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Latent-Factor Models for Visualization

• PCA takes features xi and gives k-dimensional approximation zi.

• If k is small, we can use this to visualize high-dimensional data.

http://www.turingfinance.com/artificial-intelligence-and-statistics-principal-component-analysis-and-self-organizing-maps/
http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe/



Motivation for Non-Linear Latent-Factor Models

• But PCA is a parametric linear model

• PCA may not find obvious low-dimensional structure.

• We could use change of basis or kernels: but still need to pick basis.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction



Multi-Dimensional Scaling

• PCA for visualization:

– We’re using PCA to get the location of the zi values.

– We then plot the zi values as locations in a scatterplot.

• Multi-dimensional scaling (MDS) is a crazy idea:

– Let’s directly optimize the pixel locations of the zi values.

• “Gradient descent on the points in a scatterplot”.

– Needs a “cost” function saying how “good” the zi locations are.

• Traditional MDS cost function:



MDS Method (“Sammon Mapping”) in Action

• Unfortunately, MDS often does not work well in practice.
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Multi-Dimensional Scaling

• Multi-dimensional scaling (MDS):

– Directly optimize the final locations of the zi values.

• Cannot use SVD to compute solution:

– Instead, do gradient descent on the zi values.

– You “learn” a scatterplot that tries to visualize high-dimensional data.

– Not convex and sensitive to initialization.

• And solution is not unique due to various factors like translation and rotation.



Different MDS Cost Functions

• MDS default objective: squared difference of Euclidean norms:

• But we can make zi match different distances/similarities:

– Where the functions are not necessarily the same:

• d1 is the high-dimensional distance we want to match.

• d2 is the low-dimensional distance we can control.

• d3 controls how we compare high-/low-dimensional distances.



Different MDS Cost Functions

• MDS default objective function with general distances/similarities:

• “Classic” MDS uses d1(xi,xj) = xi
Txj and d2(zi,zj) = zi

Tzj.

– We obtain PCA in this special case (centered xi, d3 as the squared L2-norm).

– Not a great choice because it’s a linear model.



Different MDS Cost Functions

• MDS default objective function with general distances/similarities:

• Another possibility: d1(xi,xj) = ||xi – xj||1 and d2(zi,zj) = ||zi – zj||.

– The zi approximate the high-dimensional L1-norm distances.

http://www.mdpi.com/1422-0067/15/7/12364/htm



Sammon’s Mapping

• Challenge for most MDS models: they focus on large distances.

– Leads to “crowding” effect like with PCA.

• Early attempt to address this is Sammon’s mapping:

– Weighted MDS so large/small distances are more comparable.

– Denominator reduces focus on large distances.

http://www.mdpi.com/1422-0067/15/7/12364/htm
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• Challenge for most MDS models: they focus on large distances.

– Leads to “crowding” effect like with PCA.

• Early attempt to address this is Sammon’s mapping:

– Weighted MDS so large/small distances are more comparable.

http://www.mdpi.com/1422-0067/15/7/12364/htm



(pause)



Learning Manifolds

• Consider data that lives on a low-dimensional “manifold”.

• Example is the ‘Swiss roll’:

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf
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Learning Manifolds

• Consider data that lives on a low-dimensional “manifold”.

– With usual distances, PCA/MDS will not discover non-linear manifolds.

• We need geodesic distance: the distance through the manifold.

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf



Manifolds in Image Space

• Consider slowly-varying transformation of image:

• Images are on a manifold in the high-dimensional space.
– Euclidean distance doesn’t reflect manifold structure.

– Geodesic distance is distance through space of rotations/resizings.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction



ISOMAP

• ISOMAP is latent-factor model for visualizing data on manifolds:



Digression: Constructing Neighbour Graphs

• Sometimes you can define the graph/distance without features:
– Facebook friend graph.

– Connect YouTube videos if one video tends to follow another.

• But we can also convert from features xi to a “neighbour” graph:
– Approach 1 (“epsilon graph”): connect xi to all xj within some threshold ε.

• Like we did with density-based clustering.

– Approach 2 (“KNN graph”): connect xi to xj if:
• xj is a KNN of xi OR xi is a KNN of xj.

– Approach 2 (“mutual KNN graph”): connect xi to xj if:
• xj is a KNN of xi AND xi is a KNN of xj.

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf



Converting from Features to Graph

http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf



ISOMAP

• ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.

• Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:

• Usually distance between neighbours.

3. Compute weighted shortest path between all points.

• Dijkstra or other shortest path algorithm.

4. Run MDS using these distances.

http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf



ISOMAP

• ISOMAP can “unwrap” the roll:
– Shortest paths are approximations to geodesic distances.

• Sensitive to having the right graph:
– Points off of manifold and gaps in manifold cause problems.

http://www.peh-med.com/content/9/1/12/figure/F1



ISOMAP on Hand Images

• Related method is “local linear embedding”.

http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf



Sammon’s Map vs. ISOMAP vs. PCA

http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
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Sammon’s Map vs. ISOMAP vs. t-SNE

http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf



Summary

• Multi-dimensional scaling is a non-parametric latent-factor model.

• Different MDS distances/losses/weights usually gives better results.

• Manifold learning focuses on low-dimensional curved structures.

• ISOMAP is most common approach:

– Approximates geodesic distance by shortest path in weighted graph.

• t-SNE is promising new data MDS method.

• Next time: deep learning.



Graph Drawing

• A closely-related topic to MDS is graph drawing:

– Given a graph, how should we display it?

– Lots of interesting methods: https://en.wikipedia.org/wiki/Graph_drawing

https://en.wikipedia.org/wiki/Graph_drawing


Bonus Slide: Multivariate Chain Rule

• Recall the univariate chain rule:

• The multivariate chain rule:

• Example:



Bonus Slide: Multivariate Chain Rule for MDS

• General MDS formulation:

• Using multivariate chain rule we have:

• Example:


