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Admin 
• Mike and I finish CNNs on Wednesday. 

 
• After that, we will cover different topics: 

– Mike will do a demo of training CNNs with cloud/GPU resources. 
– I am planning to cover boosting (the other type of ensemble method). 

• The lecture will probably be 90 minutes (I won’t be offended if you leave early, extra time won’t be testable). 

 

• Friday’s lectures will also be different: 
– Mike will do a course review in his section. 
– Aline Tabet will give a guest lecture in this section (“ML Applications in Medicine”). 

 

• Final: Thursday December 13th at 8:30am in WOOD 2. 
– Similar style of questions to midterm. 
– 2 pages of notes. 

 

• CPSC 532M students: course project due December 19 (details on Piazza). 



Last Time: Convolutions 

• Consider our original “signal”: 

 

 

• For each “time”: 
– Compute dot-product of signal at surrounding times with a “filter”. 

 

 

• This gives a new “signal”: 
– Measures a property of “neighbourhood”. 

– This particular filter shows a local  
“how spiky ” value. 



1D Convolution 

• 1D convolution example: 

– Signal:  

 

– Filter: 

 

– Convolution: 
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– Signal:  

 

– Filter: 

 

– Convolution: 



1D Convolution Examples 

• Examples:  

– “Identity” 

 

 

– “Translation” 

 



1D Convolution Examples 

• Examples:  

– “Identity” 

 

 

– “Local Average” 



Boundary Issue 

• What can we do about the “?” at the edges? 

 

• Can assign values past the boundaries: 
• “Zero”: 

 

• “Replicate”: 

 

• “Mirror”: 

• Or just ignore the “?” values and return a shorter vector: 

 

 



1D Convolution Examples 

• Translation convolution shift signal: 



1D Convolution Examples 

• Averaging convolution computes local mean: 



1D Convolution Examples 

• Averaging over bigger window gives coarser view of signal: 



1D Convolution Examples 

• Gaussian convolution blurs signal: 

– Compared to averaging it’s more smooth and maintains peaks better. 



1D Convolution Examples 

• Sharpen convolution enhances peaks. 

– An “average” that places negative weights on the surrounding pixels. 



1D Convolution Examples 

• Laplacian convolution approximates second derivative: 

– “Sum to zero” filters “respond” if input vector looks like the filter 

 



Digression: Derivatives and Integrals 

• Numerical derivative approximations can be viewed as filters: 

– Centered difference: [-1, 0, 1] (derivativeCheck in findMin). 
 

 

• Numerical integration approximations can be viewed as filters: 

– “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter). 

 

 

• Derivative filters add to 0, integration filters add to 1,  

– For constant function, derivative should be 0 and average = constant. 
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1D Convolution Examples 

• Laplacian of Gaussian is a smoothed 2nd-derivative approximation: 



1D Convolution Examples 

• We often use maximum over several convolutions as features: 

– Below is maximum of Laplacian of Gaussian at ‘i’ and its 16 KNNs. 

– We use different convolutions as our features (derivatives, integrals, etc.). 

 



Images and Higher-Order Convolution 

• 2D convolution: 

– Signal ‘x’ is the pixel intensities in an ‘n’ by ‘n’ image. 

– Filter ‘w’ is the pixel intensities in a ‘2m+1’ by ‘2m+1’ image. 

•  The 2D convolution is given by: 

 

 

• 3D and higher-order convolutions are defined similarly. 

https://github.com/vdumoulin/conv_arithmetic 



Image Convolution Examples 
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Image Convolution Examples 

http://setosa.io/ev/image-kernels 

http://setosa.io/ev/image-kernels
http://setosa.io/ev/image-kernels
http://setosa.io/ev/image-kernels


Image Convolution Examples 
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Image Convolution Examples 



3D Convolution 



3D Convolution 



3D Convolution 



3D Convolution 



3D Convolution 



Filter Banks 

• To characterize context, we used to use filter bank like “MR8”: 

– 1 Gaussian filter, 1 Laplacian of Gaussian filter. 

– 6 max(Gabor) filters: 3 scales of sine/cosine (maxed over orientations). 

 

 

 

 

 

 

• Convolutional neural networks are now replacing filter banks. 
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html 



(pause) 



1D Convolution as Matrix Multiplication 

• Each element of a convolution is an inner product: 

 

 

 

 

• So convolution is a matrix multiplication (I’m ignoring boundaries): 

 

 

 

• The shorter ‘w’ is, the more sparse the matrix is. 

 

 

 

 

 

 

 



1D Convolution as Matrix Multiplication 

• 1D convolution: 

– Takes signal ‘x’ and filter ‘w’ to produces vector ‘z’: 

 

 

 

 

– Can be written as a matrix multiplication: 



2D Convolution as Matrix Multiplication 

• 2D convolution: 

– Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices: 

 

 

 

 

– Vectorized ‘z’ can be written as a matrix multiplication with vectorized ‘x’: 



Motivation for Convolutional Neural Networks 

• Consider training neural networks on 256 by 256 images. 

– This is 256 by 256 by 3 ≈ 200,000 inputs. 

• If first layer has k=10,000, then it has about 2 billion parameters. 

– We want to avoid this huge number (due to storage and overfitting). 

 

• Key idea: make Wxi act like several convolutions (to make it sparse): 

1. Each row of W only applies to part of xi. 

2. Use the same parameters between rows. 

 

• Forces most weights to be zero, reduces number of parameters. 

 

 



Motivation for Convolutional Neural Networks 

• Classic vision methods uses fixed convolutions as features: 

– Usually have different types/variances/orientations. 

– Can do subsampling or take maxes across locations/orientations/scales. 



Motivation for Convolutional Neural Networks 

• Convolutional neural networks learn the features: 

– Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations. 

– Don’t pick from fixed convolutions, but learn the elements of the filters. 

 

 



Convolutional Neural Networks 

• Convolutional Neural Networks classically have 3 layer “types”: 

– Fully connected layer: usual neural network layer with unrestricted W. 
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Convolutional Neural Networks 

• Convolutional Neural Networks classically have 3 layer “types”: 

– Fully connected layer: usual neural network layer with unrestricted W. 

– Convolutional layer: restrict W to act like several convolutions. 

– Pooling layer: combine results of convolutions. 

• Can add invariances or just make the number of parameters smaller. 

• Usual choice is ‘max pooling’: 

 

 



LeNet for Optical Character Recognition 

http://blog.csdn.net/strint/article/details/44163869 



Summary 

• Convolutions are flexible class of signal/image transformations. 

– Can approximate directional derivatives and integrals at different scales. 

• Max(convolutions) can yield features that make classification easy. 

• Convolutional neural networks: 

– Restrict W(m) matrices to represent sets of convolutions. 

– Often combined with max (pooling). 

 

• Next time: modern convolutional neural networks and applications. 

– Image segmentation, depth estimation, image colorization, artistic style. 

 

 



FFT implementation of convolution 

• Convolutions can be implemented using fast Fourier transform: 

– Take FFT of image and filter, multiply elementwise, and take inverse FFT. 

 

• It has faster asymptotic running time but there are some catches: 

– You need to be using periodic boundary conditions for the convolution. 

– Constants matter: it may not be faster in practice. 

• Especially compared to using GPUs to do the convolution in hardware. 

– The gains are largest for larger filters (compared to the image size). 
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Image Coordinates 

• Should we use the image coordinates? 
– E.g., the pixel is at location (124, 78) in the image. 

 

 

 

 

 

• Considerations: 
– Is the interpretation different in different areas of the image? 

– Are you using a linear model? 
• Would “distance to center” be more logical? 

– Do you have enough data to learn about all areas of the image? 

 



Alignment-Based Features 

• The position in the image is important in brain tumour application. 

– But we didn’t have much data, so coordinates didn’t make sense. 

• We aligned the images with a “template image”. 

 



Alignment-Based Features 

• The position in the image is important in brain tumour application. 

– But we didn’t have much data, so coordinates didn’t make sense. 

• We aligned the images with a “template image”. 

– Allowed “alignment-based” features: 

 



Motivation: Automatic Brain Tumor Segmentation 

• Final features for brain tumour segmentation: 

– MR8 filter bank applied to original T1, T2, and T1 “contrast” – T1 “original”. 

– Gaussian convolution with 3 variances of alignment-based features. 



SIFT Features 

• Scale-invariant feature transform (SIFT): 

– Features used for object detection (“is particular object in the image”?) 

– Designed to detect unique visual features of objects at multiple scales. 

– Proven useful for a variety of object detection tasks. 

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html 


