CPSC 340: Machine Learning and Data Mining

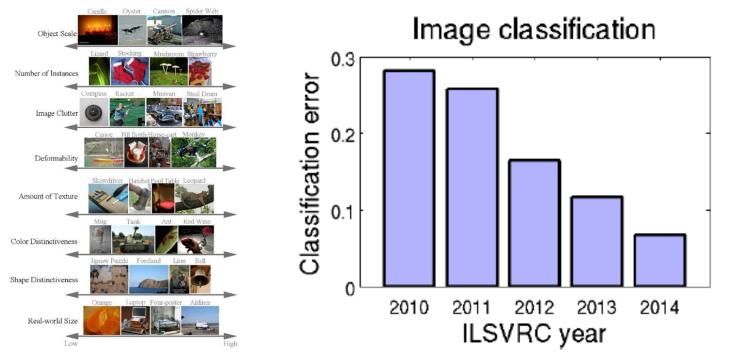
Even More Deep Learning Fall 2018

Last Lectures: Deep Learning

• We've been discussing neural network / deep learning models:

$$y_{i} = \sqrt{h(W^{(m)}h(W^{(m-1)}h(\cdots W^{(n)}h(W^{(1)}x_{i}))\cdots))}$$

• We discussed unprecedented vision/speech performance.



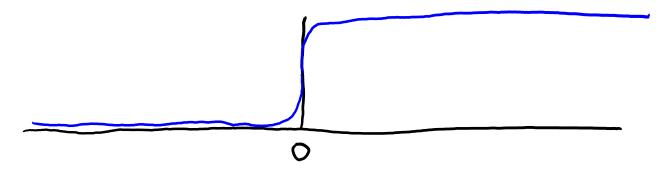
https://arxiv.org/pdf/1409.0575v3.pdf

Setting the Step-Size

- Automatic method to set step size is **Bottou trick**:
 - 1. Grab a small set of training examples (maybe 5% of total).
 - 2. Do a binary search for a step size that works well on them.
 - 3. Use this step size for a long time (or slowly decrease it from there).
- Several recent methods using a step size for each variable:
 - AdaGrad, RMSprop, Adam (often work better "out of the box").
 - Seem to be losing popularity to stochastic gradient (often with momentum).
 - Often yields lower test error but this requires more tuning of step-size.
- Batch size (number of random examples) also influences results.
 - Bigger batch sizes often give faster convergence but maybe to worse solutions.
- Another recent trick is **batch normalization**:
 - Try to "standardize" the hidden units within the random samples as we go.
 - Held as example of deep learning "<u>alchemy</u>".
 - Sounds science-ey and often works but little theoretical justification/understanding.

Vanishing Gradient Problem

- Consider the sigmoid function: • Away from the origin, the gradient is nearly zero.
- The problem gets worse when you take the sigmoid of a sigmoid:



In deep networks, many gradients can be nearly zero everywhere. ullet

Rectified Linear Units (ReLU)

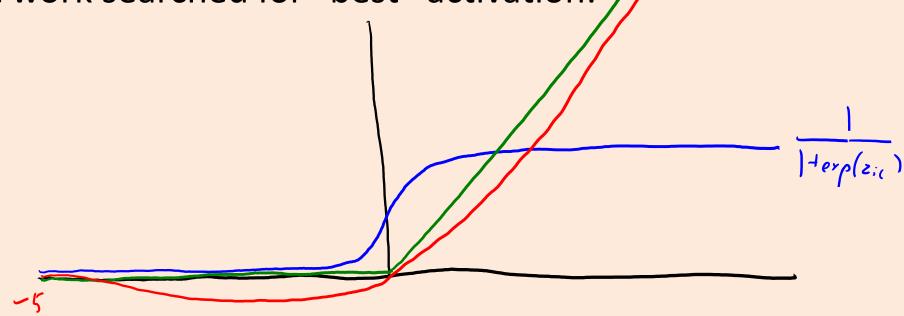
+erp(z;c)

• Replace sigmoid with perceptron loss (ReLU); Max ED, z, c §

- Just sets negative values z_{ic} to zero.
 - Fixes vanishing gradient problem.
 - Gives sparser activations.
 - Not really simulating binary signal, but could be simulating "rate coding".

"Swish" Activiation

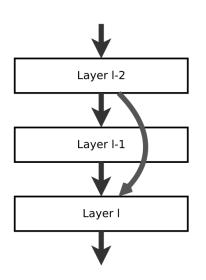
• Recent work searched for "best" activation: / Max {0, z,c}



- Found that z_{ic}/(1+exp(-z_{ic})) worked best ("swish" function).
 - A bit weird because it allows negative values and is non-monotonic.
 - But basically the same as ReLU when not close to 0.

"Residual" Networks (ResNets)

- Suppose we fit a deep network to a linearly-separable dataset.
 - "All we need to do is look at the original features to solve the problem".
 - So with 'm' layers, the network needs to transform the features 'm' times.
- Situations like this have led to residual networks.
 - You can take previous (non-transformed) layer as input to current layer.
 - Also called "skip connections" or "highway networks".
 - Makes learning easier: "don't need to transform the input".
 - Non-linear part just "adds" non-linear information to a linear model.
 - This was a key idea behind first methods that used 100+ layers.
 - Evidence that biological networks have skip connections like this.



DenseNet

- More recent variation is "DenseNets":
 - Each layer can see all the values from many previous layers.
 - Gets rid of vanishing gradients.

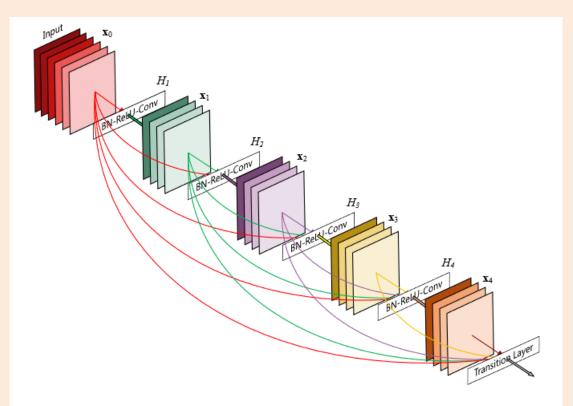


Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

- Neural networks are subject to the fundamental trade-off:
 - As we increase the depth, training error decreases.
 - As we increase the depth, training error no longer approximates test error.
- We want deep networks to model highly non-linear data.
 - But increasing the depth leads to overfitting.
- How could GoogLeNet use 22 layers?
 - Many forms of regularization and keeping model complexity under control.
 - Unlike linear models, typically use multiple types of regularization.

Standard Regularization

• We typically add our usual L2-regularizers:

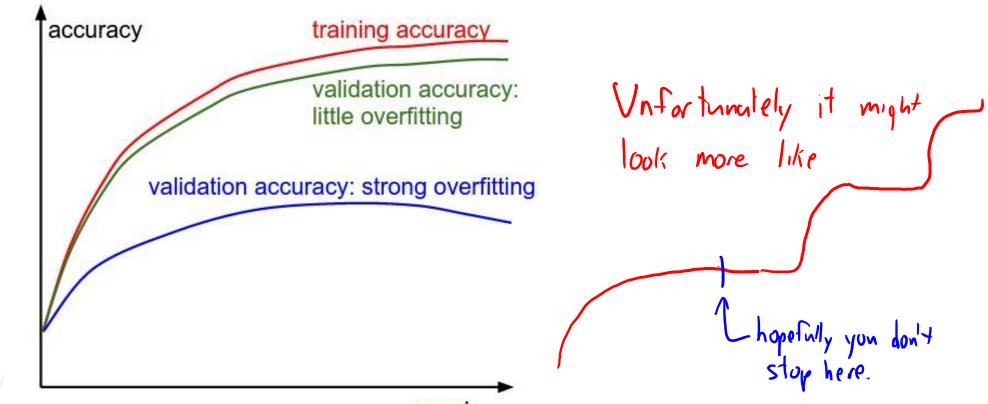
$$f(v_{1}W^{(3)}W^{(2)}W^{(2)}) = \frac{1}{2} \sum_{i=1}^{n} (v_{1}^{i}h(W^{(3)}h(W^{(2)}h(W^{(2)}x_{i}))) - y_{1})^{2} + \frac{1}{2} ||v_{1}|^{2} + \frac{1}{2} ||W^{(3)}||_{F}^{2} + \frac{1}{2} ||W^{(2)}||_{F}^{2} + \frac{1}{2} ||W^{(2)}|$$

- L2-regularization is called "weight decay" in neural network papers.
 Could also use L1-regularization.
- "Hyper-parameter" optimization:
 - Try to optimize validation error in terms of λ_1 , λ_2 , λ_3 , λ_4 .

- Recent result:
 - Adding a regularizer in this way creates bad local optima.

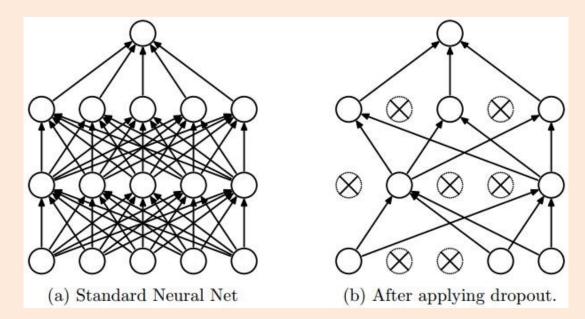
Early Stopping

- Second common type of regularization is "early stopping":
 - Monitor the validation error as we run stochastic gradient.
 - Stop the algorithm if validation error starts increasing.



Dropout

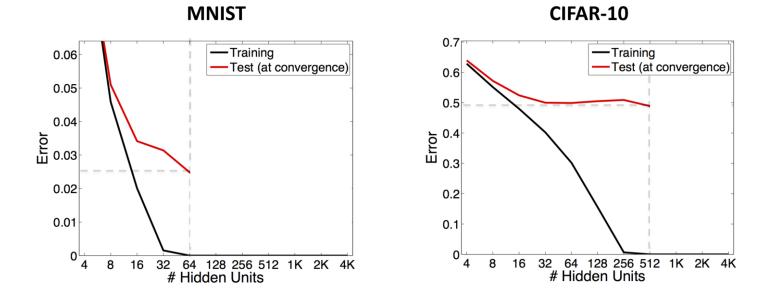
- **Dropout** is a more recent form of regularization:
 - On each iteration, randomly set some x_i and z_i to zero (often use 50%).



- Encourages distributed representation rather than relying on specific z_i.
 - Alternately, you are adding invariance to missing inputs or latent factors.
- After a lot of success, dropout may already be going out of fashion.

"Hidden" Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

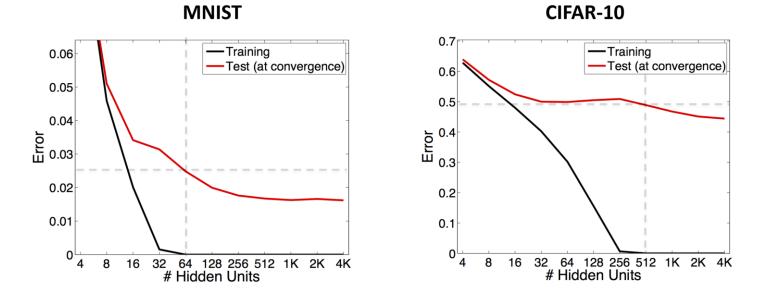


- Training goes to 0 with enough units: we're finding a global min.
- What should happen to training and test error for larger #hidden?

https://www.neyshabur.net/papers/inductive_bias_poster.pdf

"Hidden" Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:



- Test error continues to go down!?! Where is fundamental trade-off??
- There exist global mins where large #hidden units have test accuracy 0.
 - But among the global minima, SGD is somehow converging to "good" ones.

Implicit Regularization of SGD

- There is growing evidence that using SGD regularizes parameters.
- Beyond empirical evidence, we know this happens in simpler cases.

- Example:
 - Consider a least squares problem where there exists a 'w' where Xw=y.
 - Residuals are all zero, we fit the data exactly.
 - You run [stochastic] gradient descent starting from w=0.
 - Converges to solution w* of Xw=y that has the minimum L2-norm.
 - So using SGD is equivalent to L2-regularization here, but regularization is "implicit".

Implicit Regularization of SGD

- There is growing evidence that using SGD regularizes parameters.
- Beyond empirical evidence, we know this happens in simpler cases.

- Example:
 - Consider a logistic regression problem where data is linearly separable.
 - We can fit the data exactly.
 - You run [stochastic] gradient descent starting from w=0.
 - Converges to max-margin solution w* of the problem.
 - So using SGD is equivalent to encouraging large margin.

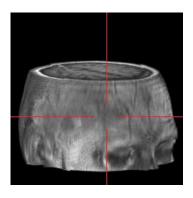
(pause)

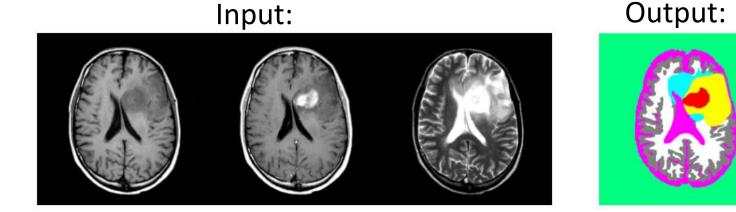
Deep Learning "Tricks of the Trade"

- We've discussed heuristics to make it work:
 - Parameter initialization and data transformations.
 - Setting the step size(s) in stochastic gradient.
 - Alternative non-linear functions like ReLU.
 - Different forms of regularization:
 - L2-regularization, early stopping, dropout, implicit regularization from SGD.
- These are often still not enough to get deep models working.
- Deep computer vision models are all convolutional neural networks:
 - The W^(m) are very sparse and have repeated parameters ("tied weights").
 - Drastically reduces number of parameters (speeds training, reduces overfitting).

Motivation: Automatic Brain Tumor Segmentation

• Task: segmentation tumors and normal tissue in multi-modal MRI data.





- Applications:
 - Radiation therapy target planning, quantifying treatment responses.
 - Mining growth patterns, image-guided surgery.
- Challenges:
 - Variety of tumor appearances, similarity to normal tissue.
 - "You are never going to solve this problem."

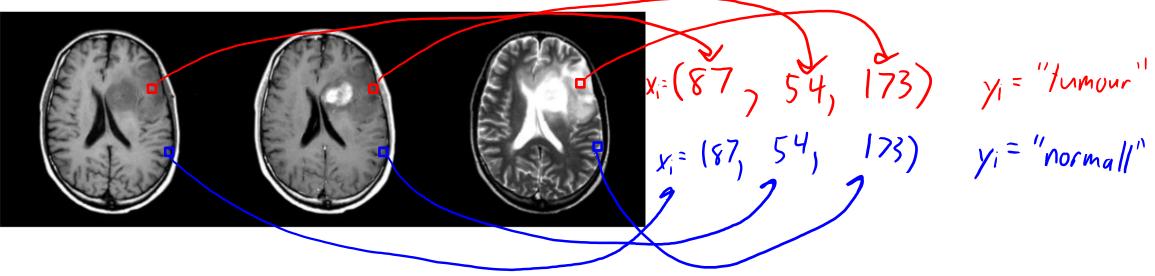
Naïve Voxel-Level Classifier

• We could treat classifying a voxel as supervised learning:

- We can formulate predicting y_i given x_i as supervised learning.
- But it doesn't work at all with these features.

Need to Summarize Local Context

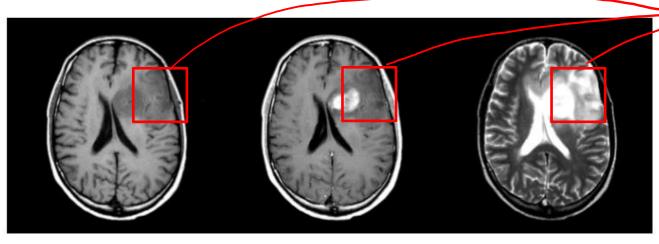
- The individual voxel values are almost meaningless:
 - This x_i could lead to different y_i .



- Intensities not standardized.
- Non-trivial overlap in signal for different tissue types.
- "Partial volume" effects at boundaries of tissue types.

Need to Summarize Local Context

• We need to represent the spatial "context" of the voxel.

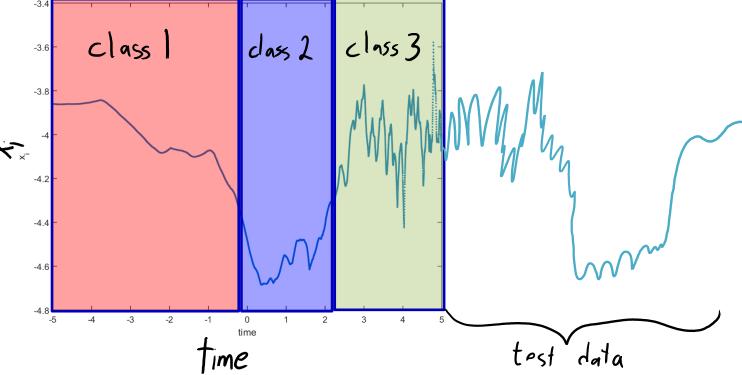


- Include all the values of neighbouring voxels?
 - Variation on coupon collection problem: requires lots of data to find patterns.
- Measure neighbourhood summary statistics (mean, variance, histogram)?
 - Variation on bag of words problem: loses spatial information present in voxels.
- Standard approach uses convolutions to represent neighbourhood.

Representing Neighbourhoods with Convolutions

Consider a 1D dataset:

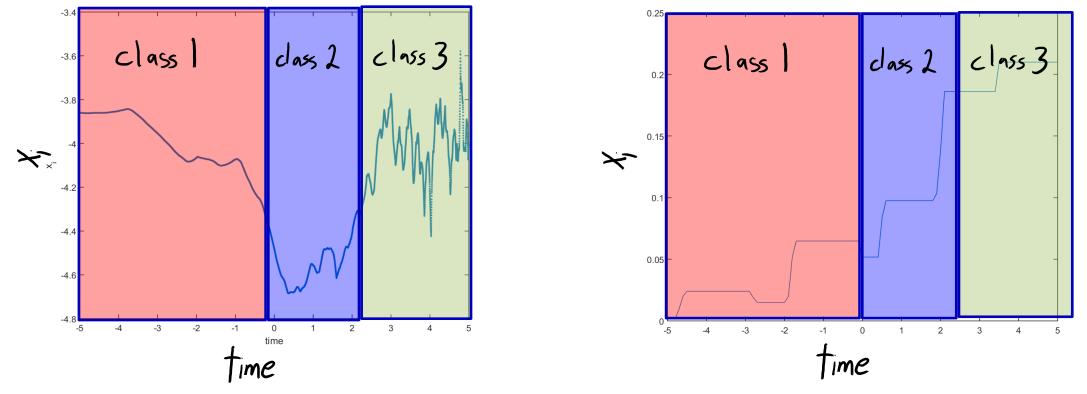
 Want to classify each time into y_i in {1,2,3}.
 Example: speech data.



- Easy to distinguish class 2 from the other classes (x_i are smaller).
- Harder to distinguish between class 1 and class 3 (similar x_i range).
 - But convolutions can represent that class 3 is in "spiky" region.

Representing Neighbourhoods with Convolutions

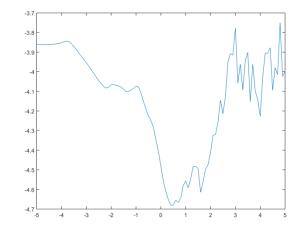
• Original features (left) and features from convolutions (right):



• Easy to distinguish the 3 classes with these 2 features.

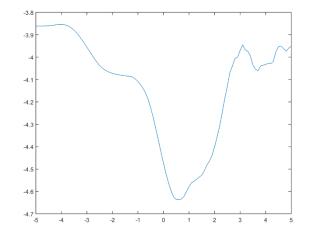
1D Convolution Example

• Consider our original "signal":



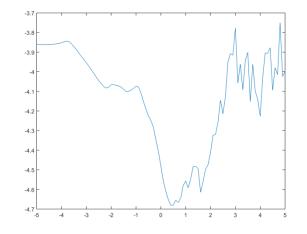
- For each "time":
 - Compute dot-product of signal at surrounding times with a "filter".

- This gives a new "signal":
 - Measures a property of "neighbourhood".
 - This particular filter shows a local "average" value.



1D Convolution Example

• Consider our original "signal":

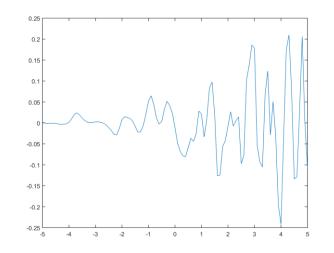


• For each "time":

- Compute dot-product of signal at surrounding times with a "filter".

W= (-01416 -01781 -02746 01640 08607 01640 -02746 -01781 -0141)

- This gives a new "signal":
 - Measures a property of "neighbourhood".
 - This particular filter shows a local "how spiky" value.



1D Convolution (notation is specific to this lecture)

- 1D convolution input:
 - Signal 'x' which is a vector length 'n'.
 - Indexed by i=1,2,...,n.
 - Filter 'w' which is a vector of length '2m+1':
 - Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m

$$x = [0 | | 2 3 5 8 | 3]$$

$$w = \begin{bmatrix} 0 & -1 & 2 & -1 & 0 \end{bmatrix}$$

 $w_2 & w_1 & w_0 & w_1 & w_2$

• Output is a vector of length 'n' with elements:

$$Z_{j} = \sum_{j=-m}^{m} w_{j} x_{i+j}$$

- You can think of this as centering w at position 'i',

and taking a dot product of 'w' with that "part" x_i .

Summary

- ReLU and ResNets avoid "vanishing gradients".
- Regularization is crucial to neural net performance:
 - L2-regularization, early stopping, dropout, implicit regularization of SGD.
- Convolutions are flexible class of signal/image transformations.
- Next time: convolutional neural networks.
 - The most important idea in computer vision?