CPSC 340:
Machine Learning and Data Mining

More Deep Learning
Fall 2018

Deff ne“f"\l nefwrks:

= v AW h(W %))
—'Vn‘;recOJemch P(r’ltoff\ame oNn A)H\i(vﬁ (fOL/mf,

)
\
L_earn "W and 'V wﬁ,
— |ewn -rqoj\/ll’(s 4\0(b) \/lseé
’GQI‘th}.
— Non=linear 'R makes i1 a

Universal mrdvrox'rmm‘for For lorye K

- h |a r ' !
Ea(. l ye COW\LMGS ,rwd‘;h '/;-om frw‘ug ,uyf’f.

https://www.youtube.com/watch?v=aircAruvnKk&t=300s

Deep Learning

Linear wodel

’>‘,i = w X Dcef }earnin1"
| Twork i‘/l,\ | hiddon la e L\(Z
/\/Cu/r\a NnNeTwork wW)!
yi: v MWX,'7
E 7 @G
Newd netwock with 2 idden layers: 4"17“\ &
¢ q (1)) e(on ayer
yiz v hWTh(W %)) of lafest Tedhres
= @
YOV\ (an aJJ

/Vewm| Yle"wof'(wiTh 3 hi dden ’qyefS more | vy
{; \ aers
Gz VAR ROVSD) T (G) G
N J f’ ’ 3
(3

Zi

Z, m

Deep Learning

* For 4 layers, we could write the prediction as:

n - (4 3) 2 U)
iz VAR Skl])

meay”n . ° o ° ° o o
* For ‘m’ layers, we could use: “‘”} OATI S LR AO

A aJ m W(l) | > I
y'_ \\% ((j;"; L\(. X|) %‘ ;n" ;[" @ o oy Soie i

ML and Deep Learning History

Perceptrons

e 1950 and 1960s: Initial excitement.

— Perceptron: linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence.” 7
New York Times (1958).

e https://www.youtube.com/watch?v=IEFRtz68m-8
— Marvin Minsky assigns
object recognition to

his students as a
summer project

 Then drop in popularity:

https://www.youtube.com/watch?v=IEFRtz68m-8

ML and Deep Learning History

DEEP HIERARCHIES IN THE VISUAL SYSTEM

» 1970 and 1980s: Connectionism (brain-inspired ML) I
— Want “connected networks of simple units”. V. -/

e Use parallel computation and distributed representations. wean e

— Adding hidden layers z; increases expressive power. " e i B

e With 1 layer and enough sigmoid units, a universal approximator. i <(¢m ,,,,,

— Success in optical character recognition. o

T S Deep Learning learns layers of feature W IR 5
r A r,‘ =\ R — SIMPLE SHAPE KA
N N HLEMES ANALYSIS O SPACE
_ .
o -
= BLERET Labd: VO 8|
Lol Y e COMPLEX FEATURE

B PR 4
Cx =P
:
)

ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— It proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

e Rise in popularity of logistic regression and SVMs with regularization and kernels.

— ML moved closer to other fields (CPSC 540):

 Numerical optimization.
* Probabilistic graphical models.
e Bayesian methods.

ML and Deep Learning History

* Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

* “Neural Computation and Adaptive Perception”.
* Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

— Unsupervised successes: “deep belief networks” and “autoencoders”.
* Could be used to initialize deep neural networks.
* https://www.youtube.com/watch?v=KuPaiOogiHk

B P(A

https://www.youtube.com/watch?v=KuPai0ogiHk

2010s: DEEP LEARNING!!!

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).
— And some tweaks to the models from the 1980s.

 Huge improvements in automatic speech recognition (2009).
— All phones now have deep learning.

 Huge improvements in computer vision (2012).
— Changed computer vision field almost instantly.
— This is now finding its way into products. L _ | B person

chair

2010s: DEEP LEARNING!!!

 Media hype:

— “How many computers to identify a cat? 16,000”
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning” and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.

ImageNet Challenge

* Millions of labeled images, 1000 object classes.

person

chair

person
_! person

flower pot
helmet

Bl power drill] 2 & —= motorcycle

EC\SY Loc humans bul
hard for (omru’rfri

ImageNet Challenge

* Object detection task:

Image classification

0.3
— Single label per image. o
-
— Humans: ~5% error. ©
- c 0.2]
At (1 .0
o X2y L
St s
O
@ 01
vl
a) Siberian husk E
O
0

2010

ImageNet Challenge

* Object detection task: Ilmage classification

03

— Single label per image. o 37 swal improyement
e
— Humans: ~5% error. @
B c 02]
il
0
2
@ 01
7]
aaaaaaaaaaaaa o
Q
0

2010 2011

ImageNet Challenge

* Object detection task:
— Single label per image.
— Humans: ~5% error.

Classification error

03

027

017

Image

classification

po s

2010 2011

W/ im/)/ OV(’h'{n'IL

swifch o J{t,« /fufm'n7
(3 Tayers)

e~

2012

ImageNet Challenge

* Object detection task: Ilmage classification

03

— Single label per image. o 37 sval improyement
— Humans: ~5% error. o _ Swifch to dee /W,,;,,’
E 0.2 (3 ,q,ers)
m
2
@ 01
7]
T
Q

2010 2011 2012 2013

ImageNet Challenge

+ Object detection task: Ilmage clasmflcannnl

0.3 —— .
— Single label per image. o 37 sval improyement
® swifch o J{c,o learnin
E 0.2 ‘g (3 ’q/ers) I
IS
2
» 01 Sdeeper!
s
Q . 3\ |
2010 2011 2012 2013 Eﬂ‘ld/ aE
ILSVRC year

Googl-e /Vc'f-'
6.7 % error
A2 |a)«er5

ImageNet Challenge

Object detection task:

Classification Localization

— Single label per image. . °° s
— Humans: ~5% error. §™ goof | P
% 0.1 0.07 % .
2015: Won by Microsoft Asia & g 5 o e
2010 2011 2012 2013 2014 2015 2016 2011 2012 2013 2014 2015 2016
— 36% error. ILSVRC year ILSVRC year

— 152 layers, “resnet” architecture.
— Also won “localization” (finding location of objects in images).

2016: Chinese University of Hong Kong:

— Ensembles of previous winners and other existing methods.

2017: fewer entries, organizers decided this would be last year.

(pause)

Deep Learning Practicalities

* This lecture focus on deep learning practical issues:
— Backpropagation to compute gradients.
— Stochastic gradient training.
— Regularization to avoid overfitting.

* Next lecture:
— Special ‘W’ restrictions to further avoid overfitting.

But first: Adding Bias Variables

Recall fitting line regressmn with a bias:
fi=2uh

— We avoided this by addlng a column of ones to X.
In neural networks we often want a bias on the output:

>/I ZV;‘WcX)'{')B

But we also often also mclude biases on each z_
Z L\(W(,X(’LK‘) +/9
— A bias towards this h(z) belng either O or 1.

Equivalent to adding to vector h(z;) an extra value that is always 1.
— For sigmoids, you could equivalently make one row of w_ be equal to O.

But first: Adding Bias Variables

Artificial Neural Networks
* With squared loss, our objective function is:
(o, W)= ‘21 2 (v h(Wx) ~y)

* Usual training procedure: stochastic gradient.
— Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.
— Highly non-convex and can be difficult to tune.

 Computing the gradient is known as “backpropagation”.

— Video giving motivation here.

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Backpropagation

Overview of how we compute neural network gradient:

— Forward propagation:
» Compute zY) from x.
» Compute z? from z%).

» Compute yhat; from z{™, and use this to compute error.
— Backpropagation:

« Compute gradient with respect to regression weights ‘v’.

Compute gradient with respect to z!™ weights W),

Compute gradient with respect to z/™?1 weights W(m-),

Compute gradient with respect to z*) weights W%,

“Backpropagation” is the chain rule plus some bookkeeping for speed.

Backpropagation

Let’s illustrate backpropagation in a simple setting:
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

FWOW W)= 2 (= y)* whee 5 =Vh (Wb AW,)

‘i’
S

pf
= ‘\(W‘; L\ (Z)L‘ W()))“F"\(Z'm)

_—V .
= PV"\ (W(D)‘\(W(z) (w"y,))))\ ‘Z)HW“))(-')):.(‘ vh (Z»';))A[Z,'m)

Backpropagation

e Let’s illustrate backpropagation in a simple setting:
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

FW W W V) =2 (1= v) whie 5 =Vh (Wb h(w"x)
)) 2 yl /, Where)’; '
GAY
2_;‘ - FMW‘; L\ (z)h W() r)):[‘MZ'“))

2 D 2)
28 =0 vh (WhWh W))hwh W)= vh' (2”7 h(z/)
7\W) \/\f'__)/\/ -
- rvl« (Wml\(W”’la Wu)))) (37;) (W“ .)M(wa — r(3) W(;l\ [Z,'(z))/»(é")
m D —

R‘F ey HW“’),(W”MW”)))W"”h (z)(w()))Wu))\ (W()) = (1)W{2)k((I)) x;

Backpropagation

e Let’s illustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

H (3)
T = rh(z") L = rhiz?)
= Hh) L i)
P) 0 o O
CC Cc=

= @yu/ML (-, 21£ E
Twcl) it W ;\ (Z»)X,' TW:/:; _:[é (4) (A)]h (L (.,
"

— Only the first ‘r’ changes if you use a different loss.
— With multiple hidden units, you get extra sums.

\/_

 Efficient if you store the sums rather than computing from scratch.

Backpropagation

I’'ve marked those backprop math slides as bonus.

Do you need to know how to do this?
— Exact details are probably not vital (there are many implementations).
— “Automatic differentiation” is becoming standard and has same cost.

— But understanding basic idea helps you know what can go wrong.
* Or give hints about what to do when you run out of memory.

— See discussion here by a neural network expert.

You should know cost of backpropagation:
— Forward pass dominated by matrix multiplications by W®), W2, W3 and ‘v’
* If have ‘m’ layers and all z, have ‘k’ elements, cost would be O(dk + mk?).
— Backward pass has same cost as forward pass.
For multi-class or multi-label classification, you replace ‘v’ by a matrix:
— Softmax loss is often called “cross entropy” in neural network papers.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Deep Learning Vocabulary

“Deep learning”: Models with many hidden layers.
— Usually neural networks.

“Neuron”: node in the neural network graph.
— “Visible unit”: feature.
— “Hidden unit”: latent factor z,_ or h(z,.).

“Activation function”: non-linear transform.

“Activation”: h(z).

“Backpropagation”: compute gradient of neural network.

— Sometimes “backpropagation” means “training with SGD”.

“Weight decay”: L2-regularization.

“Cross entropy”: softmax loss.

“Learning rate”: SGD step-size.

“Learning rate decay”: using decreasing step-sizes.

“Vanishing gradient”: underflow/overflow during gradient calculation.

(pause)

ImageNet Challenge and Optimization

ImageNet challenge:
— Use millions of images to recognize 1000 objects.

ImageNet organizer visited UBC summer 2015.
“Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).
2. Optimization.
Why would optimization be so important?

— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.

Stochastic Gradient Training

e Standard training method is stochastic gradient (SG):
— Choose a random example V.
— Use backpropagation to get gradient with respect to all parameters.
— Take a small step in the negative gradient direction.

* Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.
— But people have developed a lot of tricks/modifications to make it work.
* Highly non-convex, so are the problem local mimina?
— Some empirical/theoretical evidence that local minima are not the problem.

— If the network is “deep” and “wide” enough, we think all local minima are good.
— But it can be hard to get SG to close to a local minimum in reasonable time.

Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

* A traditional random initialization:

— Initialize bias variables to O.

— Sample from standard normal, divided by 10° (0.00001*randn).
 w=.00001*randn(k,1)
— Performing multiple initializations does not seem to be important.

* Popular approach from 10 years ago:
— Initialize with deep unsupervised model (like “autoencoders” — see bonus).

Parameter Initialization

* Parameter initialization is crucial:
— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

* Also common to standardize data:
— Subtract mean, divide by standard deviation, “whitten”, standardize y..

* More recent initializations try to standardize initial z;:
— Use different initialization in each layer.
— Try to make variance of z, the same across layers.
— Use samples from standard normal distribution, divide by sqrt(2*nlnputs).
— Use samples from uniform distribution on [-b,b], where b= s

—mm—

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.

e Common approach: manual “babysitting” of the step-size.
— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:

\/LL\,\W/-—? Aefem)e o(t
/ #\WN\J——V det renst ot

A

—

Crro,

-

“/’V‘"C

— If error is not decreasing, decrease step-size.

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.
* Bias step-size multiplier: use bigger step-size for the bias variables.

* Momentum (stochastic version of “heavy-ball” algorithm):
— Add term that moves in previous direction:

\A/H = wh - o(tVF,- (w*) + ﬁt(wé'wt-')
= |<cer 9o'm¢-, in the

ol direction
— Usually Bt =0.9.

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

O

w? ",

Gradient Descent vs. Heavy-Ball Method

Gr*caciifﬂ‘f Method Heol'.,ry-baﬂ Method
w’ w®
. W
5

Gradient Descent vs. Heavy-Ball Method

Gr*caciifﬂ‘f Method Heol'.,ry-baﬂ Method

Gradient Descent vs. Heavy-Ball Method

Gr*caciifﬂ‘f Method Heol'.,ry-baﬂ Method

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

Gradient Descent vs. Heavy-Ball Method

Gr*mc[ifﬂ‘f Method Heol'.,ry-baﬂ Method

Gradient Descent vs. Heavy-Ball Method

Gr*cnclifﬂ‘f Method Heq'./y*'bau Method

wr_;mﬁ o e o/
ﬁoumm

Summary

Unprecedented performance on difficult pattern recognition tasks.
Backpropagation computes neural network gradient via chain rule.
Parameter initialization is crucial to neural net performance.

Optimization and step size are crucial to neural net performance.

— “Babysitting”, momentum.

Next time:
— Regularization, and getting these working for vision problems.

Autoencoders

e Autoencoders are an unsupervised deep learning model:
— Use the inputs as the output of the neural network.

encoder decoder

wl w2 w2’ w1’

— Middle layer could be latent features in non-linear latent-factor model.
e Can do outlier detection, data compression, visualization, etc.

— A non-linear generalization of PCA.
e Equivalent to PCA if you don’t have non-linearities.

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoders

AU\-’DQV\ Co J(/

European Community

Interbank markets monetary/economic
o N ¥ : .. =

Disasters and
accidents

Leading economic® .~

ind . ey T4 A 3 "
ndicators g ’ i ’tk

) AR e 8 Government
g S~ 4
Accounts/ . ° ‘“‘i‘: borrowings

eamings uf

Denoising Autoencoder

Denoising autoencoders add noise to the input:

encoder decoder

W1 w2 w2" w1

— Learns a model that can remove the noise.

