CPSC 340:
Machine Learning and Data Mining

Even More Deep Learning
Fall 2018

Last Lectures: Deep Learning

* We've been discussing neural network / deep learning models:

N -
\/,.: v'MW(")MW(W”H”“‘*WmMW(”XJ)"”))

* We discussed unprecedented vision/speech performance.

Image classification

0.3

0.2}

017

Classification error

0
2010 2011 2012 2013 2014

ILSVRC year

Setting the Step-Size

Automatic method to set step size is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

Several recent methods using a step size for each variable:
— AdaGrad, RMSprop, Adam (often work better “out of the box”).
— Seem to be losing popularity to stochastic gradient (often with momentum).
* Often yields lower test error but this requires more tuning of step-size.
Batch size (hnumber of random examples) also influences results.
— Bigger batch sizes often give faster convergence but maybe to worse solutions.

Another recent trick is batch normalization:
— Try to “standardize” the hidden units within the random samples as we go.

— Held as example of deep learning “alchemy”.
* Sounds science-ey and often works but little theoretical justification/understanding.

https://www.youtube.com/watch?v=Qi1Yry33TQE

Vanishing Gradient Problem

Consider the sigmoid function:

——
—

.. O . :
Away from the origin, the gradient is nearly zero.
The problem gets worse when you take the sigmoid of a sigmoid:

|

o
In deep networks, many gradients can be nearly zero everywhere.

Rectified Linear Units (RelLU)

e Replace sigmoid with perceptron loss (ReLU); Mox 102§

e

14?’/’(8;()

- ———

* Just sets negative values z,_ to zero.
— Fixes vanishing gradient problem.
— Gives sparser activations.
— Not really simulating binary signal, but could be simulating “rate coding”.

“Swish” Activiation

e Recent work searched for “best” aCtIVV

-

mx?(?Z

l"?'/’(e(

* Foundthatz_/(1+exp(-z_)) worked best (“swish” function).
— A bit weird because it allows negative values and is non-monotonic.
— But basically the same as ReLU when not close to 0.

“Residual” Networks (ResNets)

e Suppose we fit a deep network to a linearly-separable dataset.

— “All we need to do is look at the original features to solve the problem”.
— So with ‘m’ layers, the network needs to transform the features ‘m’ times.

e Situations like this have led to residual networks.

— You can take previous (non-transformed) layer as input to current layer.

* Also called “skip connections” or “highway networks”.

— Makes learning easier: “don’t need to transform the input”.
* Non-linear part just “adds” non-linear information to a linear model.

— This was a key idea behind first methods that used 100+ layers.
e Evidence that biological networks have skip connections like this.

¥

Layer |-2

Layer |-1

¥

Layer |

\

DenseNet

 More recent variation is “DenseNets”:
— Each layer can see all the values from many previous layers.
— Gets rid of vanishing gradients.

Figure 1: A 5-layer dense block with a growth rate of &k = 4.
https://arxiv.org/pdf/1512.03385v1.pdf Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— As we increase the depth, training error decreases.
— As we increase the depth, training error no longer approximates test error.

 We want deep networks to model highly non-linear data.
— But increasing the depth leads to overfitting.

* How could GooglLeNet use 22 layers?
— Many forms of regularization and keeping model complexity under control.
— Unlike linear models, typically use multiple types of regularization.

Standard Regularization

* We typically add our usual L2-regularizers:
£ W W wt)= 4 g (v h W hhW) y,) +’/\quvnz+g}||wm SN 2w

e L2-regularization is called “weight decay” in neural network papers.
— Could also use L1-regularization.

 “Hyper-parameter” optimization:
— Try to optimize validation error in terms of A, A,, A5, A,.

e Recent result:

— Adding a regularizer in this way creates bad local optima.

Early Stopping

* Second common type of regularization is “early stopping”:
— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.

A -
accuracy training accuracy

validation accuracy: |
little overfitting V’\‘rof R\mieh/ it vm()bn‘

loolc more ke

/ /Ll\Or;oR\”y \/uu 'lo“"l

$"0V hero.

validation accuracy: strong overfitting
——

Dropout

 Dropout is a more recent form of regularization:
— On each iteration, randomly set some x, and z, to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Encourages distributed representation rather than relying on specific z..
* Alternately, you are adding invariance to missing inputs or latent factors.

— After a lot of success, dropout may already be going out of fashion.

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
i : — r : _ 0.7r . : : —— : . =
0.06} — Training H — Training
— Test (at convergence)| 0.6 —Test (at convergence)
0.05} 1
0.5
0.04
§ § 0.4
L5 0.03f TP
0.02} 0.2
0.01} 0.1
L 1 1 0 L 1 L 1
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Training goes to 0 with enough units: we’re finding a global min.

What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
‘ ' ‘ i : — r : : 0.7+ . ‘ . — : .
0.06 —Training H —Training
— Test (at convergence)| 0.6 —Test (at convergence)
0.05} 1
0.5
0.04
§ § 0.4
L5 0.03f T
0.02} 0.2
0.01} 0.1
L 1 I . 0 L 1 L 1
04 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?! Where is fundamental trade-off??

There exist global mins where large #hidden units have test accuracy O.
— But among the global minima, SGD is somehow converging to “good” ones.

Implicit Regularization of SGD

 There is growing evidence that using SGD regularizes parameters.
* Beyond empirical evidence, we know this happens in simpler cases.

 Example:

— Consider a least squares problem where there exists a ‘w’ where Xw=y.
* Residuals are all zero, we fit the data exactly.

— You run [stochastic] gradient descent starting from w=0.

— Converges to solution w* of Xw=y that has the minimum L2-norm.

* So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.

Implicit Regularization of SGD

 There is growing evidence that using SGD regularizes parameters.
* Beyond empirical evidence, we know this happens in simpler cases.

 Example:

— Consider a logistic regression problem where data is linearly separable.
* We can fit the data exactly.

— You run [stochastic] gradient descent starting from w=0.

— Converges to max-margin solution w* of the problem.

* So using SGD is equivalent to encouraging large margin.

(pause)

Deep Learning “Tricks of the Trade”

 We've discussed heuristics to make it work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient.
— Alternative non-linear functions like ReLU.

— Different forms of regularization:
e L2-regularization, early stopping, dropout, implicit regularization from SGD.

* These are often still not enough to get deep models working.

 Deep computer vision models are all convolutional neural networks:
— The W™ are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds training, reduces overfitting).

Motivation: Automatic Brain Tumor Segmentation

e Task: segmentation tumors and normal tissue in multi-modal MRI data.
Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.

* Challenges:

— Variety of tumor appearances, similarity to normal tissue.
— “You are never going to solve this problem.”

Naive Voxel-Level Classifier

 We could treat classifying a voxel as supervised learning:

| \/
X = (o[g , l?]) 2‘{6) }/'-: Fumour

* We can formulate predicting y; given x; as supervised learning.
 Butit doesn’t work at all with these features.

Need to Summarize Local Context

* The individual voxel values are almost meaningless:

— This x; could lead to different y..

* Intensities not standardized.
* Non-trivial overlap in signal for different tissue types.
e “Partial volume” effects at boundaries of tissue types.

Need to Summarize Local Context

* We need to represent the spatial “context” of the voxel.

— Include all the values of neighbouring voxels?

 Variation on coupon collection problem: requires lots of data to find patterns.

— Measure neighbourhood summary statistics (mean, variance, histogram)?

e Variation on bag of words problem: loses spatial information present in voxels.

— Standard approach uses convolutions to represent neighbourhood.

Representing Neighbourhoods with Convolutions

e Consider a 1D dataset:

— Want to classify each
time intoy, in {1,2,3}.

=
S5
-
-a 2k

— Example: speech data.

T:mem test dala
* Easy to distinguish class 2 from the other classes (x, are smaller).

* Harder to distinguish between class 1 and class 3 (similar x, range).
— But convolutions can represent that class 3 is in “spiky” region.

Representing Neighbourhoods with Convolutions

* Original features (left) and features from convolutions (right):

=
S
.
4.2

ﬁme 17’"8

e Easy to distinguish the 3 classes with these 2 features.

1D Convolution Example

|||||||||

* Consider our original “signal”:

* For each “time”:) ST A
— Compute dot-product of signal at surrounding times with a “filter”.

[, | /
L% e 4]

* This gives a new “signal”: =
— Measures a property of “neighbourhood”. .. |

— This particular filter shows a local
“average” value.

a7
5 4 3 2 -1 0 1 2 3 a 5

1D Convolution Example

|||||||||

* Consider our original “signal”:

* For each “time”:

L L ' L
777777777777777

— Compute dot-product of signal at surrounding times with a “filter”.

W= L0196 01781 ~24¢ QULHD 08467 0190 ~0274 =0 ~(mi)

 This gives a new “signal”: . il
— Measures a property of “neighbourhood”. -~ 1 'l il

— This particular filter shows a local = VA I
“how spiky ” value. w N (R

1 L L i
———————————————

1D Convolution (notation is specific to this lecture)

e 1D convolution input:

— Signal ‘x” which is a vector length ‘n’.)(:[0 123 § 9 /3]
* Indexed by i=1,2,...,n.

— Filter ‘w wh|.ch is a vector of length 2m+1": e [O - 2 - 07
* Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m

wo W, W, W W

* Qutputis a vector of length ‘n” with elements:

Z/' - jémv’{) Xi+J‘

— You can think of this as centering w at position 7,
and taking a dot product of ‘w’ with that “part” x..

Summary

ReLU and ResNets avoid “vanishing gradients”.

Regularization is crucial to neural net performance:
— L2-regularization, early stopping, dropout, implicit regularization of SGD.

Convolutions are flexible class of signal/image transformations.

Next time: convolutional neural networks.

— The most important idea in computer vision?

