CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2018



Admin

Mike and | finish CNNs on Wednesday.

After that, we will cover different topics:
— Mike will do a demo of training CNNs with cloud/GPU resources.

— | am planning to cover boosting (the other type of ensemble method).
e The lecture will probably be 90 minutes (I won’t be offended if you leave early, extra time won’t be testable).

Friday’s lectures will also be different:
— Mike will do a course review in his section.
— Aline Tabet will give a guest lecture in this section (“ML Applications in Medicine”).

Final: Thursday December 13t at 8:30am in WOOD 2.

— Similar style of questions to midterm.
— 2 pages of notes.

CPSC 532M students: course project due December 19 (details on Piazza).



Last Time: Convolutions
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* Consider our original “signal”:

* For each “time”: ) NN " A
— Compute dot-product of signal at surrounding times with a “filter”.

* This gives a new “signal”: N 1
— Measures a property of “neighbourhood”.

— This particular filter shows a local
“how spiky ” value. . |
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1D Convolution

e 1D convolution example:
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1D Convolution

1D convolution example: Lef's (om,au*e 2.

— Signal: ~
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1D Convolution Examples

« Examples: et x=LO 1 1 23 5 8 I3]
— “Ildentity”
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— “Translation”
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1D Convolution Examples

« Examples: et x=LO 1 1 23 5 8 I3]
— “Ildentity”
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— “Local Average”
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Boundary Issue

 What can we do about the “?” at the edges?
T w=CO 1123 6 313 andwil% %) thnool” % 152345505 7 |

* Can assign values past the boundaries:

* “Zero”: x=00 0O ;O | 2 3 G 3 '3j O OO0
 “Replicate”: x=0 9 O ;O | 2 3 G 3 '3j 3133
e “Mirror”: A= 2 | I [:O \ I 1 3 g 3 ’3j g g 3

* Orjustignore the “?” values and return a shorter vector:

=[% 1% 2 %4 6% %)



1D Convolution Examples

* Translation convolution shift signal:
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1D Convolution Examples

* Averaging convolution computes local mean:
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1D Convolution Examples

* Averaging over bigger window gives coarser view of signal:
( / [ /
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1D Convolution Examples

- 2
L
* Gaussian convolution blurs signal:  W;Xexp 1(.,1)

— Compared to averaging it’s more smooth and maintains peaks better.
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1D Convolution Examples

* Sharpen convolution enhances peaks.
— An “average” that places negative weights on the surrounding pixels.
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1D Convolution Examples

e Laplacian convolution approximates second derivative:
— “Sum to zero” filters “respond” if input vector looks like the filter
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Digression: Derivatives and Integrals

 Numerical derivative approximations can be viewed as filters:

— Centered difference: [-1, O, 1] (derivativeCheck in findMin). /

 Numerical integration approximations can be viewed as filters:

— “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter).
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e Derivative filters add to O, integration filters add to 1,
— For constant function, derivative should be 0 and average = constant.



1D Convolution Examples

 Laplacian of Gaussian is a smoothed 2"d-derivative approximation:
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1D Convolution Examples

e We often use maximum over several convolutions as features:

— Below is maximum of Laplacian of Gaussian at ‘i’ and its 16 KNNs.
— We use different convolutions as our features (derivatives, integrals, etc.).
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Images and Higher-Order Convolution

* 2D convolution:

— Signal X’ is the pixel intensities in an ‘n’ by ‘n’ image.

— Filter ‘w’ is the pixel intensities in a 2m+1’ by 2m+1’ image.
* The 2D convolution is given by:

2[_,'),12\ = é f WL),)J'z]X[/,ﬂ',)’-z +J'2‘\]
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* 3D and higher-order convolutions are defined similarly.
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples ...,
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples




Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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http://setosa.io/ev/image-kernels



http://setosa.io/ev/image-kernels
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Image Convolution Examples

Galoor Filter
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Image Convolution Examples

Galoor Filter
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Image Convolution Examples

Galoor Filter
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Image Convolution Examples

Galoor Filter
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Image Convolution Examples
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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3D Convolution
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Filter Banks

 To characterize context, we used to use filter bank like “MR8":
— 1 Gaussian filter, 1 Laplacian of Gaussian filter.
— 6 max(Gabor) filters: 3 scales of sine/cosine (maxed over orientations).
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* Convolutional neural networks are now replacing filter banks.



(pause)



1D Convolution as Matrix Multiplication

* Each element of a convolution is an inner product:
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e So convolution is a matrix multiplication (I’'m ignoring boundaries):
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* The shorter ‘W’ is, the more sparse the matrix is.
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1D Convolution as Matrix Multiplication

e 1D convolution:

— Takes signal x” and filter ‘w’ to produces vector ‘Z’:

X

— Can be written as a matrix multiplication:
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2D Convolution as Matrix Multiplication

e 2D convolution:

— Signal ‘X, filter ‘w’, and output ‘z’ are now all images/matrices:

(—

— Vectorized ‘z’ can be written as a matrix multiplication with vectorized x’:
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Motivation for Convolutional Neural Networks

Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

If first layer has k=10,000, then it has about 2 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

Key idea: make Wx; act like several convolutions (to make it sparse):

1. Each row of W only applies to part of x.. W':LO 0 b w—— 0 OOJ

00 OOD]
_ w/
%‘LO

Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.




Motivation for Convolutional Neural Networks

e Classic vision methods uses fixed convolutions as features:
— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.




Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the features:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions, but learn the elements of the filters.




Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
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Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.

ID ex l( /\ﬁclls‘/ame bolwe an coitues of convelydion is ca//g
amp |
— \L(,,.) 0 0 0 O QO O D Sfr».‘e
= ) ’Oﬁ' w("' 0 0 Some W( used aces
o ° () pultiple  rows.

o 0o 0 00 O— "™
(~————-oc700060

()

2 gf_‘“_’ic and smm//
> O 0 0 O () O /ng — N um ber oF anme’/e/5

O O/W_/ 00




Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
— Pooling layer: combine results of convolutions.

e Can add invariances or just make the number of parameters smaller.

e Usual choice is ‘max pooling’: /l




LeNet for Optical Character Recognition




Summary

Convolutions are flexible class of signal/image transformations.
— Can approximate directional derivatives and integrals at different scales.

Max(convolutions) can yield features that make classification easy.
Convolutional neural networks:

— Restrict WM matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: modern convolutional neural networks and applications.
— Image segmentation, depth estimation, image colorization, artistic style.



FFT implementation of convolution

* Convolutions can be implemented using fast Fourier transform:
— Take FFT of image and filter, multiply elementwise, and take inverse FFT.

* |t has faster asymptotic running time but there are some catches:
— You need to be using periodic boundary conditions for the convolution.
— Constants matter: it may not be faster in practice.

e Especially compared to using GPUs to do the convolution in hardware.

— The gains are largest for larger filters (compared to the image size).



Image Coordinates

* Should we use the image coordinates?
— E.g., the pixel is at location (124, 78) in the image.

* Considerations:
— |s the interpretation different in different areas of the image?

— Are you using a linear model?
* Would “distance to center” be more logical?

— Do you have enough data to learn about all areas of the image?



Alignment-Based Features

 The position in the image is important in brain tumour application.
— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.
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Alignment-Based Features

 The position in the image is important in brain tumour application.
— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.

— Allowed “alignment-based” features: va/ufb
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Motivation: Automatic Brain Tumor Segmentation

* Final features for brain tumour segmentation:
— MRS filter bank applied to original T1, T2, and T1 “contrast” — T1 “original”.
— Gaussian convolution with 3 variances of alignment-based features.

X X 600




SIFT Features

e Scale-invariant feature transform (SIFT):
— Features used for object detection (“is particular object in the image”?)
— Designed to detect unique visual features of objects at multiple scales.
— Proven useful for a variety of object detection tasks.




