
CPSC 340:
Machine Learning and Data Mining

Even More Deep Learning

Fall 2018



Last Lectures: Deep Learning

• We’ve been discussing neural network / deep learning models:

• We discussed unprecedented vision/speech performance.

https://arxiv.org/pdf/1409.0575v3.pdf



Setting the Step-Size

• Automatic method to set step size is Bottou trick: 
1. Grab a small set of training examples (maybe 5% of total).
2. Do a binary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

• Several recent methods using a step size for each variable:
– AdaGrad, RMSprop, Adam (often work better “out of the box”).
– Seem to be losing popularity to stochastic gradient (often with momentum).

• Often yields lower test error but this requires more tuning of step-size.

• Batch size (number of random examples) also influences results.
– Bigger batch sizes often give faster convergence but maybe to worse solutions.

• Another recent trick is batch normalization:
– Try to “standardize” the hidden units within the random samples as we go.
– Held as example of deep learning “alchemy”.

• Sounds science-ey and often works but little theoretical justification/understanding.

https://www.youtube.com/watch?v=Qi1Yry33TQE


Vanishing Gradient Problem

• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.

• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.



Rectified Linear Units (ReLU)

• Replace sigmoid with perceptron loss (ReLU):

• Just sets negative values zic to zero.

– Fixes vanishing gradient problem.

– Gives sparser activations.

– Not really simulating binary signal, but could be simulating “rate coding”.



“Swish” Activiation

• Recent work searched for “best” activation:

• Found that zic/(1+exp(-zic)) worked best (“swish” function).
– A bit weird because it allows negative values and is non-monotonic.

– But basically the same as ReLU when not close to 0.



“Residual” Networks (ResNets)

• Suppose we fit a deep network to a linearly-separable dataset.
– “All we need to do is look at the original features to solve the problem”.

– So with ‘m’ layers, the network needs to transform the features ‘m’ times.

• Situations like this have led to residual networks.
– You can take previous (non-transformed) layer as input to current layer.

• Also called “skip connections” or “highway networks”.

– Makes learning easier: “don’t need to transform the input”.
• Non-linear part just “adds” non-linear information to a linear model.

– This was a key idea behind first methods that used 100+ layers.
• Evidence that biological networks have skip connections like this.

https://en.wikipedia.org/wiki/Residual_neural_network



DenseNet

• More recent variation is “DenseNets”:

– Each layer can see all the values from many previous layers.

– Gets rid of vanishing gradients.

https://arxiv.org/pdf/1512.03385v1.pdf



Deep Learning and the Fundamental Trade-Off

• Neural networks are subject to the fundamental trade-off:

– As we increase the depth, training error decreases.

– As we increase the depth, training error no longer approximates test error.

• We want deep networks to model highly non-linear data.

– But increasing the depth leads to overfitting.

• How could GoogLeNet use 22 layers?

– Many forms of regularization and keeping model complexity under control.

– Unlike linear models, typically use multiple types of regularization. 



Standard Regularization

• We typically add our usual L2-regularizers:

• L2-regularization is called “weight decay” in neural network papers.

– Could also use L1-regularization.

• “Hyper-parameter” optimization:

– Try to optimize validation error in terms of λ1, λ2, λ3, λ4.

• Recent result:

– Adding a regularizer in this way creates bad local optima.



Early Stopping

• Second common type of regularization is “early stopping”:

– Monitor the validation error as we run stochastic gradient.

– Stop the algorithm if validation error starts increasing.

http://cs231n.github.io/neural-networks-3/



Dropout

• Dropout is a more recent form of regularization:
– On each iteration, randomly set some xi and zi to zero (often use 50%).

– Encourages distributed representation rather than relying on specific zi.
• Alternately, you are adding invariance to missing inputs or latent factors.

– After a lot of success, dropout may already be going out of fashion.
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Training goes to 0 with enough units: we’re finding a global min.

• What should happen to training and test error for larger #hidden?
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??

• There exist global mins where large #hidden units have test accuracy 0.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



Implicit Regularization of SGD

• There is growing evidence that using SGD regularizes parameters.

• Beyond empirical evidence, we know this happens in simpler cases.

• Example:

– Consider a least squares problem where there exists a ‘w’ where Xw=y.

• Residuals are all zero, we fit the data exactly.

– You run [stochastic] gradient descent starting from w=0.

– Converges to solution w* of Xw=y that has the minimum L2-norm.

• So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.



Implicit Regularization of SGD

• There is growing evidence that using SGD regularizes parameters.

• Beyond empirical evidence, we know this happens in simpler cases.

• Example:

– Consider a logistic regression problem where data is linearly separable.

• We can fit the data exactly.

– You run [stochastic] gradient descent starting from w=0.

– Converges to max-margin solution w* of the problem.

• So using SGD is equivalent to encouraging large margin.



(pause)



Deep Learning “Tricks of the Trade”

• We’ve discussed heuristics to make it work:
– Parameter initialization and data transformations.

– Setting the step size(s) in stochastic gradient.

– Alternative non-linear functions like ReLU.

– Different forms of regularization:
• L2-regularization, early stopping, dropout, implicit regularization from SGD.

• These are often still not enough to get deep models working.

• Deep computer vision models are all convolutional neural networks:
– The W(m) are very sparse and have repeated parameters (“tied weights”).

– Drastically reduces number of parameters (speeds training, reduces overfitting).



Motivation: Automatic Brain Tumor Segmentation

• Task: segmentation tumors and normal tissue in multi-modal MRI data.

• Applications:
– Radiation therapy target planning, quantifying treatment responses.
– Mining growth patterns, image-guided surgery.

• Challenges:
– Variety of tumor appearances, similarity to normal tissue.
– “You are never going to solve this problem.”

Input: Output:



Naïve Voxel-Level Classifier

• We could treat classifying a voxel as supervised learning:

• We can formulate predicting yi given xi as supervised learning.

• But it doesn’t work at all with these features.



Need to Summarize Local Context

• The individual voxel values are almost meaningless:

– This xi could lead to different yi.

• Intensities not standardized.

• Non-trivial overlap in signal for different tissue types.

• “Partial volume” effects at boundaries of tissue types.



Need to Summarize Local Context

• We need to represent the spatial “context” of the voxel.

– Include all the values of neighbouring voxels?

• Variation on coupon collection problem: requires lots of data to find patterns.

– Measure neighbourhood summary statistics (mean, variance, histogram)?

• Variation on bag of words problem: loses spatial information present in voxels.

– Standard approach uses convolutions to represent neighbourhood.



Representing Neighbourhoods with Convolutions

• Consider a 1D dataset:
– Want to classify each

time into yi in {1,2,3}.

– Example: speech data.

• Easy to distinguish class 2 from the other classes (xi are smaller).

• Harder to distinguish between class 1 and class 3 (similar xi range).
– But convolutions can represent that class 3 is in “spiky” region.



Representing Neighbourhoods with Convolutions

• Original features (left) and features from convolutions (right):

• Easy to distinguish the 3 classes with these 2 features.



1D Convolution Example

• Consider our original “signal”:

• For each “time”:
– Compute dot-product of signal at surrounding times with a “filter”.

• This gives a new “signal”:
– Measures a property of “neighbourhood”.

– This particular filter shows a local 
“average” value.



1D Convolution Example

• Consider our original “signal”:

• For each “time”:
– Compute dot-product of signal at surrounding times with a “filter”.

• This gives a new “signal”:
– Measures a property of “neighbourhood”.

– This particular filter shows a local 
“how spiky ” value.



1D Convolution (notation is specific to this lecture)

• 1D convolution input:

– Signal ‘x’ which is a vector length ‘n’.

• Indexed by i=1,2,…,n.

– Filter ‘w’ which is a vector of length ‘2m+1’:

• Indexed by i=-m,-m+1,…-2,0,1,2,…,m-1,m

• Output is a vector of length ‘n’ with elements:

– You can think of this as centering w at position ‘i’,
and taking a dot product of ‘w’ with that “part” xi. 



Summary

• ReLU and ResNets avoid “vanishing gradients”.

• Regularization is crucial to neural net performance:

– L2-regularization, early stopping, dropout, implicit regularization of SGD.

• Convolutions are flexible class of signal/image transformations.

• Next time: convolutional neural networks.

– The most important idea in computer vision?


