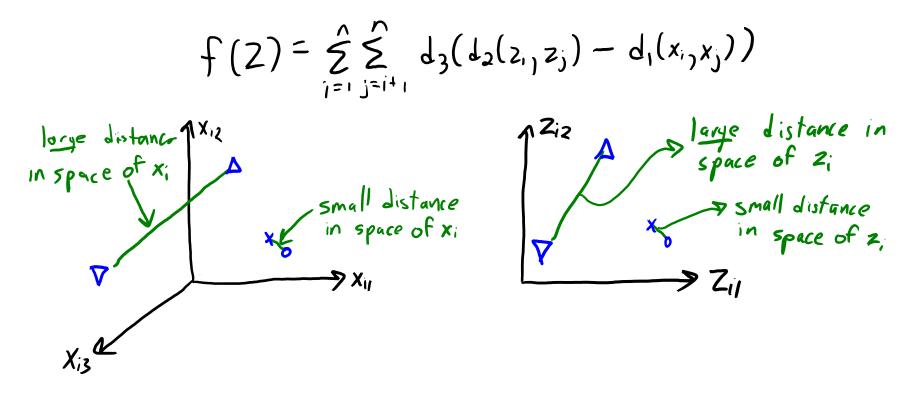
CPSC 340: Machine Learning and Data Mining

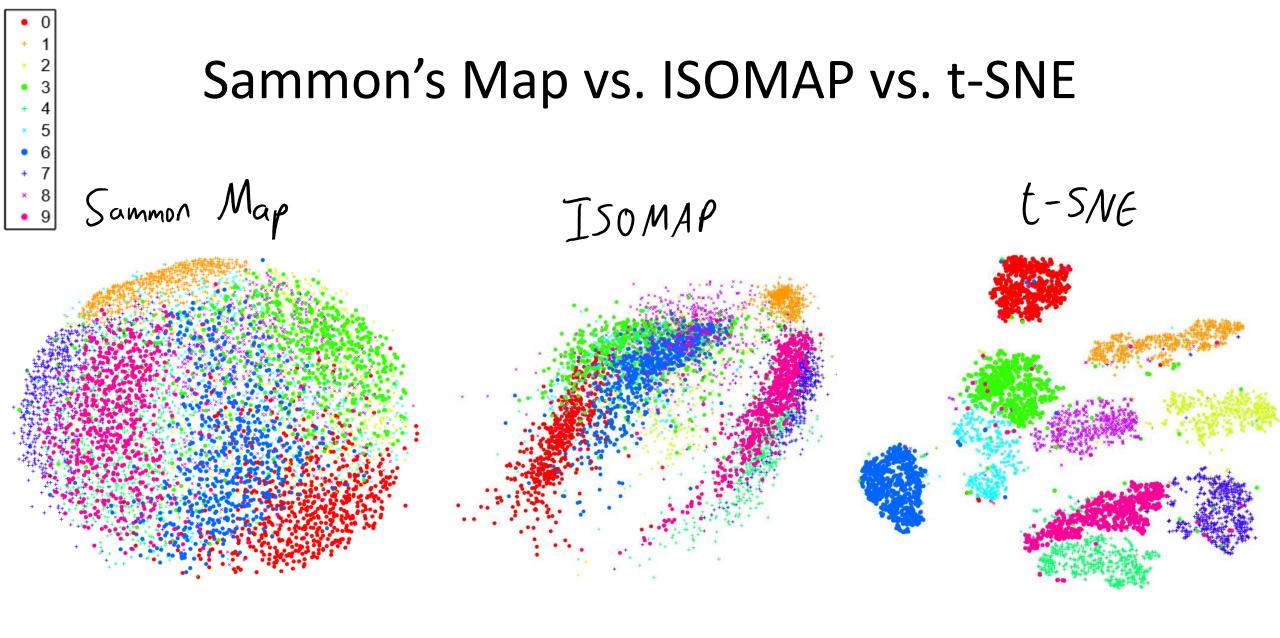
Deep Learning Fall 2018

Last Time: Multi-Dimensional Scaling

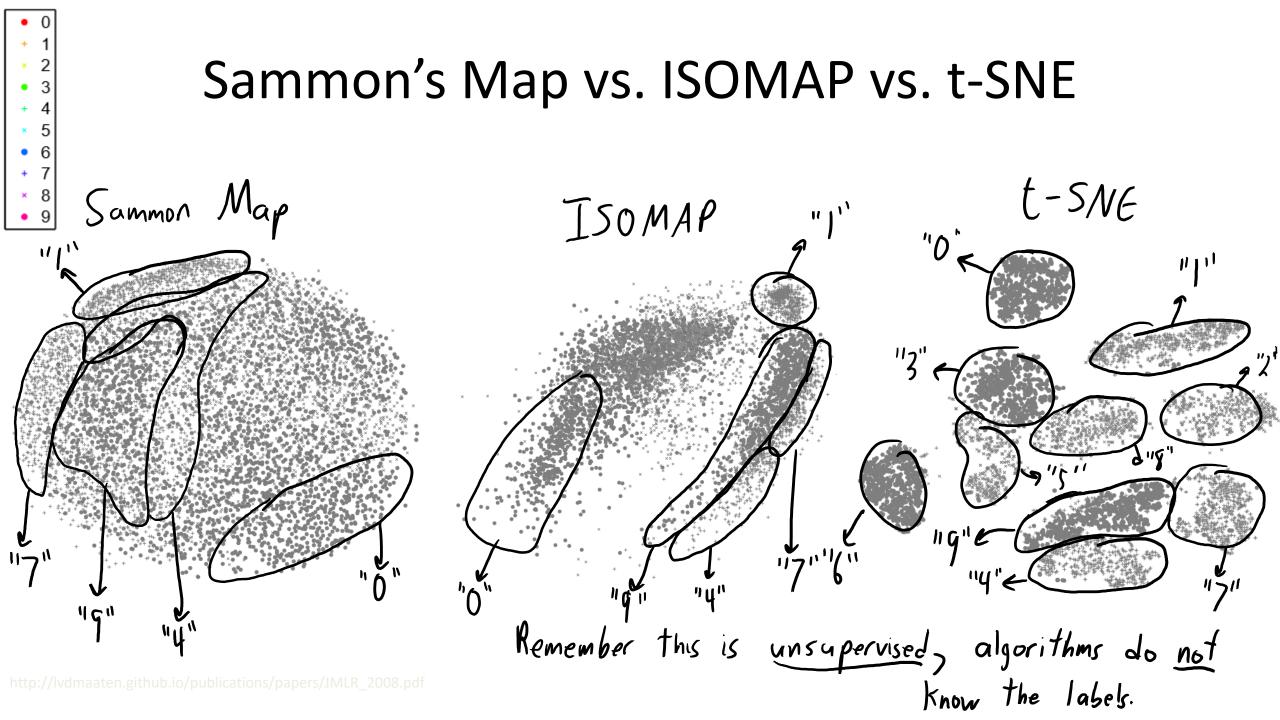
- Multi-dimensional scaling (MDS):
 - Non-parametric visualization: directly optimize the z_i locations.



Traditional MDS methods lead to a "crowding" effect.



http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

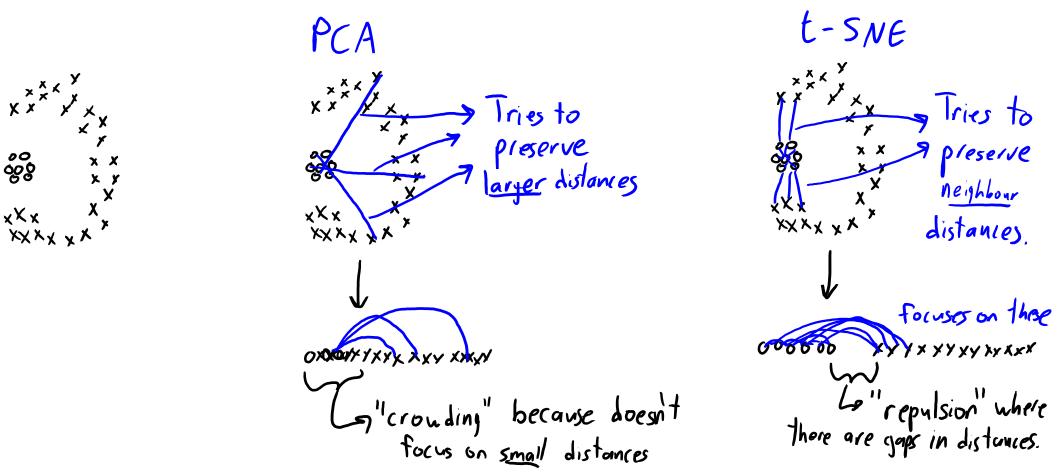


t-Distributed Stochastic Neighbour Embedding

• One key idea in t-SNE:

ဖွစ္တစ္ခ

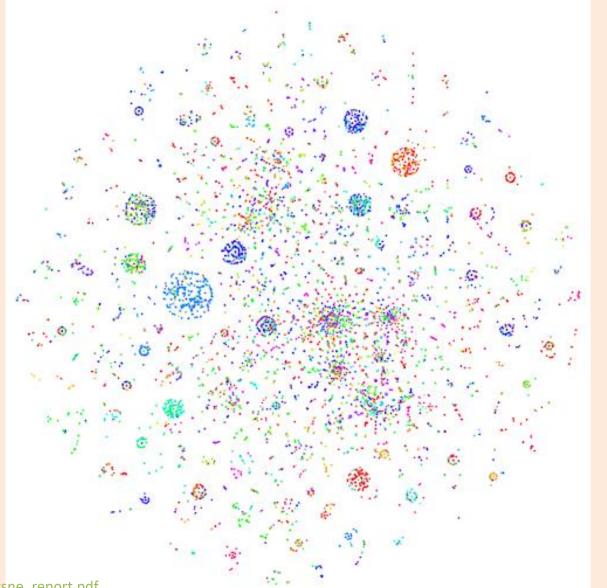
- Focus on distance to "neighbours" (allow large variance in other distances)



t-Distributed Stochastic Neighbour Embedding

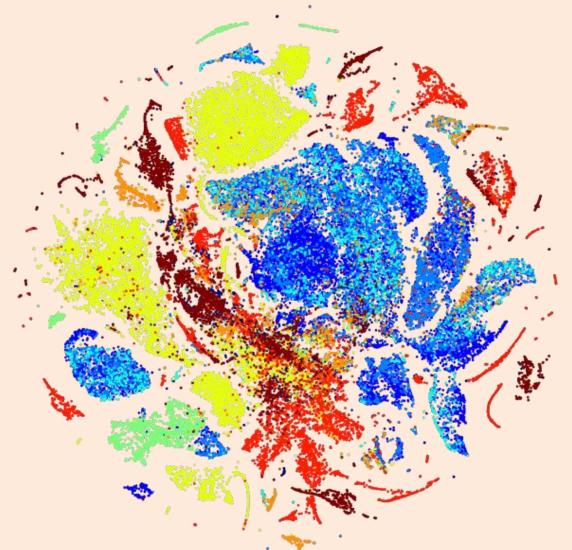
- t-SNE is a special case of MDS (specific d_1 , d_2 , and d_3 choices):
 - d_1 : for each x_i, compute probability that each x_i is a 'neighbour'.
 - Computation is similar to k-means++, but most weight to close points (Gaussian).
 - Doesn't require explicit graph.
 - d_2 : for each z_i , compute probability that each z_i is a 'neighbour'.
 - Similar to above, but uses student's t (grows really slowly with distance).
 - Avoids 'crowding', because you have a huge range that large distances can fill.
 - d_3 : Compare x_i and z_i using an entropy-like measure:
 - How much 'randomness' is in probabilities of x_i if you know the z_i (and vice versa)?
- Interactive demo: <u>https://distill.pub/2016/misread-tsne</u>

t-SNE on Wikipedia Articles



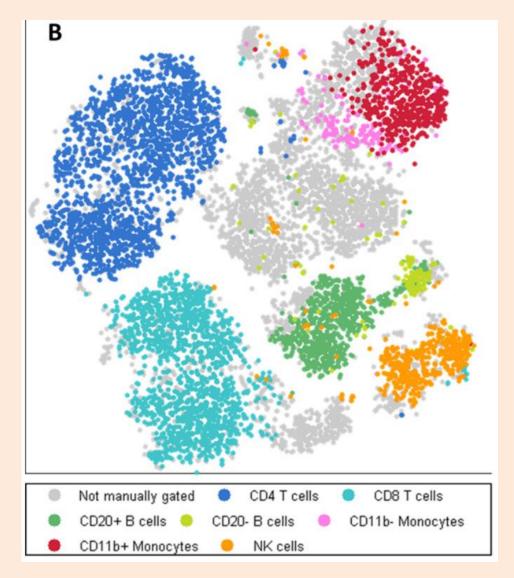
http://jasneetsabharwal.com/assets/files/wiki_tsne_report.pdf

t-SNE on Product Features



http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/

t-SNE on Leukemia Heterogeneity



http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/

(pause)

Latent-Factor Representation of Words

- For natural language, we often represent words by an index.
 E.g., "cat" is word 124056 among a "bag of words".
- But this may be inefficient:
 - Should "cat" and "kitten" share parameters in some way?
- We want a latent-factor representation of individual words:
 - Closeness in latent space should indicate similarity.
 - Distances could represent meaning?
- Recent alternative to PCA/NMF is word2vec...

Using Context

- Consider these phrases:
 - "the <u>cat</u> purred"
 - "the kitten purred"
 - "black <u>cat</u> ran"
 - "black kitten ran"
- Words that occur in the same context likely have similar meanings.
- Word2vec uses this insight to design an MDS distance function.

Word2Vec

- Two common word2vec approaches:
 - 1. Try to predict word from surrounding words (continuous bag of words).
 - 2. Try to predict surrounding words from word (skip-gram).

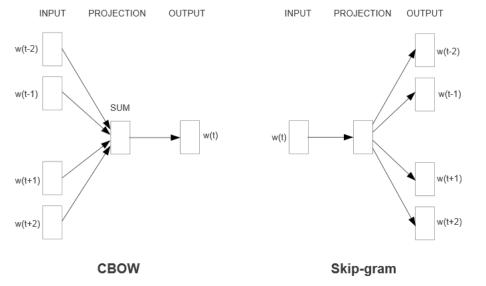


Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

• Train latent-factors to solve one of these supervised learning tasks.

Word2Vec

- In both cases, each word 'i' is represented by a vector z_i.
- In continuous bag of words (CBOW), we optimize the following likelihood:

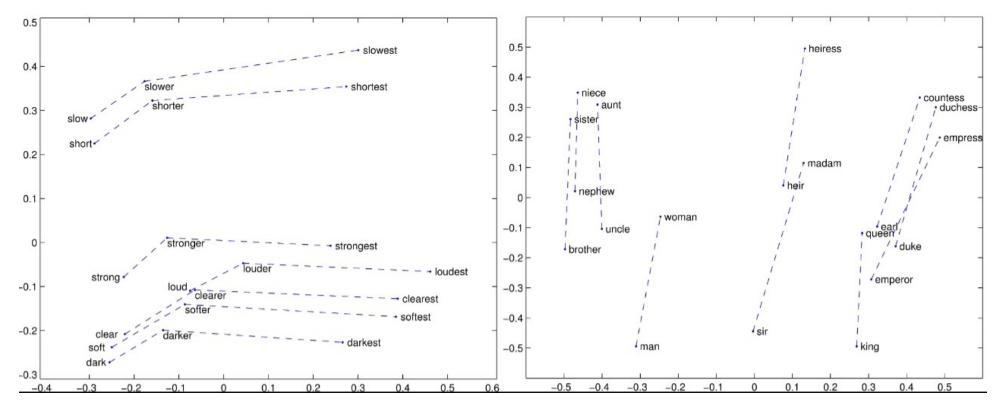
$$p(x_{i} | x_{surround}) = \prod_{j \in surround} p(x_{i} | x_{j}) \quad (independence assumption)$$

$$= \prod_{j \in surround} \frac{exp(z_{i}^{T} z_{j})}{\sum_{c=1}^{k} exp(z_{c}^{T} z_{j})} \quad (softmax over all words)$$

- Apply gradient descent to logarithm:
 - Encourages $z_i^T z_j$ to be big for words in same context (making z_i close to z_1).
 - Encourages $z_i^T z_j^T$ to be small for words not appearing in same context (makes z_i and z_j far).
- For CBOW, denominator sums over all words.
- For skip-gram it will be over all possible surrounding words.
 - Common trick to speed things up: sample terms in denominator ("negative sampling").

Word2Vec Example

• MDS visualization of a set of related words:



• Distances between vectors might represent semantics.

Word2Vec

• Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Table 8 shows words that follow various relationships. We follow the approach described above: the relationship is defined by subtracting two word vectors, and the result is added to another word. Thus for example, *Paris - France + Italy = Rome*. As it can be seen, accuracy is quite good, although

Word vectors for 157 languages <u>here</u>.

End of Part 4: Key Concepts

• We discussed linear latent-factor models:

$$f(W,z) = \hat{z} \hat{z} (\langle w_{j}z_{j} \rangle - x_{ij})^{2}$$
$$= \hat{z} ||W^{T}z_{i} - x_{i}||^{2}$$
$$= ||ZW - X||_{F}^{2}$$

- Represent 'X' as linear combination of latent factors 'w_c'.
 - Latent features ' z_i ' give a lower-dimensional version of each ' x_i '.
 - When k=1, finds direction that minimizes squared orthogonal distance.
- Applications:
 - Outlier detection, dimensionality reduction, data compression, features for linear models, visualization, factor discovery, filling in missing entries.

End of Part 4: Key Concepts

• We discussed linear latent-factor models:

$$f(W_{j}z) = \hat{z} \hat{z} \hat{z} (\langle w_{j}z \rangle - x_{ij})^{2}$$

- Principal component analysis (PCA):
 - Often uses orthogonal factors and fits them sequentially (via SVD).
- Non-negative matrix factorization:
 - Uses non-negative factors giving sparsity.
 - Can be minimized with projected gradient.
- Many variations are possible:
 - Different regularizers (sparse coding) or loss functions (robust/binary PCA).
 - Missing values (recommender systems) or change of basis (kernel PCA).

End of Part 4: Key Concepts

- We discussed multi-dimensional scaling (MDS):
 - Non-parametric method for high-dimensional data visualization.
 - Tries to match distance/similarity in high-/low-dimensions.
 - "Gradient descent on scatterplot points".
- Main challenge in MDS methods is "crowding" effect:
 - Methods focus on large distances and lose local structure.
- Common solutions:
 - Sammon mapping: use weighted cost function.
 - ISOMAP: approximate geodesic distance using via shortest paths in graph.
 T-SNE: give up on large distances and focus on neighbour distances.
- Word2vec is a recent MDS method giving better "word features".

Supervised Learning Roadmap

- Part 1: "Direct" Supervised Learning.
 - We learned parameters 'w' based on the original features x_i and target y_i .
- Part 3: Change of Basis.
 - We learned parameters 'v' based on a change of basis z_i and target y_i .
- Part 4: Latent-Factor Models.
 - We learned parameters 'W' for basis z_i based on only on features x_i .

Wn

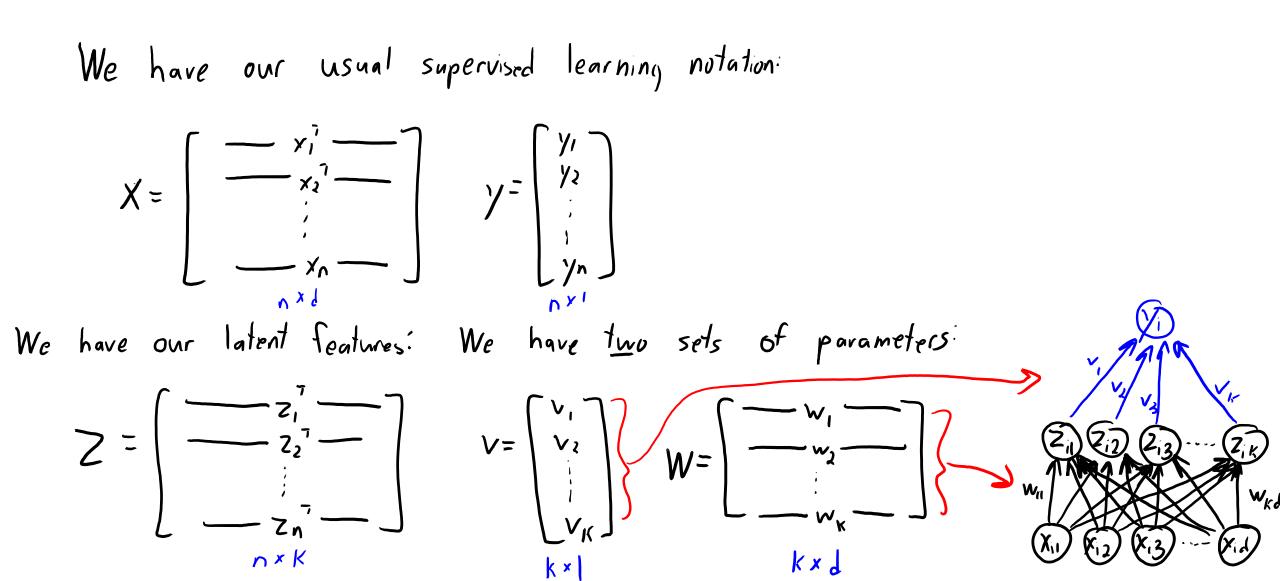
WK

- You can then learn 'v' based on change of basis z_i and target y_i .
- Part 5: Neural Networks.
 - Jointly learn 'W' and 'v' based on x_i and y_i .
 - Learn basis z_i that is good for supervised learning.

A Graphical Summary of CPSC 340 Parts 1-5

Part 1: "I have features xi" Part 3: Change of basis Part 4: basis from latent-factor Port 5: Neural networks model (Zik) (2_{12}) (Z13) -- (Z15) "PCA will give me good fectures" TI think this Part 2." What is the group of x,?" basis will work (X,n) $(X, V) \times V \times V$ (\mathbf{x}_{i}) (\mathbf{x}_{i}) - - (X,) Learn features "What are the 'parts' of x,?" classifier at Traine separatel Same Time.

Notation for Neural Networks



Linear-Linear Model

• Obvious choice: linear latent-factor model with linear regression.

Use features from latent-factor model:
$$z_i = Wx_i$$

Make predictions using a linear model: $y_i = v^7 z_i$

• We want to train 'W' and 'v' jointly, so we could minimize:

$$f(W,v) = \frac{1}{2} \sum_{i=1}^{n} (\sqrt{z_i} - \gamma_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (\sqrt{W_{x_i}} - \gamma_i)^2$$

$$\lim_{\substack{i \text{ near regression with } z_i \text{ as features}} \int_{\substack{i = 1 \\ i = 1$$

Introducing Non-Linearity

- To increase flexibility, something needs to be non-linear.
- Typical choice: transform z_i by non-linear function 'h'.

$$z_i = W_{x_i} \qquad y_i = v^T h(z_i)$$

- Here the function 'h' transforms 'k' inputs to 'k' outputs.

• Common choice for 'h': applying sigmoid function element-wise:

$$h(z_{ic}) = \frac{1}{1 + exp(-z_{ic})}$$

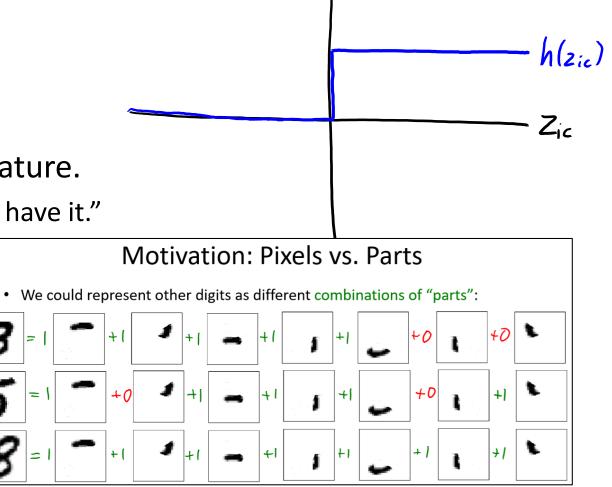
- So this takes the z_{ic} in $(-\infty,\infty)$ and maps it to (0,1).
- This is called a "multi-layer perceptron" or a "neural network".

Why Sigmoid?

• Consider setting 'h' to define binary features z_i using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} = 70 \\ 20 & \text{if } z_{ic} < 0 \end{cases}$$

- Each h(zi) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- We can make 2^k objects by all the possible "part combinations".

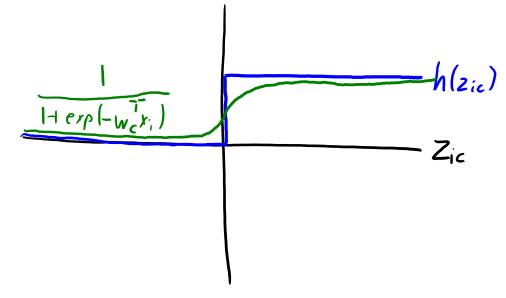


Why Sigmoid?

• Consider setting 'h' to define binary features z_i using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} = 70 \\ 20 & \text{if } z_{ic} < 0 \end{cases}$$

- Each h(zi) can be viewed as binary feature.
 - "You either have this 'part' or you don't have it."
- We can make 2^k objects by all the possible "part combinations".
- But this is hard to optimize (non-differentiable/discontinuous).
- Sigmoid is a smooth approximation to these binary features.

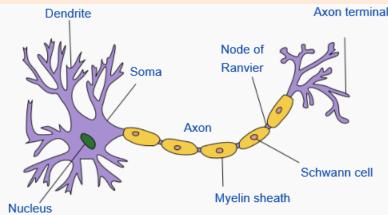


Supervised Learning Roadmap

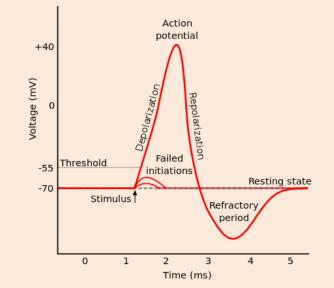
Hund-engineered features Learn a latent-factor model: Learn 'n' and W' together. Neural network. w_a | WKd V (2_{12}) (Z.) (x12) (x13) ···-(X.) Use latent features "I think this W_{II} in supervised model: WKd basis will work " (K12) (X13) ····· (X14) w_a | WKd But still gives a (×13) linear model (\mathbf{X}_{1}) (\mathbf{X}_{1}) (\mathbf{X}_{1}) (\mathbf{X}_{1}) (\mathbf{X}_{1}) ··-- (Zik) Good representation of Requires domain knowledge and can be time- consuming Extra non-linear transformation 'h' X; might be bad for predicting y:

Why "Neural Network"?

• Cartoon of "typical" neuron:

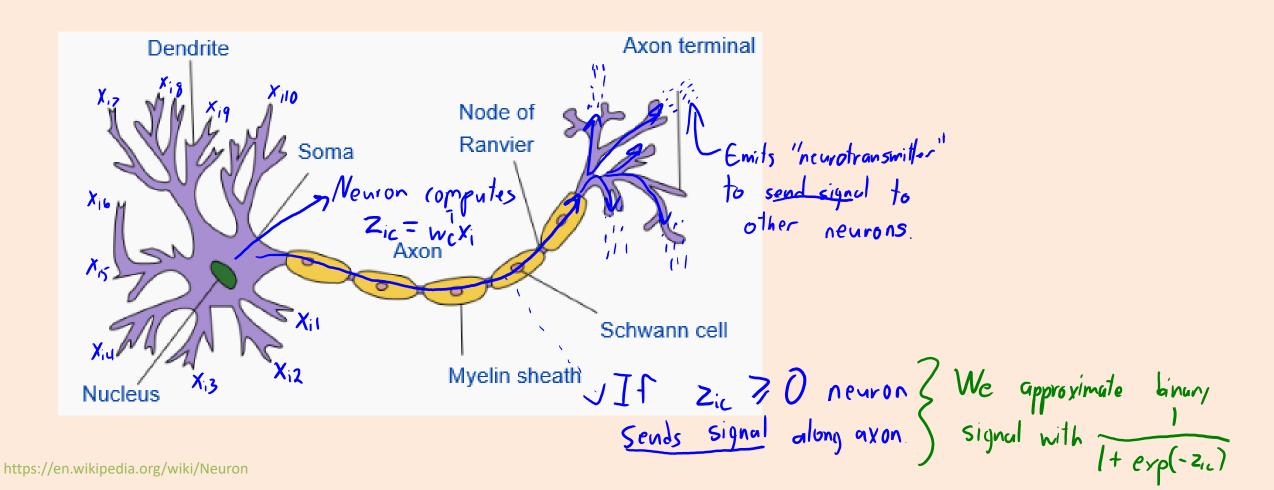


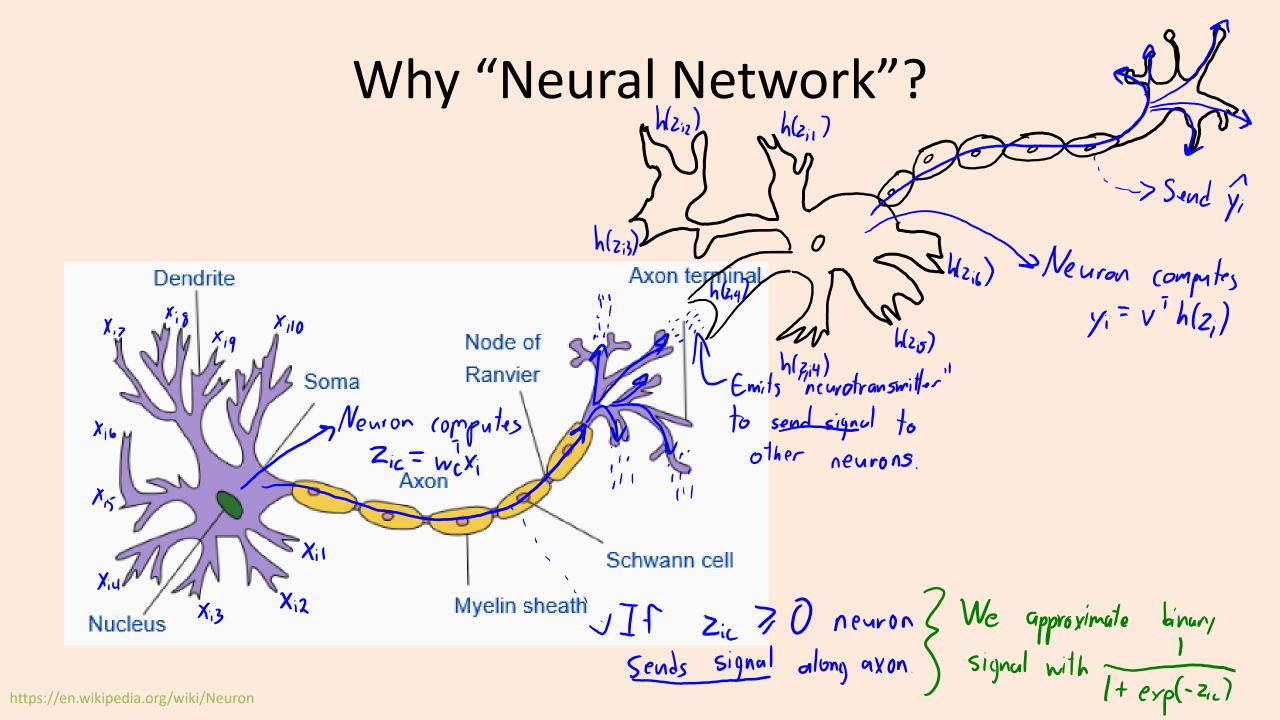
- Neuron has many "dendrites", which take an input signal.
- Neuron has a single "axon", which sends an output signal.
- With the right input to dendrites:
 - "Action potential" along axon (like a binary signal):



https://en.wikipedia.org/wiki/Neuron https://en.wikipedia.org/wiki/Action_potential

Why "Neural Network"?



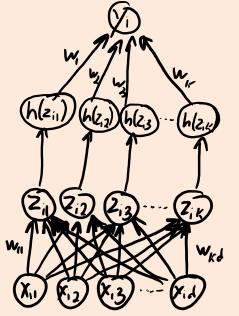


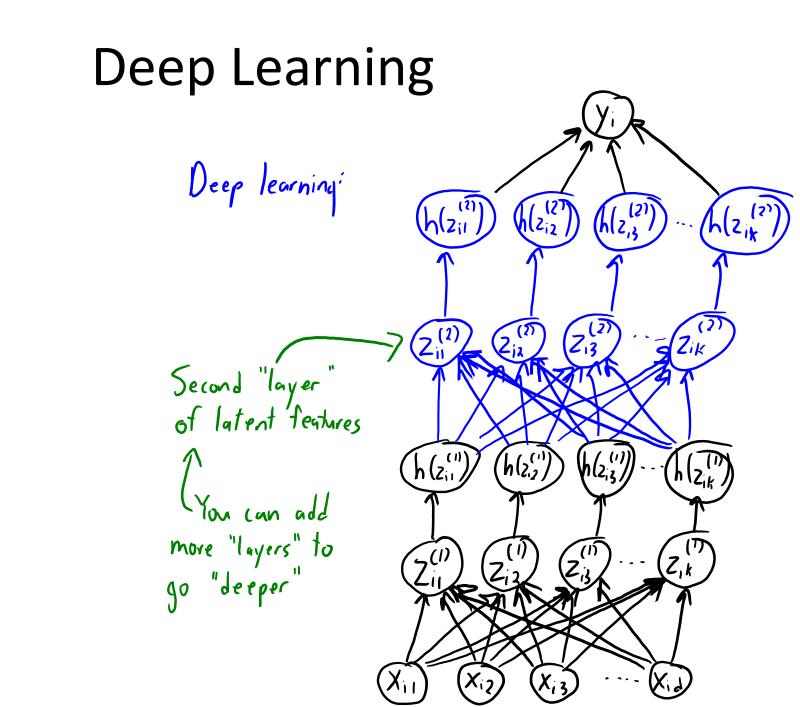
Why "Neural Network"?

-> Predictions based on aggregation vTh(Wx;) at y: "neuron" -> Synapse between Zik and yi neuron Spinory signal h(wcx,) sent along "axon" h(zk , Neuron aggregates signals: w.x. "dendrites" for Zik "neuron" are reciving xij values W₍₁ WKd

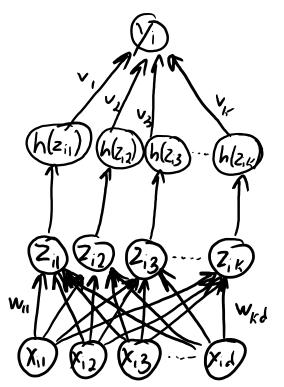
"Artificial" Neural Nets vs. "Real" Networks Nets

- Artificial neural network:
 - x_i is measurement of the world.
 - z_i is internal representation of world.
 - y_i is output of neuron for classification/regression.
- Real neural networks are more complicated:
 - Timing of action potentials seems to be important.
 - "Rate coding": frequency of action potentials simulates continuous output.
 - Neural networks don't reflect sparsity of action potentials.
 - How much computation is done inside neuron?
 - Brain is highly organized (e.g., substructures and cortical columns).
 - Connection structure changes.
 - Different types of neurotransmitters.



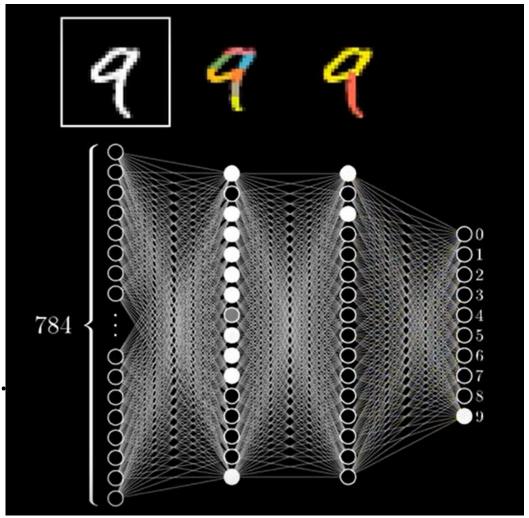


Neural network.



"Hierarchies of Parts" Motivation for Deep Learning

- Each "neuron" might recognize a "part" of a digit.
 - "Deeper" neurons might recognize combinations of parts.
 - Represent complex objects as hierarchical combinations of re-useable parts (a simple "grammar").
- Watch the full video here:
 - <u>https://www.youtube.com/watch?v=aircAruvnKk</u>



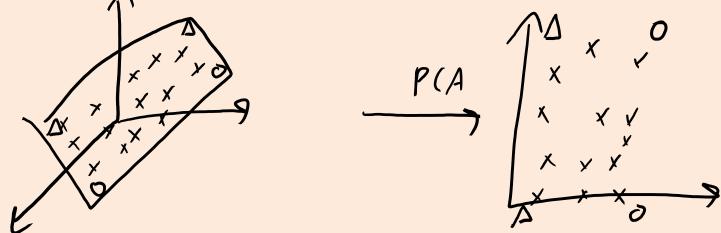
Summary

- Word2vec:
 - Latent-factor (continuous) representation of words.
 - Based on predicting word from its context.
- Neural networks learn features z_i for supervised learning.
- Sigmoid function avoids degeneracy by introducing non-linearity.
- Biological motivation for (deep) neural networks.
- Deep learning considers neural networks with many hidden layers.

- Next time:
 - Training deep networks.

Does t-SNE always outperform PCA?

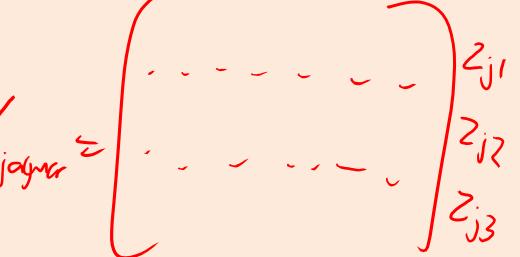
• Consider 3D data living on a 2D hyper-plane:



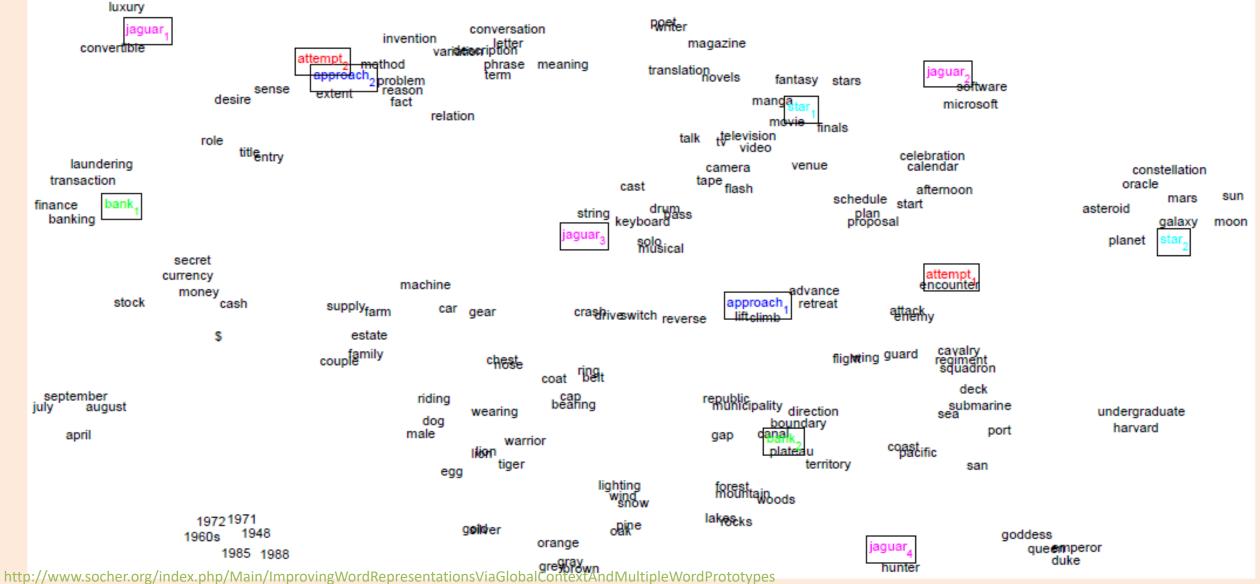
- PCA can perfectly capture the low-dimensional structure.
- T-SNE can capture the local structure, but can "twist" the plane.
 It doesn't try to get long distances correct.

Multiple Word Prototypes

- What about homonyms and polysemy?
 - The word vectors would need to account for all meanings.
- More recent approaches:
 - Try to cluster the different contexts where words appear.
 - Use different vectors for different contexts.



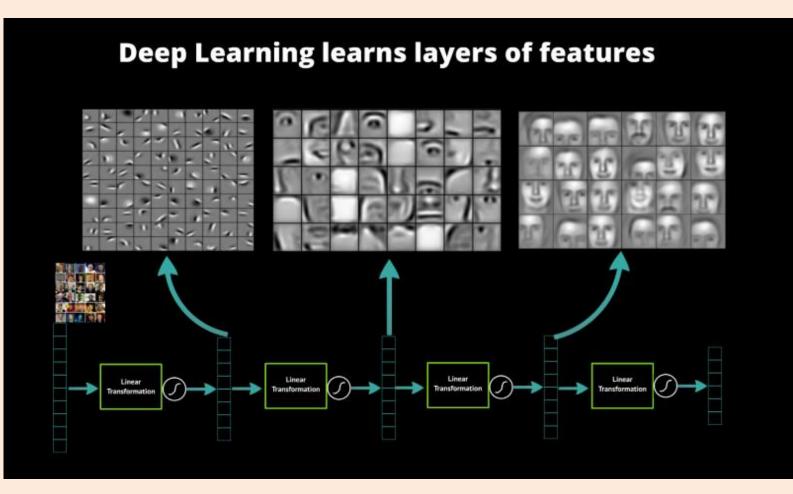
Multiple Word Prototypes



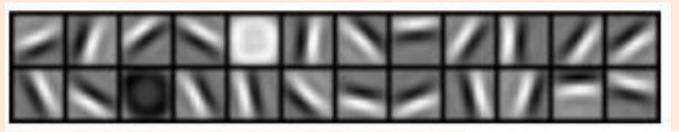
Why $z_i = Wx_i$?

- In PCA we had that the optimal $Z = XW^T(WW^T)^{-1}$.
- If W had normalized+orthogonal rows, $Z = XW^T$ (since $WW^T = I$).
 - So $z_i = Wx_i$ in this normalized+orthogonal case.
- Why we would use $z_i = Wx_i$ in neural networks?
 - We didn't enforce normalization or orthogonality.
- Well, the value W^T(WW^T)⁻¹ is just "some matrix".
 - You can think of neural networks as just directly learning this matrix.

• Faces might be composed of different "parts":

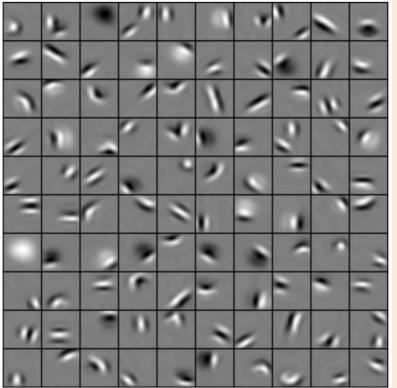


• First layer of z_i trained on 10 by 10 image patches:

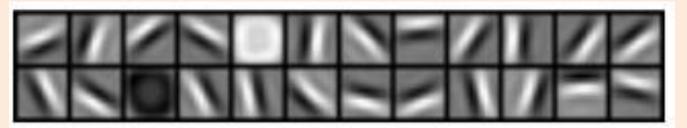


("Gabor filters"

- Attempt to visualize second layer:
 - Corners, angles, surface boundaries?
- Models require many tricks to work.
 We'll discuss these next time.

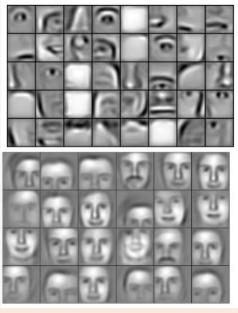


• First layer of z_i trained on 10 by 10 image patches:



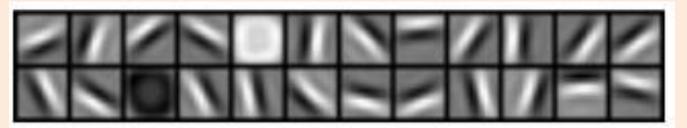
{ "Gabor filters"

 Visualization of second and third layers trained on specific objects: faces



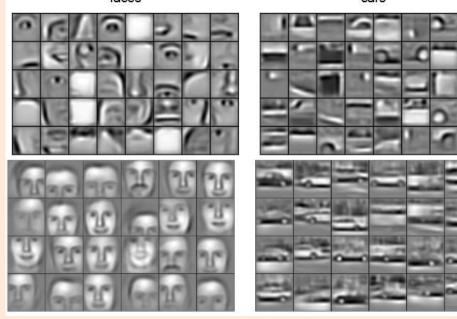
http://www.cs.toronto.edu/~rgrosse

• First layer of z_i trained on 10 by 10 image patches:

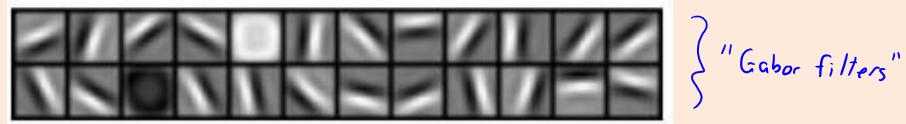


& "Gabor filters"

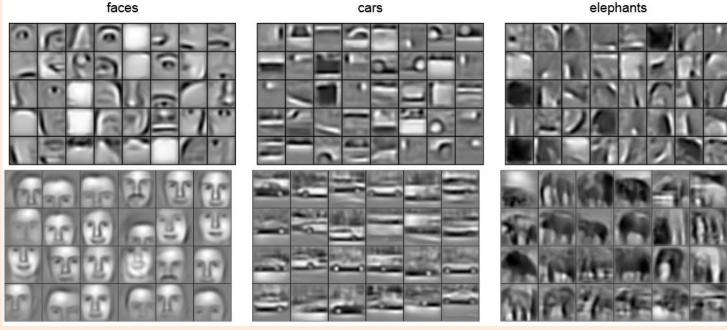
Visualization of second and third layers trained on specific objects:



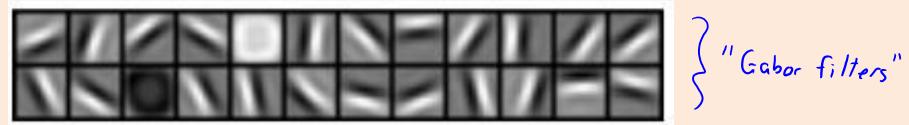
• First layer of z_i trained on 10 by 10 image patches:



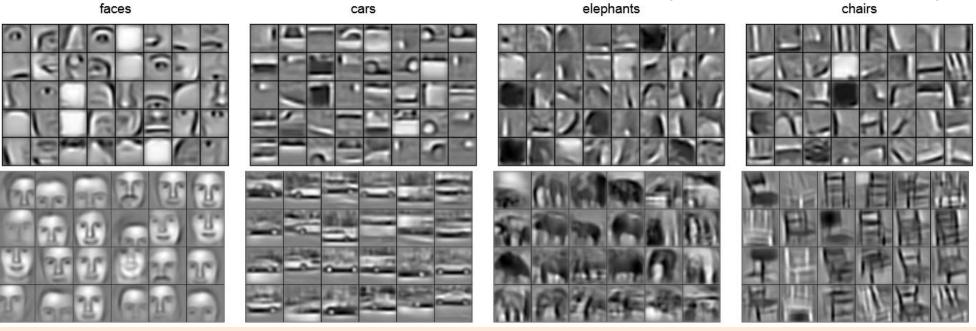
• Visualization of second and third layers trained on specific objects:



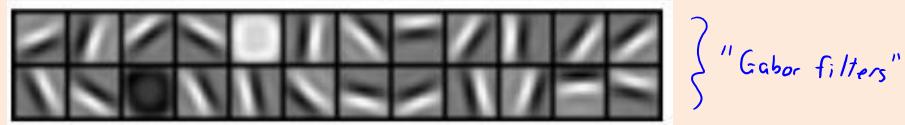
• First layer of z_i trained on 10 by 10 image patches:



• Visualization of second and third layers trained on specific objects:



• First layer of z_i trained on 10 by 10 image patches:



• Visualization of second and third layers trained on specific objects:

