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Last Time: Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Non-parametric visualization: directly optimize the z, locations.
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— Traditional MDS methods lead to a “crowding” effect.



Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:
— Focus on distance to “neighbours”(allow large variance in other distances)
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t-Distributed Stochastic Neighbour Embedding

* t-SNE is a special case of MDS (specific d,, d,, and d; choices):

— d,: for each x;, compute probability that each x; is a ‘neighbour”.
* Computation is similar to k-means++, but most weight to close points (Gaussian).
* Doesn’t require explicit graph.

— d,: for each z, compute probability that each z; is a ‘neighbour’.

» Similar to above, but uses student’s t (grows really slowly with distance).
* Avoids ‘crowding’, because you have a huge range that large distances can fill.

— d;: Compare x; and z; using an entropy-like measure:
* How much ‘randomness’ is in probabilities of x, if you know the z, (and vice versa)?

* |nteractive demo: https://distill.pub/2016/misread-tsne



https://distill.pub/2016/misread-tsne

t-SNE on Wikipedia Articles




t-SNE on Product Features




t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcells @& CD8Tcells
® CD20+Bcells CD20-Bcells @ CD11b- Monocytes
® CD11b+ Monocytes @ NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



(pause)



Latent-Factor Representation of Words

For natural language, we often represent words by an index.
— E.g., “cat” is word 124056 among a “bag of words”.

But this may be inefficient:
— Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

Recent alternative to PCA/NMF is word2vec...



Using Context

* Consider these phrases:
— “the cat purred”

— “the kitten purred”

— “black cat ran”
— “black kitten ran”

 Words that occur in the same context likely have similar meanings.

 Word2vec uses this insight to design an MDS distance function.



Word2Vec

Two common word2vec approaches:
1. Try to predict word from surrounding words (continuous bag of words).
2. Try to predict surrounding words from word (skip-gram).
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

Train latent-factors to solve one of these supervised learning tasks.



Word2Vec

In both cases, each word ‘i’ is represented by a vector z..
In continuous bag of words (CBOW), we optimize the following likelihood:
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Apply gradient descent to logarithm:
— Encourages zisz to be big for words in same context (making z, close to z,).
— Encourages zisz to be small for words not appearing in same context (makes z; and z, far).

For CBOW, denominator sums over all words.

For skip-gram it will be over all possible surrounding words.
— Common trick to speed things up: sample terms in denominator (“negative sampling”).



Word2Vec Example

e MDS visualization of a set of related words:
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e Distances between vectors might represent semantics.



Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table [4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zine: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

'I‘ab]eﬁﬂhﬁwa words that follow vﬂ.nouf. relationships. We follow the approach described above: the
relationship 1s defined by subtr: word vectors, and the result is added to another word. Thus
for example,Paris - France + Italy = Rome.) As il can be seen, accuracy is quite good, although

Word vectors for 157 languages here.



https://fasttext.cc/docs/en/crawl-vectors.html

End of Part 4: Key Concepts

e We discussed linear latent-factor models:

P(W,2)= £ 2 (Shep = x,)?
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* Represent X’ as linear combination of latent factors ‘w_’.

— Latent features ‘z give a lower-dimensional version of each ‘x’

— When k=1, finds direction that minimizes squared orthogonal distance.
* Applications:

— Outlier detection, dimensionality reduction, data compression, features for linear
models, visualization, factor discovery, filling in missing entries.



End of Part 4: Key Concepts

We discussed linear latent-factor models:

£(w,2) :Z)ZA, (W= x,)*
Principal component analysis (PCA):
— Often uses orthogonal factors and fits them sequentially (via SVD).
Non-negative matrix factorization:
— Uses non-negative factors giving sparsity.
— Can be minimized with projected gradient.
Many variations are possible:

— Different regularizers (sparse coding) or loss functions (robust/binary PCA).
— Missing values (recommender systems) or change of basis (kernel PCA).



End of Part 4: Key Concepts

We discussed multi-dimensional scaling (MDS):
— Non-parametric method for high-dimensional data visualization.

— Tries to match distance/similarity in high-/low-dimensions.
* “Gradient descent on scatterplot points”.

Main challenge in MDS methods is “crowding” effect:
— Methods focus on large distances and lose local structure.

Common solutions:

— Sammon mapping: use weighted cost function.
— ISOMAP: approximate geodesic distance using via shortest paths in graph.
— T-SNE: give up on large distances and focus on neighbour distances.

Word2vec is a recent MDS method giving better “word features”.



Supervised Learning Roadmap

Part 1: “Direct” Supervised Learning.
— We learned parameters ‘w’ based on the original features x, and target y..

Part 3: Change of Basis.
— We learned parameters ‘v’ based on a change of basis z, and target y..

Part 4: Latent-Factor Models.
— We learned parameters "W’ for basis z, based on only on features x.. @

— You can then learn ‘v’ based on change of basis z, and targety. .

Part 5: Neural Networks. V/‘: ‘r\
— Jointly learn ‘W’ and ‘v’ based on x, and y..

— Learn basis z, that is good for supervised learning.




A Graphical Summary of CPSC 340 Parts 1-5
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Notation for Neural Networks
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Linear-Linear Model

* Obvious choice: linear latent-factor model with linear regression.
USC ](\ea"fvwfs ‘rrom IﬁJrM‘f‘]Cadof W)oc'd: Z,‘ = WX,‘

Make freol':d\ons wsing o linear wodel: y‘, = V’Z,'

* We want to train ‘W’ and ‘v’ jointly, so we could minimize:

(W23 2(V2 =y =5 2 (V1 (W)= )’

= L/\/\/
‘M@mr (971455@/\ Z; (eme ’rfof"\
wilh g @& ‘req'fij )qfw\'l"rmdor mod e

(xd

e But this is just a linear model: £ T T _ g T
J % Z‘l -V (WX“) - <\/TW>X| :W)(‘

y Wy
Some wectyr 'w



Introducing Non-Linearity

To increase flexibility, something needs to be non-linear.
Typical choice: transform z, by non-linear function ‘h’.

z, = Wk )" VTL*(Zi)
— Here the function ‘h’ transforms ‘k’ inputs to ‘k” outputs.
Common choice for ‘h’: applying sigmoid function element-wise:
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So this takes the z,_in (-e=,22) and maps it to (0,1).
This is called a “multi-layer perceptron” or a “neural network”.



Why Sigmoid?

* Consider setting ‘h’ to define binary features z, using:
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— Each h(zi) can be viewed as binary feature.

* “You either have this ‘part’ or you don’t have it.”

— We can make 2k objects by all the Motivation: Pixels vs. Parts
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Why Sigmoid?

* Consider setting ‘h’ to define binary features z, using:

»\(Zic): | f 2.70
0 f 2.<0

— Each h(zi) can be viewed as binary feature.
* “You either have this ‘part’ or you don’t have it.”

— We can make 2¥ objects by all the
possible “part combinations”.

* But this is hard to optimize (non-differentiable/discontinuous).
* Sigmoid is a smooth approximation to these binary features.



Supervised Learning Roadmap
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Why “Neural Network”?

Dendrite Axon terminal
|

Cartoon of “typical” neuron:

=
Schwann cell

Myelin sheath
Nucleus

Neuron has many “dendrites”, which take an input signal.
Neuron has a single “axon”, which sends an output signal.
With the right input to dendrites: et
— “Action potential” along axon (like a binary signal):

=55

-70




Why “Neural Network”?

Dendrite Axon terminal
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Why “Neural Network™?
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Why “Neural Network”?
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“Artificial” Neural Nets vs. “Real” Networks Nets

* Artificial neural network:
— X IS measurement of the world.
— z;is internal representation of world.
— y. is output of neuron for classification/regression.

e Real neural networks are more complicated:

— Timing of action potentials seems to be important.
» “Rate coding”: frequency of action potentials simulates continuous output.

— Neural networks don’t reflect sparsity of action potentials.

— How much computation is done inside neuron?

— Brain is highly organized (e.g., substructures and cortical columns).
— Connection structure changes.

— Different types of neurotransmitters.




Deep Learning
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“Hierarchies of Parts” Motivation for Deep Learning

 Each “neuron” might recognize
a “part” of a digit.

— “Deeper” neurons might recognize
combinations of parts.

— Represent complex objects as
hierarchical combinations of
re-useable parts (a simple “grammar”).

 Watch the full video here:
— https://www.youtube.com/watch?v=aircAruvnKk



https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk&t=300s
https://www.youtube.com/watch?v=aircAruvnKk&t=300s

Summary

Word2vec:

— Latent-factor (continuous) representation of words.
— Based on predicting word from its context.

Neural networks learn features z for supervised learning.

Sigmoid function avoids degeneracy by introducing non-linearity.
Biological motivation for (deep) neural networks.

Deep learning considers neural networks with many hidden layers.

Next time:
— Training deep networks.



Does t-SNE always outperform PCA?

* Consider 3D data living on a 2D hyper-plane:

YA o)
X v
P(A X
= [X XV
A yv X
- xa —

 PCA can perfectly capture the low-dimensional structure.

 T-SNE can capture the local structure, but can “twist” the plane.

D
— |t doesn’t try to get long distances correct. 1 e




Multiple Word Prototypes

 What about homonyms and polysemy?

— The word vectors would need to account for all meanings.

 More recent approaches:
— Try to cluster the different contexts where words appear.
— Use different vectors for different contexts. /
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Why z. = Wx;?

In PCA we had that the optimal Z = XWT(WWT)-,
If W had normalized+orthogonal rows, Z = XW' (since WWT = |).

— So z; = Wx; in this normalized+orthogonal case.

Why we would use z. = Wx. in neural networks?
— We didn’t enforce normalization or orthogonality.

Well, the value W (WWT) 1 is just “some matrix”.

— You can think of neural networks as just directly learning this matrix.



Cool Picture Motivation for Deep Learning

* Faces might be composed of different “parts”:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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e Attempt to visualize second layer: -

— Corners, angles, surface boundaries?

* Models require many tricks to work.
— WEe’ll discuss these next time.



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

= AGSEENSVIN A4 gl,wﬁﬁmn

* Visualization of second and third layers trained on specific objects:
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

= AGSEENSVIN A4 gl,wﬁﬁmn

faces

* Visualization of second and third layers trained on specific objects
cars elephants
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z trained on 10 by 10 image patches
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* Visualization of second and third layers trained on specific objects
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z trained on 10 by 10 image patches
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* Visualization of second and third layers trained on specific objects
QiEAQBEIN=

chairs faces, cars, airplanes, motorbikes
> . : | \ ) B
— . - il | -—
- . — p’ . . -
—-L-." SIRG® - :
. \ L I T ‘ 1 .

CREY= 'ud

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



