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Latent-Factor Models for Visualization

* PCA takes features x. and gives k-dimensional approximation z..
* |f kis small, we can use this to visualize high-dimensional data.
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Motivation for Non-Linear Latent-Factor Models

* But PCA is a parametric linear model
 PCA may not find obvious low-dimensional structure.

A[A[D D v || < 4|4 2 B B PV RS AL
A‘Ab b?vvv<<‘A¢Aﬁmb‘p VV ..0.::..0 .....0 ......

AA b } ?1 V VV<<‘~,A- A" ‘.; pl V V X% .:..:........:.. :.::.........:.:.... ....
AADNDY YT oL L bbby " --':.:.':’,:: e St et et e
A;A:P‘I?‘.V;V;T‘VT<Q<'4;A:LY5‘; &ZP.V .......... . .'.:.0:.-;;.’,{: ..S.' %
AAB D v vviw|alela|aa/b[p vV .’.’:;.'.‘:,-}‘.‘,-';} “\\H\s*
AADMD P Y T|w|<<las bbby |:> -....'.'.'.':5,-‘:-{
AMDMDyveea2/elelplpvy :EEEEE':.:':'.:‘E%

AIAMDBM P Y VITICCLLLLMIKY ‘”,..-.:'.‘...:'.1‘L Wc \/V -|>
AlAMPMP IV IT(e|c|e|a|abibibyy ..0.'.'. ..... A '0.‘.'-:'-.:3: » lvl
AlMInInlvlylelel<|elelalalslslviv ...o'....o...o.:::':.‘t.;. .
AR B R R SRR CR Somethng
ol o2 ] B ] B e 8 B e ] ] R R 2 o '.:.::-.:-:,-' |’|,\’0 -“\is

 We could use change of basis or kernels: but still need to pick basis.



Multi-Dimensional Scaling

* PCA for visualization:
— We're using PCA to get the location of the z, values.
— We then plot the z; values as locations in a scatterplot.

* Multi-dimensional scaling (MDS) is a crazy idea:

— Let’s directly optimize the pixel locations of the z. values.
Y i
* “Gradient descent on the points in a scatterplot”.

— Needs a “cost” function saying how “good” the z, Iocatlons are.
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MDS Method (“Sammon Mapping”) in Action
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* Unfortunately, MDS often does not work well in practice.



Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)=25 (=21~ lly - xI1)*

= \‘,:ﬁl

— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

£(2)=25 (=21~ lly - xI1)*
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..

QQA»
/ EPCA onl/ Moves anfy C/D,Stl‘.

Vi MDS MDS can presrs
: { ( \S!ﬁ_t

—o—2, LT




Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
n n 2
£(2)=z2 (=2 = lly, = x1l)
= \‘,:ﬁl

— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
n n 2
£(2)=z2 (=2 = lly, = x1l)
= \‘,:ﬁl

— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x..




Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
n N 2
‘F(Z) = ‘.:Z\)?ﬁ’ ( “Z,‘ "2)"” - ”Yi - )()'”)
* Cannot use SVD to compute solution:
— Instead, do gradient descent on the z, values.

— You “learn” a scatterplot that tries to visualize high-dimensional data.
— Not convex and sensitive to initialization.

* And solution is not unique due to various factors like translation and rotation.



Different MDS Cost Functions

 MDS default objective: squared difference of Euclidean norms:
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* But we can make z, match different distances/similarities:
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— Where the functions are not necessarily the same:
* d, is the high-dimensional distance we want to match.

* d, is the low-dimensional distance we can control.
* d, controls how we compare high-/low-dimensional distances.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

£(2)= 535 dy(kalaz) = dilxox))
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* “Classic” MDS uses d,(x;,x) = x;'x; and d,(z,z) = 7'z,
— We obtain PCA in this special case (centered x;, d; as the squared L2-norm).
— Not a great choice because it’s a linear model.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:

£(2)= 25 d3(kla,2) = dilex)
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* Another possibility: di(x,x) = | |x;— x| |1 and d,(z;,z)) = [ [z;— 7| |.
— The z, approximate the high-dimensional L;-norm distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarge/small distances are more comparable.

£ (2)= Z 2 (dl(z,,z) J(w)))
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— Denominator reduces focus on large distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

e Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.
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Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.

 Example is the ‘Swiss roll’:
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Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.
— With usual distances, PCA/MDS will not discover non-linear manifolds.




Learning Manifolds

e Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.

* We need geodesic distance: the distance through the manifold.
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Manifolds in Image Space

e Consider slowly-varying transformation of image:
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* Images are on a manifold in the high-dimensional space.
— Euclidean distance doesn’t reflect manifold structure.
— Geodesic distance is distance through space of rotations/resizings.



ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:
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Digression: Constructing Neighbour Graphs

* Sometimes you can define the graph/distance without features:
— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

* But we can also convert from features x. to a “neighbour” graph:

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold .
* Like we did with density-based clustering.

— Approach 2 (“KNN graph”): connect x; to x; if:
* X is a KNN of x; OR x; is @ KNN of x..

— Approach 2 (“mutual KNN graph”): connect x; to x; if:
* X is a KNN of x; AND x; is a KNN of x;.



Converting from Features to Graph

Data points




ISOMAP

* |ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
e Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:
* Usually distance between neighbours.

3. Compute weighted shortest path between all points.{ | |
e Dijkstra or other shortest path algorithm.

4. Run MDS using these distances. |




ISOMAP

* ISOMAP can “unwrap” the roll:
— Shortest paths are approximations to geodesic distances.

* Sensitive to having the right graph:
— Points off of manifold and gaps in manifold cause problems.



ISOMAP on Hand Images

-

Fingers extension

Wrist rotation

* Related method is “local linear embedding”.



PCA

Sammon’s Map vs. ISOMAP vs. PCA
TSomAP
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Sammon’s Map vs. ISOMAP vs. t-SNE
TSomAP
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Sammon’s Map vs. ISOMAP vs. t-SNE

gaw\mol\ MQ"’

1o

5 alﬂoriﬂ»m do

Know the label.

pff visegl

S~

Rememép( Thi i wunsu



Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Summary

Multi-dimensional scaling is a non-parametric latent-factor model.
Different MDS distances/losses/weights usually gives better results.
Manifold learning focuses on low-dimensional curved structures.

ISOMAP is most common approach:
— Approximates geodesic distance by shortest path in weighted graph.

t-SNE is promising new data MDS method.

Next time: deep learning.



Graph Drawing

* A closely-related topic to MDS is graph drawing:
— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing



https://en.wikipedia.org/wiki/Graph_drawing

e Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulation:
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* Using multivariate chain rule we have:
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