) = \log(a) + \log(b) \) so \(\log(\prod \alpha_i) = \sum_i \log(\alpha_i) \)

Since \(\log \) is monotonic, the 'c' maximizing \(p(y_i = c | x_i) \) also maximizes \(\log p(y_i = c | x_i) \)

So maximize \(\log \left(\prod_{j=1}^{d} \left[p(x_{ij} | y_i = c) \right] p(y_i = c) \right) = \sum_{j=1}^{d} \log(p(x_{ij} | y_i = c)) + \log(p(y_i = c)) \)
Back to Decision Trees

• Instead of validation set, you can use CV to select tree depth.

• But you can also use these to decide **whether to split**:
 – Don’t split if validation/CV error doesn’t improve.
 – Different parts of the tree will have different depths.

• Or fit deep decision tree and **use CV to prune**:
 – Remove leaf nodes that don’t improve CV error.

• Popular implementations that have these tricks and others.
Cross-Validation Theory

• Does CV give unbiased estimate of test error?
 – Yes!
 • Since each data point is only used once in validation, expected validation error on each data point is test error.
 – But again, using CV to select among models then it is no longer unbiased.

• What about variance of CV?
 – Hard to characterize.
 – CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.
 • But we believe it is close.
Handling Data Sparsity

• Do we need to store the full bag of words 0/1 variables?
 – No: only need list of non-zero features for each e-mail.

 Math/model doesn’t change, but more efficient storage.
Less-Naïve Bayes

• Given features \(\{x_1, x_2, x_3, \ldots, x_d\} \), naïve Bayes approximates \(p(y|x) \) as:

\[
p(y|x_1, x_2, \ldots, x_d) \propto p(y)p(x_1, x_2, \ldots, x_d|y) \quad \text{(product rule applied repeatedly)}
\]

\[
= p(y)p(x_1|y)p(x_2|x_1, y)p(x_3|x_2, x_1, y) \cdots p(x_d|x_{d-1}, y)
\]

\[
\approx p(y)p(x_1|y)p(x_2|y)p(x_3|y) \cdots p(x_d|y) \quad \text{(naïve Bayes assumption)}
\]

• The assumption is very strong, and there are “less naïve” versions:
 – Assume independence of all variables except up to ‘k’ largest ‘j’ where \(j < i \).
 • E.g., naïve Bayes has \(k=0 \) and with \(k=2 \) we would have:

\[
\approx p(y)p(x_1|y)p(x_2|x_1, y)p(x_3|x_2, x_1, y)p(x_4|x_3, x_2, y) \cdots p(x_d|x_{d-2}, x_{d-1}, y)
\]

• Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.
 – Another practical variation is “tree-augmented” naïve Bayes.
Gaussian Discriminant Analysis

• Classifiers based on Bayes rule are called **generative classifier**:
 – They often work well when you have **tons of features**.
 – But they **need to know** $p(x_i \mid y_i)$, probability of features given the class.
 • How to “generate” features, based on the class label.

• To fit generative models, usually make **BIG assumptions**:
 – **Naïve Bayes** (NB) for discrete x_i:
 • Assume that each variables in x_i is independent of the others in x_i given y_i.

 – **Gaussian discriminant analysis** (GDA) for continuous x_i.
 • Assume that $p(x_i \mid y_i)$ follows a multivariate normal distribution.
 • If all classes have same covariance, it’s called “linear discriminant analysis”.
Computing $p(x_i)$ under naïve Bayes

• Generative models don’t need $p(x_i)$ to make decisions.
• However, it’s easy to calculate under the naïve Bayes assumption:

$$p(x_i) = \sum_{c=1}^{K} p(x_i, y = c) \quad \text{(marginalization rule)}$$

$$= \sum_{c=1}^{K} p(x_i | y = c) p(y = c) \quad \text{(product rule)}$$

$$= \sum_{c=1}^{K} \left[\prod_{j=r}^{d} p(x_{ij} | y = c) \right] p(y = c) \quad \text{(naïve Bayes assumption)}$$

These are the quantities we compute during training.
Proof of No Free Lunch Theorem

• Let’s show the “no free lunch” theorem in a simple setting:
 – The x^i and y^i are binary, and y^i being a deterministic function of x^i.
• With ‘d’ features, each “learning problem” is a map from each of the 2^d feature combinations to 0 or 1: $\{0,1\}^d \rightarrow \{0,1\}$

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map 1</th>
<th>Map 2</th>
<th>Map 3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

• Let’s pick one of these maps (“learning problems”) and:
 – Generate a set training set of ‘n’ IID samples.
 – Fit model A (convolutional neural network) and model B (naïve Bayes).
Proof of No Free Lunch Theorem

• Define the “unseen” examples as the \((2^d - n)\) not seen in training.
 – Assuming no repetitions of \(x^i\) values, and \(n < 2^d\).
 – Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
 – We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
 – The labels \(y^i\) agree on all training examples.
 – The labels \(y_i\) disagree on all “unseen” examples.

• On this other “learning problem”:
 – Model A gets 99% error and model B gets 40% error.
Proof of No Free Lunch Theorem

• Further, across all “learning problems” with these ‘n’ examples:
 – Average generalization error of every model is 50% on unseen examples.
 • It’s right on each unseen example in exactly half the learning problems.
 – With ‘k’ classes, the average error is (k-1)/k (random guessing).

• This is kind of depressing:
 – For general problems, no “machine learning” is better than “predict 0”.

• But the proof also reveals the problem with the NFL theorem:
 – Assumes every “learning problem” is equally likely.
 – World encourages patterns like “similar features implies similar labels”.